

RCA High-Speed CMOS Logic Integrated Circuits

The RCA HC/HCT series of high-speed CMOS logic integrated circuits include an extensive line of products that are pin compatible with many existing bipolar 54/74 LSTTL and CMOS 4000 series of digital logic types. The new HC/HCT series IC's provide high-speed CMOS replacements for the most popular LSTTL devices in existing designs and also offer low-power all-CMOS designs for new digital systems. Key family features of the RCA HC/HCT types include:

- Speeds equivalent to LSTTL types with typical gate delays of 8 ns.
- Fanout to 10 74 LSTTL loads; 15 loads using Bus Driver 54/74 types.
- Operating frequencies equivalent to LSTTL types, typically 50 MHz.
- The high voltage noise immunity characteristic of CMOS, typically 45 percent of Vcc, a two to three times improvement over LSTTL. (HC-Series types.)
- Wide range of power supply operating voltages, 2 to 6 volts.
- CMOS low static power consumption, typically less than 1 microwatt.

With the broad line of CMOS MSI function types currently available, together with performance offered by the RCA HC/HCT series of high-speed CMOS integrated circuits, the designer need not sacrifice speed for power consumption. Add the other classical advantages of CMOS, including high noise immunity and wide power supply and temperature ranges, and the decision to use high-speed CMOS logic is the choice for the 80's. This family provides for the design of more cost-effective systems to serve high-speed market applications.

The RCA product line consists of CD54/74HC-series types, which feature CMOS input voltage level compatibility and CD54/74HCT-series types, which are input voltage level compatible with LSTTL devices. The line also includes a limited number of single-stage, unbuffered inverter types (CD54/74HCU-series) for added versatility in oscillator and amplifier applications.

A general information section defines the distinguishing characteristics of each product series and provides characteristic data and classification and selection charts.

The data pages include a description, special features, truth tables and/or timing diagrams, and significant dynamic electrical characteristics.

The data sections are followed by a Dimensional Outlines section.

Product Selectors Technical Overview **High-Speed CMOS Macrocells Technical Data FCT Bus-Interface Family Advanced CMOS Logic Application Notes Dimensional Outlines** New Datasheets and Application Note (Product Preview Types in SSD-290C)

Table of Contents

	raye
Product Selectors Index to Devices Product Selection Guide Classification Chart	
Technical Overview Family Description Standardized Capacitance Power Dissipation (CPD) Test Procedure Explanation of Symbols Standarized Maximum Ratings and Recommended Operating Conditions Static Electrical Characteristics Dynamic Electrical Characteristics Operating and Handling Considerations Enhanced Product RCA MIL-STD-883 Slash-Series IC's Nomenclature Code	12 31 32 36 37 39 39 42
High-Speed CMOS Macrocells	43
Technical Data	47
FCT Bus-Interface Family	633
Advanced CMOS Logic	643
Application Notes	645
Dimensional Outlines	689
New Datasheets and Application Note (Product Preview Types in SSD-290C)	695

Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

The device data shown for some types are indicated as product preview or advance information/preliminary data. Product preview data are intended for engineering evaluation of product under development. The type designations and data are subject to change or withdrawal, unless otherwise arranged. Advance information/preliminary data are intended for guidance purposes in evaluating new product for equipment design. Such data are shown for types currently being designed for inclusion in our standard line of commercially available products. No obligations are assumed for notice of change of these devices. For current information on the status of product preview or advance information/preliminary data programs, please contact your local Harris sales office.

Copyright 1989 by Harris Corporation (All rights reserved under Pan-American Copyright Convention)

Trademark(s) ®Registered Marca(s) Registrada(s) Printed in USA/8-89

Product Selectors

Index to Devices

CMOS	S Logic	TTL	Logic			
Plastic Pkg.	CERDIP	Plastic Pkg.	CERDIP	Page	Description	Pins
CD74HC00E,M	CD54HC00F	CD74HCT00E,M	CD54HCT00F	48	Quad 2-Input NAND Gate	14
CD74HC02E,M	CD54HC02F	CD74HCT02E,M	CD54HCT02F	52	Quad 2-Input NOR Gate	14
CD74HC03E,M	CD54HC03F	CD74HCT03E,M	CD54HCT03F	56	Quad 2-Input NAND Gate with Open Drain	14
CD74HC04E,M	CD54HC04F	CD74HCT04E,M	CD54HCT04F	60	Hex Inverter/Buffer	14
CD74HC08E,M	CD54HC08F	CD74HCT08E,M	CD54HCT08F	64	Quad 2-Input AND Gate	14
CD74HC10E,M	CD54HC10F	CD74HCT10E,M	CD54HCT10F	68	Triple 3-Input NAND Gate	14
CD74HC11E,M	CD54HC11F	CD74HCT11E,M	CD54HCT11F	72	Triple 3-Input AND Gate	14
CD74HC14E,M	CD54HC14F	CD74HCT14E,M	CD54HCT14F	76	Hex Inverting Schmitt Trigger	14
CD74HC20E,M	CD54HC20F	CD74HCT20E,M	CD54HCT20F	80	Dual 4-Input NAND Gate	14
CD74HC21E,M	CD54HC21F	CD74HCT21E,M	CD54HCT21F	84	Dual 4-Input AND Gate	14
CD74HC27E,M	CD54HC27F	CD74HCT27E.M	CD54HCT27F	88	Triple 3-Input NOR Gate	14
CD74HC30E,M	CD54HC30F	CD74HCT30E,M	CD54HCT30F	92	8-Input NAND Gate	14
CD74HC32E,M	CD54HC32F	CD74HCT32E,M	CD54HCT32F	96	Quad 2-Input OR Gate	14
CD74HC42E,M	CD54HC42F	CD74HCT42E,M	CD54HCT42F	100	BCD-to-Decimal Decoder (1-to-10)	- 16
CD74HC73E,M	CD54HC73F	CD74HCT73E,M	CD54HCT73F	104	Dual J-K Flip-Flop w/RESET	14
CD74HC74E.M	CD54HC74F	1	CD54HCT74F	100	Dual D Elia Flan w/SET and BESET	14
		CD74HCT74E,M		109	Dual D Flip-Flop w/SET and RESET Dual 2-Bit Bistable Transparent Latch	16
CD74HC75E,M	CD54HC75F	CD74HCT75E,M	CD54HCT75F	114		16
CD74HC85E,M	CD54HC85F CD54HC86F	CD74HCT85E,M	CD54HCT85F CD54HCT86F	119 125	4-Bit Magnitude Comparator Quad 2-Input EXCLUSIVE-OR Gate	14
CD74HC86E,M CD74HC93E,M	CD54HC86F CD54HC93F	CD74HCT86E,M CD74HCT93E,M	CD54HCT86F CD54HCT93F	129	4-Bit Binary Ripple Counter	14
	i	1		1		1
CD74HC107E,M	CD54HC107F	CD74HCT107E,M	CD54HCT107F	134	Dual J-K Flip-Flop w/RESET	.14
CD74HC109E,M	CD54HC109F	CD74HCT109E,M	CD54HCT109F	139	Dual J-K Flip-Flop w/SET and RESET	16
CD74HC112E,M	CD54HC112F	CD74HCT112E,M	CD54HCT112F	144	Dual J-K Flip-Flop w/SET and RESET	16
CD74HC123E,M	CD54HC123F	CD74HCT123E,M	CD54HCT123F	149	Dual Retriggerable Monostable Multivibrator w/RESET	16
CD74HC125E,M	CD54HC125F	CD74HCT125E,M	CD54HCT125F	155	Quad 3-State Buffer	. 14
CD74HC126E.M	CD54HC126F	CD74HCT126E,M	CD54HCT126F	160	Quad 3-State Buffer	14
CD74HC132E,M	CD54HC132F	CD74HCT132E,M	CD54HCT132F	165	Quad 2-Input NAND Schmitt Trigger	14
CD74HC137E,M	CD54HC137F	CD74HCT137E,M	CD54HCT137F	696	3-to-8 Line Decoder w/Latch, Inverting	16
CD74HC138E,M	CD54HC138F	CD74HCT138E,M	CD54HCT138F	169	3-to-8 Line Decoder/Demultiplexer, Inverting	16
CD74HC139E,M	CD54HC139F	CD74HCT139E,M	CD54HCT139F	174	Dual 2-of-4 Line Decoder/Demultiplexer	16
OD74110447E M	00541104475	OD74110T147E M	ODE 41 10T1 47F	179	10 to 41 inc Driggity Engador	16
CD74HC147E,M	CD54HC147F	CD74HCT147E,M	CD54HCT147F	184	10-to-4 Line-Priority Encoder	16
CD74HC151E,M CD74HC153E,M	CD54HC151F CD54HC153F	CD74HCT151E,M CD74HCT153E,M	CD54HCT151F CD54HCT153F	189	8-Input Multiplexer Dual 4-Input Multiplexer	16
CD74HC153E,M CD74HC154E,M	CD54HC154F	CD74HCT153E,M	CD54HCT154F	194	4-to-16-Line Decoder/Demultiplexer	24
CD74HC154E,M CD74HC157E,M	CD54HC154F CD54HC157F	CD74HCT157E,M	CD54HCT157F	200	Quad 2-Input Multiplexer	16
	CD34FIC137F	CD/4HC113/E,W	l	1		1
CD74HC158E,M	CD54HC158F	CD74HCT158E,M	CD54HCT158F	200	Quad 2-Input Multiplexer, Inverting	16
CD74HC160E,M	CD54HC160F	CD74HCT160E,M	CD54HCT160F	205	Synchronous BCD Decade Counter, Asynchronous Reset	16
CD74HC161E,M	CD54HC161F	CD74HCT161E,M	CD54HCT161F	205	Synchronous 4-Bit Binary Counter, Asynchronous Reset	16
CD74HC162E,M	CD54HC162F	CD74HCT162E,M	CD54HCT162F	205	Synchronous BCD Decade Counter, Synchronous Reset	16
CD74HC163E,M	CD54HC163F	CD74HCT163E,M	CD54HCT163F	205	Synchronous 4-Bit Binary Counter, Synchronous Reset	16
CD74HC164E,M	CD54HC164F	CD74HCT164E,M	CD54HCT164F	215	8-Bit Serial-In Parallel-Out Shift Register	14
CD74HC165E,M	CD54HC165F	CD74HCT165E,M	CD54HCT165F	220	8-Bit Parallel-In Serial-Out Shift Register	16
CD74HC166E,M	CD54HC166F	CD74HCT166E,M	CD54HCT166F	226	8-Bit Parallel-In Serial-Out Shift Register	16
CD74HC173E,M	CD54HC173F	CD74HCT173F,M	CD54HCT173F	232	Quad D Flip-Flop, 3-State	16
CD74HC174E,M	CD54HC174F	CD74HCT174E,M	CD54HCT174F	238	Hex D-Type Flip-Flop w/RESET	16
		i		243		16
CD74HC175E,M	CD54HC175F	CD74HCT175E,M	CD54HCT175F	243	Quad D-Type Flip-Flop w/RESET	24
CD74HC181E,M	CD54HC181F CD54HC182F	CD74HCT181E,M CD74HCT182E,M	CD54HCT181F CD54HCT182F	254	4-Bit Arithmetic Logic Unit Look-Ahead Carry Generator	16
CD74HC182E,M	CD54HC190F	CD74HCT182E,M	CD54HCT182F CD54HCT190F	260	Presettable Synchronous BCD Decade Up/Down Counter	16
CD74HC190E,M CD74HC191E,M	CD54HC190F CD54HC191F	CD74HCT190E,M	CD54HCT191F	260	Synchronous 4-Bit Binary Up/Down Counter	16
		1.		i		Í
CD74HC192E,M	CD54HC192F	CD74HCT192E,M	CD54HCT192F	269	Synchronous BCD Decade Up/Down Counter	16
CD74HC193E,M	CD54HC193F	CD74HCT193E,M	CD54HCT193F	269	Synchronous 4-Bit Binary Up/Down Counter	16
CD74HC194E,M	CD54HC194F	CD74HCT194E,M	CD54HCT194F	279	4-Bit Bidirectional Universal Shift Register	16
CD74HC195E,M	CD54HC195F	CD74HCT195E,M	CD54HCT195F	285	4-Bit Parallel Access Shift Register	16
CD74HC221E,M	CD54HC221F	CD74HCT221E,M	CD54HCT221F	291	Dual Monostable Multivibrator w/RESET	16
CD74HC237E,M	CD54HC237F	CD74HCT237F,M	CD54HCT237F	696	3-to-8-Line Decoder/Demultiplexer w/Address Latches	16
CD74HC238E,M	CD54HC238F	CD74HCT238E,M	CD54HCT238F	169	3-to-8-Line Decoder/Demultiplexer	16
CD74HC240E,M	CD54HC240F	CD74HCT240E,M	CD54HCT240F	298	Octal Buffer Line Driver, 3-State, Inverting	20
CD74HC241E,M	CD54HC241F	CD74HCT241E,M	CD54HCT241F	298	Octal Buffer Line Driver, 3-State	20
CD74HC242E,M	CD54HC242F	CD74HCT242E,M	CD54HCT242F	304	Quad-Bus Transceiver, 3-State, Inverting	14
	1	1		304		14
CD74HC243E,M CD74HC244E,M	CD54HC243F CD54HC244F	CD74HCT243E,M CD74HCT244E,M	CD54HCT243F CD54HCT244F	298	Quad-Bus Transceiver, 3-State Octal-Buffer Line Driver, 3-State	20
DD74HC244E,M DD74HC245E,M	CD54HC244F CD54HC245F	CD74HC1244E,M CD74HCT245E,M	CD54HCT244F CD54HCT245F	310	Octal-Bus Transceiver, 3-State	20
CD74HC245E,M CD74HC251E,M	CD54HC251F	CD74HC1245E,M CD74HCT251E,M	CD54HCT251F	315	8-Input Multiplexer, 3-State	16
CD74HC253E,M	CD54HC253F	CD74HCT253E,M	CD54HCT251F CD54HCT253F	321	Dual 4-Input Multiplexer, 3-State	16
			l	1		
CD74HC257E,M	CD54HC257F	CD74HCT257E,M	CD54HCT257F	326	Quad 2-Input Multiplexer, 3-State; Non-Inverting Outputs	16
CD74HC258E,M	CD54HC258F	CD74HCT258E,M	CD54HCT258F	330	Quad 2-Input Multiplexer, 3-State; Inverting Outputs	16
CD74HC259E,M	CD54HC259F	CD74HCT259E,M	CD54HCT259F	335	8-Bit Addressable Latch	16
CD74HC273E,M	CD54HC273F	CD74HCT273E,M	CD54HCT273F	342	Octal D-Type Flip-Flop w/RESET	20

[●]CD54/74HCU04, unbuffered version also available.

Index to Devices (Cont'd)

Principle Page CERDIP Plantic Pkg CERDIP Page Description	Pin 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:
C074HC738EM	11 11 12 21 22 22 22 22 22 22 22 22 22 2
CD54HC285E M	11 11 12 21 22 22 22 22 22 22 22 22 22 2
2074HC1297E, M. CD54HC297F CD54HC1297F CD54HC1298F	11: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:
2074HC398E_M CO594HC398F CO794HC7396E_M CO594HC7396E_M CO594HC73	20 22 21 11 11 11 21 22 21 11 11 21 22 22
2074HC1735EE, M. COS54HC258F CO754HC1735EE, M. COS54HC236F CO754HC1736E, M.	20 21 11 11 11 11 21 22 21 11 11 22 22 22
1074HC39EE_M C054HC398F C074HC139EE_M	21 11 11 11 22 22 22 21 11 11 12 22 22 2
2074HC386E,M CO54HC386F CO74HC7386E,M CO54HC738F CO54HC387E CO54HC387E CO74HC7387E,M CO54HC387E CO54HC387E CO74HC7387E,M CO54HC387E CO54HC387E CO74HC7387E,M CO54HC3737E CO74HC738E,M CO54HC3737E CO74HC738E,M CO54HC3737E CO74HC738E,M CO54HC3737E CO74HC738E,M CO54HC3737E CO54HC387E CO74HC738E,M CO54HC3737E CO74HC738E,M CO54HC387E CO74HC738	11 11 11 11 21 22 22 11 11 24 22 22 22
2074HC386E,M CO54HC386F CO74HC7386E,M CO54HC738F CO54HC387E CO54HC387E CO74HC7387E,M CO54HC387E CO54HC387E CO74HC7387E,M CO54HC387E CO54HC387E CO74HC7387E,M CO54HC3737E CO74HC738E,M CO54HC3737E CO74HC738E,M CO54HC3737E CO74HC738E,M CO54HC3737E CO74HC738E,M CO54HC3737E CO54HC387E CO74HC738E,M CO54HC3737E CO74HC738E,M CO54HC387E CO74HC738	11 11 11 11 21 22 22 11 11 24 22 22 22
D774HC138EM	11 11 21 22 22 21 11 1. 11 21 21 22 22
D274HC387EM CD54HC387F CD74HC7387EM CD54HC7387E CD74HC7382EM CD54HC737EM CD54HC738EM	11 11 21 22 21 11 11 21 22 21 21
D724HC378EM CD54HC368F CD74HC738EM CD54HC738F CD54HC374F C	11 22 22 11 11 11 21 22 21 21
D724HC738EM	11 22 22 11 11 11 21 22 21 21
D074HC378EM D074HC378EM C074HC7378EM C074HC7378EM C074HC7378EM C074HC7378EM C074HC738EM C074HC738E	20 20 10 11 11 20 20 20 20
D274HC374EM CD84HC374F CD84HC374F CD84HC374F CD84HC374F CD84HC374F CD84HC396F CD74HC7380EM CD74HC7380EM CD74HC7380EM CD84HC396F CD74HC7380EM CD84HC396F CD74HC7380EM CD84HC396F CD74HC7380EM CD84HC396F CD74HC7380EM CD84HC396F CD74HC7380EM CD84HC396F CD74HC7380EM CD84HC383F CD74HC7380EM CD84HC383F CD74HC7380EM CD84HC383F CD84HC	20 20 11 11 20 20 20 20 20
1074HC1337EM C054HC1337F C075HC1337F C075HC1337F C075HC1338EM C075HC1	21 11 11 21 21 21 21 21
1074HC337EM CD54HC337F CD74HC737EM CD54HC7337F CD74HC738EM CD54HC738EM C	21 11 11 21 21 21 21 21
D074HC338E_M D054HC338F C074HC7382M C075HC738F	10 14 20 20 20 20 20
1074HC938EM CD54HC938F CD74HC738EM CD54HC738F 418 CD54HC938EM CD54HC938E	1- 11 20 20 20 20
1074H-1C38E_M D58H-1C38F D78H-1C738E_M	11 20 20 20 20 20
D074HCS38EM D054HCS3F CD74HCTS3SEM CD54HCTS3F April D054HCS4F CD54HCS4F CD54HCS5F CD74HCTS4F CD54HCS5F CD54HCS5F CD74HCTS5F CD54HCS5F CD54HCS5F CD74HCTS7F CD54HCS5F	21 21 21 21
D074HCS33EM D054HCS39E CD74HCTS3SEM CD54HCTS3SEM D054HCS34E D054HCS40EM D054HCS40EM CD54HCS40EM CD54HCS3EM CD54HC	21 21 21 21
D74HC538_EM D054HC534E D74HC534EM D054HC534EM D0	21 21 21
D074HC549EM D054HC549F D074HC7589EM D054HC7589EM D054HC5789EM D054HC589EM	21 21 21
D074HC541EM	20
D074HC5641E,M D054HC541E,M D05	20
D734HC583E,M D734HC583E D734HC758E M D734HC758E M D734HC758E M D734HC758E M D734HC758E M D734HC738E	20
D274HC6784E, CD54HC578F CD54HC578F CD54HC578E, CD54HC588E, CD54HC688E, CD54HC688E, CD54HC68E, CD54HC	
D074HC564EM CD54HC564F CD74HC7573EM CD54HC7573EM CD54HC7573EM CD54HC7573EM CD54HC7573EM CD54HC7573EM CD54HC7573EM CD54HC7573EM CD54HC753EM CD54HC754EM CD54HC7	
D074HC673EM CD64HC673F CD64HC673F CD74HC7574EM CD54HC7574EM CD54HC7574EM CD54HC7574EM CD54HC7574EM CD54HC7583EM CD54HC7583EM CD54HC7583EM CD54HC7583EM CD54HC7583EM CD54HC7583EM CD54HC7583EM CD54HC7585EM CD54HC7585EM CD54HC7585EM CD54HC7585EM CD54HC7585EM CD54HC7585EM CD54HC7585EM CD54HC7585EM CD54HC758EM CD54HC768EM CD54HC768E	1 2
D734HC574EM CD54HC5874F CD74HC7588EM CD54HC7588EM CD54HC7588EM CD54HC7588EM CD54HC7588EM CD54HC7588EM CD54HC7588EM CD54HC7586EM CD54HC7686EM CD54HC768EM CD54H	20
D74HC689E,M CD54HC88F CD74HCT889E,M CD54HC789F CD74HC7684E,M CD54HC840F CD74HC7684E,M CD54HC760F CD74HC7684E,M CD54HC760F CD74HC7684E,M CD54HC760F CD74HC7684E,M CD54HC760F CD74HC7684E,M CD54HC760F CD74HC7684E,M CD74HC7684E,M CD54HC760F CD74HC7684E,M CD54HC760F CD74HC760E,M CD74HC768E,M CD74HC768E	
DZ74HC640EM CD54HC849F CD74HC7640EM CD54HC7640F CD74HC7640EM CD54HC849F CD74HC7640EM CD54HC849F CD74HC7648EM CD54HC849F CD74HC7648EM CD54HC849F CD74HC7648EM CD54HC849F CD74HC7648EM CD54HC849F CD74HC7640EM CD74H	20
D774HC640E,M D54HC643F CD74HC1643E,M CD54HC1643F CD74HC1643E,M CD54HC1643E,M CD54HC1643F CD74HC1643E,M CD74HC1643E	110
D774HC640E,M D54HC643F CD74HC1643E,M CD54HC1643F CD74HC1643E,M CD54HC1643E,M CD54HC1643F CD74HC1643E,M CD74HC1643E	1 10
D274HC643EM	
D274HC648E,M	20
D74HC648E,M CD54HC648F CD74HC7648E,M CD54HC7670E,M CD54HC670E,M CD54HC688F CD74HC768E,M CD54HC688F CD74HC760E,M CD54HC64015 CD74HC760E,M CD54HC6400E,M CD54HC6400E CD74HC760E,M CD54HC6400E,M CD54HC6400E CD74HC760E,M CD54HC6400E,M	20
D774HC648EM	24
D74HC670EM D74HC670EM D74HC7409EM D74HC74002EM D74HC74005EM D74HC74015EM D74HC7400EM D74HC7409EM D74HC7400EM D74HC740EM D74HC7400EM D74HC740OEM D7	24
D74HC4002F, D754HC4002F	"
D74HC4002E,M CD54HC4002F CD54HC4002F CD54HC4015F CD54HC4015F CD54HC4015F CD54HC4015F CD54HC4015F CD54HC4015F CD54HC4015F CD54HC4015F CD54HC4017F CD54HC4017F CD54HC4020F CD54HC4008F	16
D734HC4002E,M CD54HC4002F CD74HC74015E,M CD54HC4015F CD74HC74015E,M CD74HC4015E,M CD74HC4016E,M CD74HC4016E,M CD74HC4017E,M CD54HC4017E,M CD54HC4017E,M CD54HC4020F CD54HC4020F CD54HC4020F CD54HC4020F CD54HC4020F CD54HC4020F CD54HC4020F CD54HC4020F CD54HC4020F CD54HC4002E,M CD54HC4006F,M CD74HC74024E,M CD54HC4006F,M CD74HC7400E,M CD74HC740E,M CD74HC7400E,M CD74HC7400E,M CD74HC7400E,M CD74HC7400E,M CD74HC740E,M CD74HC740E,	20
D73HC4016E,M CD54HC4016F CD74HCT4016E,M CD54HC4016F CD74HCT4016E,M CD54HC4016F CD74HCT4016E,M CD54HC4016F CD74HCT4016E,M CD54HC4016F CD74HCT4016E,M CD54HC4020E,M CD54HC4020E,M CD54HC4020E,M CD54HC4024F CD74HCT4020E,M CD54HC4024F CD74HCT4020E,M CD54HC4024F CD74HCT4020E,M CD54HC4024F CD74HCT4020E,M CD54HC4024F CD74HCT4020E,M CD54HC4040E,M CD54HC4040E,M CD54HC4040E,M CD54HC4040E,M CD54HC4040E,M CD74HCT4040E,M CD74HCT405E,M CD74HCT405E,M CD74HCT405E,M CD74HC7405E,M CD74HC7405E,M CD74HC7405E,M CD74HC7405E,M CD74HC7405E,M CD74HC7405E,M CD74HC7405E,M CD74HC7406E,M CD74HC	14
D074HC4017E,M CD54HC4017F CD74HCT4016E,M CD54HCT4017F CD74HCT4017E,M CD54HCT4017F CD74HCT4020E,M CD54HC4020F CD54HC4020F CD54HC4020E,M CD54HC4020E,M CD54HC4040E,M CD54HC405E,M CD54HC405E,M CD54HC405E,M CD54HC405E,M CD54HC405E,M CD54HC405E,M CD54HC405E,M CD54HC405E,M CD54HC406SE,M CD54HC40SE,M CD54HC43SE,M CD54HC45SE,M CD54HC45	
D74HC4017E,M CD54HC4017F CD74HC4020E,M CD54HC4020E,M CD54HC4020E,M CD54HC4020E,M CD54HC4020E,M CD54HC4020E,M CD54HC4040E,M CD54HC4051E,M CD54HC4051E,M CD54HC4051E,M CD54HC4052E,M CD54HC4065E,M CD54HC4065E,M CD54HC4065E,M CD54HC4065E,M CD54HC4065E,M CD54HC4065E,M CD54HC4066E,M	. 16
2074HC4020E.M 2074HC40404E.M 2074HC40404E.M 2074HC40404E.M 2074HC40406E.M 2074HC40406E.M 2074HC40406E.M 2074HC40406E.M 2074HC40406E.M 2074HC4060F.M	1 14
D774HC4020EM	1 16
D774HC4049E,M D54HC4036F CD74HC7408E,M CD54HC4046AF CD74HC7408E,M CD54HC4046AF CD74HC7408E,M CD54HC4050F,M CD54HC4060F,M CD54HC405F,M CD54HC40	
CD74HC4046E,M CD54HC4046F CD54HC4046EA CD54HC4046AE CD54HC4046AE 488 12-Bit Binary Counter CD74HC4046AE,M CD54HC4046AE CD54HC4046AE CD54HC4040F 510 Hex Inverting HIGH-to-LOW Level Shifter CD74HC405E,M CD54HC4050F CD54HC4051E CD54HC4051E,M CD54HC4051E CD54HC4051E CD54HC4051E CD54HC4051E CD54HC4051E CD54HC4051E CD54HC4051E CD54HC4051E CD54HC4051E CD54HC4052E CD54HC4	1 16
D74HC4046AE,M CD54HC4046AF CD74HCT4046AE,M CD54HCT4046AE,M CD54HC4050F,M CD54HC4050F,M CD54HC4051F CD54HC4051F,M CD54HC4052E,M CD54HC4066E,M CD54HC4066E,M CD54HC4066E,M CD54HC4066E,M CD54HC4067E,M CD54HC4067E,M CD54HC4067E,M CD54HC4052E,M CD54HC4052E,M CD54HC4052E,M CD54HC4052E,M CD54HC4067E,M CD54HC4067E	16
D74HC4046AE,M CD54HC4046AF CD74HCT4046AE,M CD54HCT4046AE,M CD54HC4050F,M CD54HC4050F,M CD54HC4051F CD54HC4051F,M CD54HC4052E,M CD54HC4066E,M CD54HC4066E,M CD54HC4066E,M CD54HC4066E,M CD54HC4067E,M CD54HC4067E,M CD54HC4067E,M CD54HC4052E,M CD54HC4052E,M CD54HC4052E,M CD54HC4052E,M CD54HC4067E,M CD54HC4067E	16
D74HC4049E,M CD54HC4049F CD54HC4050F CD54HC4050F CD54HC4050F CD54HC4050F CD54HC4050F CD54HC4052F CD54HC4053F CD74HC4052E,M CD54HC4053F CD54HC4053F CD54HC4053F CD54HC4053F CD54HC4053F CD54HC4053F CD54HC4053F CD54HC4053F CD54HC4053F CD54HC4059E,M CD54HC4059E,M CD54HC4059E,M CD54HC4059E,M CD54HC4060F CD5	16
D74HC4051E,M CD54HC4051F CD74HCT4051E,M CD54HC4051F CD74HC4052E,M CD54HC4052F CD74HC4060E,M CD54HC4060E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4352E,M CD54HC4352E,M CD54HC4352E,M CD54HC4352E,M CD54HC4514E,M CD54HC4516E,M CD54HC453E,M	- 1
D774HC4050E,M CD54HC4059F CD74HCT4051E,M CD54HCT4051F CD74HCT4052F,M CD74HC4053F,M CD54HC4053F CD74HC4053F,M CD54HC4053F CD74HC4053E,M CD54HC4053F CD74HC4053E,M CD54HC4053F CD74HC4053E,M CD54HC4059F,M CD54HC4059F,M CD54HC4060F,M CD54HC4075F,M CD54HC4075F,M CD54HC4075F,M CD54HC4075F,M CD54HC4060F,M CD54HC4060F,M CD54HC4060F,M CD54HC4060F,M CD54HC4060F,M CD54HC4060F,M CD54HC4075F,M CD54HC4075F,M CD54HC4075F,M CD54HC4075F,M CD54HC4060F,M CD54H	16
D74HC4051E,M CD54HC4051F CD74HCT4051E,M CD54HCT4052F,M CD54HC4052F,M CD54HC4052F,M CD54HC4052F,M CD54HC4053F,M CD54HC4060F CD74HC4058E,M CD54HC4060F CD74HC4060E,M CD54HC4060F CD74HC4067E,M CD54HC4067F CD74HC4067E,M CD54HC4067F CD74HC4067E,M CD54HC4067F CD74HC4067E,M CD54HC4075E,M CD54HC4094F,M CD54HC4094F CD74HC4081E,M CD54HC4316F CD74HC4316E,M CD54HC4316F CD74HC4351E,M CD54HC4351F CD74HC4352E,M CD54HC4353F CD74HC4353E,M CD54HC4353F CD74HC4353E,M CD54HC4353F CD74HC4353E,M CD54HC4511F,M CD54HC4511F,M CD54HC4516F,M CD54HC4	16
D74HC4053E,M CD54HC4053F CD74HCT4053E,M CD54HCT4053F CD74HCT4053E,M CD54HCT4053F CD74HCT4053E,M CD54HCT4053F CD74HCT4059E,M CD54HCT4059F CD74HCT4060F CD74HCT400F CD74HCT400F CD74HCT4060F CD74HCT4060F CD74HCT4060F CD74HCT400F CD	16
D74HC4053E,M CD54HC4053F CD74HCT4053E,M CD54HCT4059F CD74HCT4060E,M CD54HC4060F CD74HCT4066E,M CD54HC4060F CD74HCT4066E,M CD54HC4067F CD74HCT4066E,M CD54HC4075F,M CD54HC4075F CD74HCT4066E,M CD54HC4075F CD74HCT4066E,M CD54HC4075E,M CD54HC4075F CD74HCT4096E,M CD54HC4075E,M CD54HC4075F CD74HCT4096E,M CD54HCT4067F CD74HCT4096E,M CD54HC4075E,M CD54HC4075F CD74HCT4096E,M CD54HC4075F CD74HCT4096E,M CD54HC4075E,M CD54HC4094F CD74HC4094F CD74HC4316E,M CD54HC4316F CD74HC4316E,M CD54HC4351F CD74HC4351E,M CD54HC4351F CD74HC4353E,M CD54HC4353F CD74HC4353E,M CD54HC4353F CD74HC4353E,M CD54HC4511F CD74HC4511E,M CD54HC4511F CD74HC4511E,M CD54HC4511F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M C	
D74HC4059E,M CD54HC4059F CD74HCT4059E,M CD54HCT4059F CD74HCT4060E,M CD54HC4060F CD74HCT406E,M CD54HC4067F CD74HC4067E,M CD54HC4067F CD74HC4067E,M CD54HC4067F CD74HCT406E,M CD54HC4067F CD74HC4067E,M CD54HC4067F CD74HC4067E,M CD54HC4067F CD74HC4067E,M CD54HC4067F CD74HC406E,M CD54HC4094E,M CD54HC4094E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316F CD74HC4316E,M CD54HC4352E,M CD54HC4352E,M CD54HC4352E,M CD54HC4352E,M CD54HC4516E,M C	16
D74HC4060E,M CD54HC4066F CD74HCT4060E,M CD54HC4066F CD74HCT4066E,M CD54HC4066F CD74HCT4066E,M CD54HC4066F CD74HCT4067F CD54HC4066F CD74HCT4067F CD54HC4066F CD74HCT4067F CD54HC4075F CD54HC4075F CD54HC4075F CD54HC4075F CD54HC4094F CD54HC4094F CD54HC4094F CD54HC4094F CD74HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4351F CD54HC4510F CD54HC4510F CD54HC4510F CD54HC4510F CD54HC4511F CD54HC4516E,M CD54HC4516F CD54HC4516E,M CD54HC4516E,M CD54HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4530E,M CD54HC4536F CD74HC4530E,M CD54HC7046E,M CD54HC704	16
D74HC4060E,M CD54HC4066F CD74HCT4060E,M CD54HC4066F CD74HCT4066E,M CD54HC4066F CD74HCT4066E,M CD54HC4066F CD74HCT4067F CD54HC4066F CD74HCT4067F CD54HC4066F CD74HCT4067F CD54HC4075F CD54HC4075F CD54HC4075F CD54HC4075F CD54HC4094F CD54HC4094F CD54HC4094F CD54HC4094F CD74HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4351F CD54HC4510F CD54HC4510F CD54HC4510F CD54HC4510F CD54HC4511F CD54HC4516E,M CD54HC4516F CD54HC4516E,M CD54HC4516E,M CD54HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HC4516F CD74HC4530E,M CD54HC4536F CD74HC4530E,M CD54HC7046E,M CD54HC704	24
D774HC4066E,M CD54HC4066F CD74HCT4066E,M CD54HCT4066F CD74HCT4075E,M CD54HC4067F CD74HCT4075E,M CD54HC4075F CD74HCT4075E,M CD54HC4075F CD74HCT4075E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC435E,M CD54HC4516E,M C	
D74HC4067E,M CD54HC4067F CD74HCT4075E,M CD54HC4075F CD54HC4075F CD54HC4075E,M CD54HC4075E,M CD54HC4075E,M CD54HC4075E,M CD54HC4075E,M CD54HC4075E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4316E,M CD54HC4351F CD74HC4316E,M CD54HC4351F CD74HC4351E,M CD54HC4353F CD74HC4353E,M CD54HC4353F CD74HC4511E,M CD54HC4511E,M CD54HC4511F CD74HC4516E,M CD54HC4516F CD74HC4516	16
D74HC4075E,M CD54HC4075F CD74HCT4075E,M CD54HCT4075F S48 Triple 3-Input OR Gate CD74HC4094E,M CD54HC4094F CD74HCT4094E,M CD54HCT4094F CD74HCT435E,M CD54HCT435E,M CD54HC435E,M CD54HC4510F CD74HCT435E,M CD54HC4511F CD74HC4511E,M CD54HC4511F CD74HC4511E,M CD54HC451E,M CD54HC4515F CD74HCT451E,M CD54HC4515F CD74HCT4516E,M CD54HC4515F CD74HCT4516E,M CD54HC4515F CD74HCT4516E,M CD54HC4516F CD74HCT4516E,M CD54HC4516F CD74HCT4516E,M CD54HC4518F CD74HC4543E,M CD54HC4518F CD74HC4520E,M CD54HC4538F CD74HC4538E,M CD54HC4538F CD74HC4538E,M CD74HC4538E,M CD74HC4538E,M CD74HC4538E,M CD74HC4538E,M CD74HC4538E,M CD74HC4538E,M CD74HC4538E,M CD74HC74538E,M CD74HC7030E CD74HC7030E CD74HC7030E,M CD74HC7030E,M CD54HC7036E,M CD54HC7036E,M CD54HC7036E,M CD54HC7046E,M	14
D74HC4094E,M CD54HC4075F CD74HCT4075E,M CD54HCT4075F S48 Triple 3-Input OR Gate CD74HCT4094E CD	24
D74HC4094E,M D74HC4316E,M D74HC4351E,M D74HC4351E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC435E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4352E,M D74HC4510E,M D74HC451E,M D74HC453E,M D74HC703E,M D74HC704E,M D74HC704	14
D74HC4316E,M CD54HC4316F CD74HCT4316E,M CD54HCT4316F CD74HCT4351E,M CD54HCT4351F CD74HCT4352E,M CD54HCT4351F CD74HCT4352E,M CD54HCT4353F CD74HCT4352E,M CD54HCT4353F CD74HCT4352E,M CD54HCT4353F CD74HCT4352E,M CD54HCT4353F CD74HCT4352E,M CD54HCT4353F CD74HCT4352E,M CD54HCT4353F CD74HCT4510F CD74HCT4510F CD74HCT4511E,M CD54HCT4511F CD74HCT4511E,M CD54HCT4511F CD74HCT4514E,M CD54HCT4511F CD74HCT4516E,M CD54HCT4516F C	
D74HC4316E,M D74HC4351E,M D74HC435E,M D74HC435E,M D74HC435E,M D74HC435E,M D74HC435E,M D74HC435E,M D74HC45B,M D74HC45E,M D74HC76E,M D74HC76B,M	16
D74HC4351E,M CD54HC4351F CD74HCT4351E,M CD54HCT4352F,	16
D74HC4352E,M CD54HC4352F CD74HCT4352E,M CD54HCT4352F CD54HCT4352F CD54HCT4353F CD54HCT4353F CD54HCT4353F CD54HCT4353F CD54HCT4510E,M CD54HC4511E,M CD54HC4511E,M CD54HC4511E,M CD54HC4511E,M CD54HC4515E,M CD54HC4515E,M CD54HC4515E,M CD54HC4516E,M CD54HC46E,M CD54HC4	20
D74HC4353E,M CD54HC4353F CD74HCT4353E,M CD54HCT4353F CD74HCT4353E,M CD54HCT4353F CD74HCT4510E,M CD54HC4511E,M CD54HC4511E,M CD54HC4511E,M CD54HC4511E,M CD54HC451E,M CD54HC4515F CD74HCT4514E,M CD54HCT4516F,M CD54HC4516F CD74HCT4516E,M CD54HC4516F CD74HCT4516E,M CD54HCT4516F,M CD54HC4516F CD74HCT4516E,M CD54HCT4516F,M CD54HCT4516F,M CD54HCT4516F,M CD54HC4516F CD74HCT4518E,M CD54HCT4516F CD54HCT4516F,M CD54HCT4516F,M CD54HCT4516F,M CD54HCT4516F,M CD54HCT4516F,M CD54HCT4516F,M CD54HCT4516F,M CD54HC4538F,M CD54HC4538F CD74HC74538E,M CD54HC4538F CD74HC74538E,M CD54HC4543F,M CD54HC74538E,M CD54HC74538F,M CD74HC7030E CD74HC7030E CD74HC7030E CD74HC7030E,M CD54HC7046E,M	
D74HC4510E,M D74HC4511E,M CD54HC4510F CD74HCT4510E,M CD54HCT4510F CD54HC4511F CD54HC4511E,M CD54HC4511E,M CD54HC4511E,M CD54HC4515F CD74HC515E,M CD54HC4515F CD74HC515E,M CD54HC4515F CD74HC515E,M CD54HC4516F CD54HC46E,M CD54HC4516F CD54HC46E,M CD54HC4516F CD54HC46E,M CD54HC4516F CD54HC46E,M	20
D74HC4511E,M D74HC4514E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4536E,M D74HC4536E,M D74HC4536E,M D74HC4536E,M D74HC4536E,M D74HC7366E,M D74HC733	20
D74HC4511E,M D74HC4514E,M D74HC4514E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4518E,M D74HC4580E,M D74HC4530E,M D74HC4530E,M D74HC4530E,M D74HC4530E,M D74HC4530E,M D74HC7308E,M D74HC7308E,M D74HC7030E,M D74HC703	16
D74HC4514E,M CD54HC4514F CD74HCT4514E,M CD54HCT4514F CD74HCT4515E,M CD54HCT4515F CD74HCT4515E,M CD54HCT4515E,M CD54HCT4515E,M CD54HCT4516E,M CD54HCT4516E,M CD54HCT4516E,M CD54HCT4516E,M CD54HCT4516E,M CD54HC4516E,M CD54HC4520F CD54HC4520F CD54HC4520F CD54HC4538E,M CD54HC4538E,M CD54HC4538E,M CD54HC4538E,M CD54HC4538E,M CD54HC4538E,M CD54HC4538E,M CD54HC4538E,M CD54HC74538E,M CD54HC74538E,M CD54HC74538E,M CD54HC74538E,M CD54HC74538E,M CD54HC74538E,M CD54HC74538E,M CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E,M CD	
D74HC4518E,M D74HC4516E,M D74HC4516E,M D74HC4516E,M D74HC4520E,M D74HC4520E,M D74HC4538E,M D74HC4538E,M D74HC7030E CD54HC4515F CD54HC453E,M CD54HC453E,M CD54HC4538E,M D74HC7030E CD54HC4516F CD54HC453E,M CD54HC4538E,M CD54HC4538E,M CD74HC7030E CD54HC453E,M CD54HC4538E,M CD74HC7030E CD54HC453E,M CD74HC7030E,M CD74HC7030E,M CD74HC7030E,M CD74HC7036E,M CD74HC7046E,M CD74HC70	16
D74HC4516E,M CD54HC4516F CD74HC4516E,M CD54HCT4516F CD54HC4518E,M CD54HC4518E,M CD54HC4520E,M CD54HC4520E,M CD54HC4520E,M CD54HC4538E,M	24
D74HC4516E,M CD54HC4516F CD74HCT4516E,M CD54HCT4516F 559 Up/Down Counter, Binary D74HC4518E,M CD54HC4518F CD54HC4520F,M CD54HC4520F,M CD54HC4538F CD54HC4538F,M CD54	2.
D74HC4518E,M CD54HC4518F CD54HC4518F CD54HC4520E,M CD54HC4530E,M CD54HC4530E,M CD54HC4530E,M CD54HC4538E,M CD54HC4538F CD74HC74538E,M CD54HC4538F CD74HC74538E,M CD74HC77030E CD54HC7453E,M CD54HC7453E,M CD54HC7453E,M CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7030E CD54HC7046E,M CD54	10
D74HC4520E,M 074HC4538E,M 074HC4538E,M 074HC738E,M 074HC7030E CD54HC4520F CD74HCT4538E,M 074HC7030E CD54HC4538F CD74HC7030E 580 CD54HC4538F CD74HC7030E 580 CD54HC7030E CD74HC7030E Dual 4-Bit Synchronous Binary Counter Dual Precision Monostable Multivibrator 074HC7030E,M 074HC7030E,M 074HC7036E,M 074HC7046E,M 074HC7266E,M CD54HC7038F,M CD54HC7266F CD54HC7038F,M CD54HC7046E,M CD54HC7266F CD54HC704E,M CD54HC7046E,M CD54HC7046E,M CD54HC7046E,M CD54HC7046E,M CD54HC704E,M CD54HC7046E,M CD54HC7046E,M CD54HC7046E,M CD54HC7046E,M CD54HC704E,M CD54HC7046E,M CD54HC704E,M CD54HC7046E,M CD54HC704E,M CD54HC704E,M CD54HC704E,M CD54HC704E,M CD54HC704E,M CD54HC704	1 "
D74HC4520E,M 074HC4538E,M 074HC4538E,M 074HC738E,M 074HC7030E CD54HC4520F CD74HCT4538E,M 074HC7030E CD54HC4538F CD74HC7030E 580 CD54HC4538F CD74HC7030E 580 CD54HC7030E CD74HC7030E Dual 4-Bit Synchronous Binary Counter Dual Precision Monostable Multivibrator 074HC7030E,M 074HC7030E,M 074HC7036E,M 074HC7046E,M 074HC7266E,M CD54HC7038F,M CD54HC7266F CD54HC7038F,M CD54HC7046E,M CD54HC7266F CD54HC704E,M CD54HC7046E,M CD54HC7046E,M CD54HC7046E,M CD54HC7046E,M CD54HC704E,M CD54HC7046E,M CD54HC7046E,M CD54HC7046E,M CD54HC7046E,M CD54HC704E,M CD54HC7046E,M CD54HC704E,M CD54HC7046E,M CD54HC704E,M CD54HC704E,M CD54HC704E,M CD54HC704E,M CD54HC704E,M CD54HC704	. 10
D74HC4538E,M CD54HC4538F CD74HC4538E,M CD54HC4538F CD74HC74538E,M CD54HC4543F CD74HC77030E CD74HC77030E CD74HC77038E,M CD54HC77038E,M CD54HC77038E,M CD54HC77038E,M CD54HC77038E,M CD54HC77038E,M CD54HC77038E,M CD54HC77036E,M CD5	16
174HC4543E,M CD54HC4543F	
D74HC7030E	11
D74HC7038E,M CD54HC7038F CD74HC7038E,M CD54HC7038F CD54HC7046E,M C	11
D74HC7046E,M	2
D74HC7046E,M	k
D74HC7266E,M CD54HC7266F - 600 Quad Exclusive NOR Gate	24
	. 16
	14
	1 10
D74HC40103E,M CD54HC40103F CD74HCT40103E,M CD54HCT40103F 604 8-Bit Binary Down Counter	16
D74HC40104E,M CD54HC40104F CD74HCT40104E,M CD54HCT40104F 613 4-Bit Bidrectional Universal Shift Register, 3-State	16
D74HC40105E,M	10

Note: Add package suffix code to part number on all orders.

E = Dual-In-Line Plastic Package — Temp. Range = -40° to + 85° C.

F = Dual-In-Line Frit-Seal Ceramic Package (CERDIP) — Temp. Range = -55° to + 125° C.

H = Chip — Temp. Range = -55° C to 125° C.

M = Dual-In-Line Surface Mounted Package — Temp. Range = -40° to + 85° C.

Product Selection Guide

Time		Classification	Page
Туре	Function/Description	Classification	Page
CD54/74	NAND/NOR Gates		
HC/HCT00	Quad 2-Input NAND Gate	SSI	48
HC/HCT02	Quad 2-Input NOR Gate	SSI SSI	52 56
HC/HCT03 HC/HCT10	Quad 2-Input NAND Gate with Open Drain Triple 3-Input NAND Gate	SSI	68
HC/HCT20	Dual 4-Input NAND Gate	SSI	80
HC/HCT27	Triple 3-Input NOR Gate	SSI	88
HC/HCT30	8-Input NAND Gate	SSI	92
HC/HCT4002	Dual 4-Input NOR Gate	SSI	462
	AND/OR/EXCLUSIVE-OR Gates		
HC/HCT08	Quad 2-Input AND Gate	SSI	64
HC/HCT11	Triple 3-Input AND Gate	SSI	72
HC/HCT21	Dual 4-Input AND Gate	SSI	84 96
HC/HCT32 HC/HCT86	Quad 2-Input OR Gate Quad 2-Input EXCLUSIVE-OR Gate	SSI SSI	125
HC/HCT4075	Triple 3-Input OR Gate	SSI	548
HC7266	Quad Exclusive NOR Gate	SSI	600
	Inverters/Buffers/Bus Drivers		
HC/HCT04	Hex Inverter/Buffer	SSI	60
HCU04	Hex Inverter (Unbuffered)	SSI	628
HC/HCT125*	Quad 3-State Buffer	MSI	155
HC/HCT126*	Quad 3-State Buffer	MSI	160
HC/HCT240*	Octal Buffer/Line Driver; 3-State; Inverting	MSI MSI	298 298
HC/HCT241* HC/HCT244*	Octal Buffer/Line Driver; 3-State Octal Buffer/Line Driver; 3-State	MSI	298
HC/HCT365*	Hex Buffer/Line Driver; 3-State	MSI	380
HC/HCT366*	Hex Buffer/Line Driver; 3-State Inverting	MSI	380
HC/HCT367*	Hex Buffer/Line Driver; 3-State	MSI	385
HC/HCT368*	Hex Buffer/Line Driver; 3-State; Inverting	MSI	385
HC/HCT540* HC/HCT541*	Octal Buffer/Line Driver; 3-State; Inverting Octal Buffer/Line Driver; 3-State	MSI MSI	429 429
HC4049	Hex Inverting HIGH-to-LOW Level Shifter	SSI	510
HC4050	Hex HIGH-to-LOW Level Shifter	SSI	510
	Flip-Flops		
HC/HCT73	Dual JK Flip-Flop with Reset; Negative-Edge Trigger	FF	104
HC/HCT74	Dual D-Type Flip-Flop with Set and Reset; Positive-Edge Trigger	FF	109
HC/HCT107	Dual JK Flip-Flop with Reset; Negative-Edge Trigger	FF FF	134 139
HC/HCT109 HC/HCT112	Dual JK Flip-Flop with Set and Reset; Positive-Edge Trigger Dual JK Flip-Flop with Set and Reset; Negative-Edge Trigger	FF	144
HC/HCT173*	Quad D-Type Flip-Flop with Set and Reset; Positive-Edge Trigger; 3-State	MSI	232
HC/HCT174	Hex D-Type Flip-Flop with Reset; Positive-Edge Trigger	MSI	238
HC/HCT175	Quad D-Type Flip-Flop with Reset; Positive-Edge Trigger	MSI	243
HC/HCT273	Octal D-Type Flip-Flop with Reset; Positive-Edge Trigger	MSI MSI	342 396
HC/HCT374* HC/HCT377	Octal D-Type Flip-Flop; Positive-Edge Trigger; 3-State Octal D-Type Flip-Flop with Data Enable; Positive-Edge Trigger	MSI	401
HC/HCT534*	Octal D-Type Flip-Flop; Positive-Edge Trigger; 3-State; Inverting	MSI	424
HC/HCT564*	Octal D-Type Flip-Flop; Positive-Edge Trigger; 3-State; Inverting	MSI	424
HC/HCT574*	Octal D-Type Flip-Flop; Positive-Edge; 3-State	MSI	396
	Shift/FIFO Buffer/Multiport Registers		
HC/HCT164	8-Bit Serial-In/Parallel-Out Shift Register	MSI	215
HC/HCT165	8-Bit Parallel-In/Serial-Out Shift Register	MSI	220
HC/HCT166	8-Bit Parallel/Serial-In Serial-Out Shift Register	MSI	226
HC/HCT194 HC/HCT195	4-Bit Bidirectional Universal Shift Register 4-Bit Parallel Access Shift Register	MSI MSI	279 285
HC/HCT299*	8-Bit Universal Shift Register; 3-State	MSI	363
HC/HCT597	8-Bit Shift Register with Input Storage	MSI	704
HC/HCT670*	4 x 4 Register File, 3-State	MSI	451
HC/HCT4015	Dual 4-Stage Static Shift Register	MSI	466
HC/HCT4094 HC/HCT7030*	8-Stage Shift-and-Store Bus Register; 3-State 9-Bit x 64 Word FIFO Register; 3-State	MSI MSI	552 739
HC/HCT40104*	4-Bit Bidirectional Universal Shift Register; 3-State	MSI	613
HC/HCT40105	4 Bits x 16 Words FIFO Register	MSI	619
*True - unitale enterior			

^{*}Types with a bus driver output stage.

Product Selection Guide (Cont'd)

Туре	Function/Description	Classification	Page
CD54/74	Arithmetic Circuits		_
HC/HCT85	4-Bit Magnitude Comparator	MSI	119
HC/HCT181	4-Bit Arithmetic Logic Unit	MSI	248
HC/HCT182	Look-Ahead Carry Generator	MSI	254
HC/HCT280	9-Bit Odd/Even Parity Generator/Checker	MSI	347
HC/HCT283	4-Bit Full Adder with Fast Carry	MSI	351
HC/HCT583	4-Bit BCD Full Adder with Fast Carry	MSI	434
HC/HCT688	8-Bit Magnitude Comparator	MSI	458
	Counters		
HC/HCT93	4-Bit Binary Ripple Counter	MSI	129
HC/HCT160	Presettable Synchronous BCD Decade Counter; Asynchronous Reset	MSI	205
HC/HCT161	Presettable Synchronous 4-Bit Binary Counter; Asynchronous Reset	MSI	205
HC/HCT162	Presettable Synchronous BCD Decade Counter; Synchronous Reset	MSI	205
HC/HCT163	Presettable Synchronous 4-Bit Binary Counter; Synchronous Reset	MSI	205
HC/HCT190	Presettable Synchronous BCD Decade Up/Down Counter	MSI	260
HC/HCT191	Presettable Synchronous 4-Bit Binary Up/Down Counter	MSI	260
HC/HCT192	Presettable Synchronous BCD Decade Up/Down Counter	MSI	269
HC/HCT193	Presettable Synchronous 4-Bit Binary Up/Down Counter	MSI	269
HC/HCT390	Dual Decade Ripple Counter	MSI	407
HC/HCT393	Dual 4-Bit Binary Ripple Counter	MSI	413
HC/HCT4017	Decade Counter/Divider with 10 Decoded Outputs	MSI	472
HC/HCT4020	14-Stage Binary Ripple Counter	MSI	478
HC/HCT4024	7-Stage Binary Ripple Counter	MSI	483
HC/HCT4040	12-Stage Binary Ripple Counter	MSI	488
HC/HCT4059	Programmable Divide by "N" Counter	MSI	523
HC/HCT4060	14-Stage Binary Ripple Counter with Oscillator	MSI	530
HC/HCT4510	Up/Down Counter, BCD	MSI	559
HC/HCT4516	Up/Down Counter, Binary	MSI	559
HC/HCT4518	Dual Synchronous BCD Counter	MSI	580
HC/HCT4520	Dual 4-Bit Synchronous Binary Counter	MSI	580
HC/HCT40102	8-Bit Synchronous BCD Down Counter	MSI	604
HC/HCT40103	8-Bit Binary Down Counter	MSI	604
110/110#454	Analog and Digital Multiplexers/Demultiplexers		
HC/HCT151	8-Input Multiplexer	MSI	184
HC/HCT153	Dual 4-Input Multiplexer	MSI	189
HC/HCT157	Quad 2-Input Multiplexer	MSI	200
HC/HCT158	Quad 2-Input Multiplexer; Inverting	MSI	200
HC/HCT251	8-Input Multiplexer; 3-State	MSI	315
HC/HCT253* HC/HCT257*	Dual 4-Input Multiplexer; 3-State	MSI	321
HC/HCT258	Quad 2-Input Multiplexer; 3-State; Non-Inverting Outputs	MSI	326 330
HC/HCT354*	Quad 2-Input Multiplexer; 3-State; Inverting Outputs 8-Input Multiplexer/Register; 3-State	MSI MSI	370
HC/HCT356*	8-Input Multiplexer/Register; 3-State	MSI	370
HC/HCT4051	8-Channel Analog Multiplexer/Demultiplexer	MSI	514
HC/HCT4052	Dual 4-Channel Analog Multiplexer/Demultiplexer	MSI	514
HC/HCT4053	Triple 2-Channel Analog Multiplexer/Demultiplexer	MSI	514
HC/HCT4067	16-Channel Analog Multiplexer/Demultiplexer	MSI	542
HC/HCT4351	Analog Multiplexer with Latch	MSI	726
HC/HCT4352	Analog Multiplexer with Latch	MSI	726
HC/HCT4353	Analog Multiplexer with Latch	MSI	726
	Decoders/Encoders		
HC/HCT42	BCD to Decimal Decoder (1-of-10)	MSI	100
HC/HCT137	3-to-8 Line Decoder with Latch; Inverting	MSI	696
HC/HCT138	3-to-8 Line Decoder/Demultiplexer; Inverting	MSI	169
HC/HCT139	Dual 2-to-4 Line Decoder/Demultiplexer	MSI	174
HC/HCT147	10-to-4-Line Priority Encoder	MSI	179
HC/HCT154	4-to-16-Line Decoder/Demultiplexer	MSI	194
HC/HCT237	3-to-8-Line Decoder/Demultiplexer with Address Latches	MSI	696
HC/HCT238	3-to-8-Line Decoder/Demultiplexer	MSI	169
HC/HCT4511	BCD-to-7-Segment Latch/Decoder/Driver	MSI	569
HC/HCT4514	4-to-16-Line Decoder/Demultiplexer with Input Latches	MSI	574
HC/HCT4515	4-to-16-Line Decoder/Demultiplexer with Input Latches	MSI	574
HC/HCT4543	BCD-to-7-Segment Latch/Decoder/Driver for LCDs	MSI	594
*Types with a bus	driver output stage.		

^{*}Types with a bus driver output stage.

Product Selection Guide (Cont'd)

Туре	Function/Description	Classification	Page
CD54/74	Analog Switches		
HC/HCT4016	Quad Bilateral Switch	SSI	712
HC/HCT4066	Quad Bilateral Switch	SSI	536
HC/HCT4316	Quad Analog Switch	MSI	719
	Bus Transceivers		
HC/HCT242*	Quad Bus Transceiver; 3-State; Inverting	MSI	304
HC/HCT243*	Quad Bus Transceiver; 3-State	MSI	304
HC/HCT245*	Octal Bus Transceiver; 3-State	MSI	310
HC/HCT640*	Octal Bus Transceiver; 3-State Inverting	MSI	439
HC/HCT643*	Octal Bus Transceiver; 3-State True/Inverting	MSI	439
HC/HCT646*	Octal Bus Transceiver; 3-State	MSI	444
HC/HCT648*	Octal Bus Transceiver; 3-State; Inverting	MSI	444
HC/HCT7038*	9-Bit Bus Transceiver with Latch	MSI	752
	Schmitt Triggers		
HC/HCT14	Hex Inverting Schmitt Trigger	SSI	76
HC/HCT132	Quad 2-Input NAND Schmitt Trigger	SSI	165
	Latches		
HC/HCT75	Dual 2-Input Bistable Transparent Latch	FF	114
HC/HCT259	8-Bit Addressable Latch	MSI	335
HC/HCT373*	Octal Transparent Latch; 3-State	MSI	390
HC/HCT533*	Octal Transparent Latch; 3-State; Inverting	MSI	418
HC/HCT563*	Octal Transparent Latch; 3-State; Inverting	MSI	418
HC/HCT573*	Octal Transparent Latch; 3-State	MSI	390
	One-Shot Multivibrators		
HC/HCT123	Dual Retriggerable Monostable Multivibrator with Reset	MSI	149
HC/HCT221	Dual Monostable Multivibrator with Reset	MSI	291
HC/HCT423	Dual Retriggerable Monostable Multivibrator with Reset	MSI	149
HC/HCT4538	Dual Retriggerable Precision Monostable Multivibrator	MSI	586
	Phase-Locked Loops (PLL)		
HC/HCT297	Digital Phase-Locked Loop Filter	MSI	356
HC/HCT4046A	Phase-Locked Loop with VCO	MSI	493
HC/HCT7046A	Phase-Locked Loop with In-Lock Detection	MSI	758
	That Look Loop with in Look Detection		

^{*}Types with a bus driver output stage.

Product Classification Chart

				GA	TES								MULTIV	IBRATORS
	Single-level				Multi-l	evel					Flip-Flo	ps/Latches		
NOR/F	IAND	OR/AND	1	Buffers e-Drivers	1	lus ivers	Mult funct AO	ion	Decoder Encode		Schmitt Trigger	Flip	-Flops	Latches
	CD54/74HC/HCT						CD54/74/H	IC/HCT	•		Lagran		CD54/7	4HC/HCT
HC/HCT02	HC/HCT00	НС/НСТ08	HC/	HCT240●	HC/F	ICT125	нс/нс	Г86	нс/нст4	2	HC/HCT14	HC/F	ICT73	HC/HCT75
нс/нст03∳	HC/HCT10	HC/HCT11	нс	HCT241●	HC/F	ICT126	HC7266		нс/нст1	37	HC/HCT13	2 HC/F	ICT74	HC/HCT259
HC/HCT27	HC/HCT20	HC/HCT21	HC/	HCT244●	HC/F	CT241			нс/нст1	38		HC/F	ICT107	HC/HCT373●
HC/HCT4002	HC/HCT30	НС/НСТ32	нс/	HCT365●	HC/H	CT244			нс/нст1	39		HC/F	ICT109	HC/HCT533•
		HC/HCT4075	HC/	HCT366●	HC/H	CT365			нс/нст1	47		HC/F	ICT112	HC/HCT563●
			HC/	HCT367●	нс/н	CT366			нс/нст1	54		HC/F	ICT173•	HC/HCT573●
			HC/	HCT368●	нс/н	CT367	1		HC/HCT2	37		HC/H	ICT174	
			HC/	HCT540●	HC/H	CT368			HC/HCT2	38		HC/F	ICT175	
			HC/	HCT541●	HC/H	CT540		-	нс/нст4	511		HC/F	ICT273	Monostable
					HC/H	CT541	-		НС/НСТ4			1	CT374•	HC/HCT123
				Level	Inve	rters			HC/HCT4	515		- 1	CT377	HC/HCT221
				hifters			t					- 1	CT534•	HC/HCT423
				IC 4049	HC/H		l					1	CT564•	HC/HCT4538
	DEGISTERS		- 1	IC 4050	HCU		İ	Γ		Γ		нс/н	CT574•	<u> </u>
	REGISTERS	,		COUNTERS			D	GITAL	TAL LOCKED		BILATE	RAL	INTERFACE	
Shift	Buffer	Multipor	t	Binar Rippl		Synch	ironous	MULT	IPLEXERS		LOOPS	SWITC	HES	CIRCUITS
***************************************	CD54/74HC/H	СТ		(CD54/74HC/HCT CD5		CD54/74I	HC/HCT						
HC/HCT164	HC/HCT4010	5 HC/HCT670)	нс/нст	13	нс/нс	T160	HC/F	ICT151	нс	/HCT279	HC/HCT	1016 ▲	Bus
HC/HCT165	HC/HCT7030			нс/нста	90	HC/HC	T161	нс/н	ICT153	HC.	/HCT4046A	нс/нст	1066 ▲	Transceivers
HC/HCT166				нс/нста	193	HC/HC	T162	HC/H	ICT157	HC,	HCT7046	нс/нст	1316 ▲	HC/HCT242●
HC/HCT194				HC/HCT4	020	HC/HC	T163	HC/H	ICT158			Anal	og	HC/HCT243●
HC/HCT195				НС/НСТ4	024	HC/HC	T190	HC/H	ICT251			Multiple	- 1	HC/HCT245●
HC/HCT299●		į		HC/HCT4	1040	HC/HC	T191	HC/F	ICT253			Demultip	lexers	HC/HCT640●
HC/HCT597				HC/HCT4	060	HC/HC	T192	HC/H	ICT257●			нс/нст	1051	HC/HCT643●
HC/HCT4015				HC/HCT4	0103	HC/HC			ICT258			нс/нст		HC/HCT646●
HC/HCT4094						HC/HC			CT354e			HC/HCT		HC/HCT648●
HC/HCT40104•						HC/HC		HC/H	ICT356●			HC/HCT	- 1	HC/HCT7038•
						нс/нс	j					HC/HCT		
						HC/HC						HC/HCT4		
						HC/HC						HC/HCT4	1353	
	ARI	THMETIC CIRCUI	TS			HU/HC	140102				SPLAY DRIVE	ERS	1	
			Ī		Parity						For			or
Adders/		ALU/Rate			nerator/						LCD		1	ED
Comparato	rs	Multipliers		C	hecker						Drive		D	rive
		CD54/74HC/HCT									CD54/74HC/H	СТ		
НС/НСТ85	нс	HCT181		HC/HCT2	80						HC/HCT4543	3	HC/	HCT4511
HC/HCT283	нс	HCT182									See Decoders	s /		
											Encoders			

[†] Open Drain

[▲] Quad type

With Bus Driver output stage

Typical Dual-In-Line Plastic Package

Typical Dual-In-Line Frit-Seal Ceramic (CERDIP) Package

Typical SO (Small Outline) Plastic Package

HC/HCT Family Description

The RCA HC/HCT series of high-speed CMOS integrated circuits (QMOS) includes a functionally complete set of LSTTL equivalent types and selected equivalent CMOS CD4000 series types. The CD4000 series types selected are unique to the CMOS process. These types are readily produced by the highly versatile CMOS technology, but cannot be implemented by the more restrictive bipolar technology. Each CMOS circuit function is offered in two basic logic series, as follows:

- CD54/74HCTXXXX-series types feature LSTTL input-voltage-level compatibility and provide highspeed CMOS direct drop-in replacements of LSTTL devices.
- CD54/74HCXXXX-series types feature CMOS input-voltage-level compatibility and are intended for use in new second-generation all-CMOS systems.

In addition, RCA offers a third category, **CD54/74HCUXX**, which includes unbuffered types intended for linear or high-speed oscillator applications.

The HC/HCT family consists of a comprehensive set of buffers, transceivers, and registers that are popular in computer systems. A wide variety of popular logic, MUX's, encoders/decoders, counters, arithmetic units, mulitvibrators, display drivers, and phase-lock loops complete the family.

Shown below is a breakdown of the HC/HCT family by logic function:

The HC/HCT Family

Device Function	Number of Types
Inverters/Buffers/Bus Drivers	14
Flip-Flops/Latches	20
Bus Transceivers	8
Registers	13
Counters	23
Decoders/Encoders	12
Multiplexers (Analog & Digital)	17
Multivibrators	4
Schmitt Triggers	2
Phase-Lock Loops	3
Bilateral Switches	3
Arithmetic Circuits	7
Gates	15

NOTE: Each function is available in both an HCT and HC version.

HC/HCT Family Features

- Functionally and pin compatible with industry 54 and 74 LSTTL-series and CD4000B-series types.
- CMOS outputs for maximum noise margins.
- Fan-out (over temperature):
 Standard Outputs 10 LSTTL loads
 Bus-Driver Outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT/HCU: -40 to +85°C CD54HC/HCT/HCU: -55 to +125°C
- Balanced propagation and transition times.
- Significant power reduction compared to LSTTL logic.
- Alternate source Philips/Signetics

Series Features

Characteristic

CD54HCXXXX and CD74HCXXXX Series

- 2 to 6V operation.
- High noise immunity: $N_{IL} = 30\%$, $N_{IH} = 30\%$ at $V_{CC} = 5V$.

CD54HCTXXXX and CD74HCTXXXX Series

- 4.5 to 5.5V operation.
- Direct LSTTL input logic compatibility
 V_{IL} = 0.8V(max), V_{IH} = 2.0V (min)
- CMOS input compatibility I_{IL} I_{IH} ≤IuA at V_{OL}, V_{OH}

Quantitative Comparison of HC/HCT and LSTTL Logic Types

RCA's HC and HCT logic types have many outstanding advantages when compared with the conventional high-current LSTTL logic types which these types can replace in existing and new equipment designs that require devices operating at frequencies in the 20-30 MHz range. Table I compares significant operating characteristics of the HC/HCT vs. LSTTL logic families.

74 Series

HC/HCT

74 Series

LSTTL

Table I — Quantitative Comparison of HC/HCT and LSTTL Logic Types

		• • • • • • • • • • • • • • • • • • • •	0,1101		
1. Quiescer	nt Power	0	025mW	5.5r	m\\\
-per Gate -per FF			025111VV 05mW	5.51 10n	
-per FF -4 Stage Co	untor		4mW	95n	
-per Transc			1mW	60n	
2. Operatin	g Power				
		Frequen	су		iency
	0.1MHz	1MHz	10MHz	0.1 to 1MHz	10MHz
-per Gate	0.2mW	2mW	20mW	5.5mW	20mW
-per FF -4 Stage	0.15mw	1.5mW	15mW	10mW	15mW
Counter -per Trans- ceiver/	0.24mW	2.4mW	24mW	95mW	120mW
Buffer	0.25mW	2.5mW	25mW	60mW	90mW
3. Operatin Voltage	g Supply	5.5√	CT) 4.5V to / C) 2V to 6V	4.75V to	o 5.25V
4. Operatin Tempera Range		-40°	C to +85°C	0°C to	+70° C
5. Noise Ma LS to LS HC to HC	argin @ 5' } (HI/LC		 4V/1.4V	0.7V	′0.4V
HCT to HC		2.	9V/0.7V		

 $Vs \pm 60 mV$

 $Vs \pm 200 \text{ mV}$

Variation with Temp.

Table I — Cont'd		
	74 Series HC/HCT	74 Series LSTTL
7. Output Drive Current		
a) Source Current at V _{OH} = 2.4V	-8mA	-400uA
b) Sink CurrentStd. Logic (V_{OL})	4mA (0.33V)	4mA (0.4V)
BUS Logic (V _{OL}) V _{OL} =0.5V	6mA (0.33V) 12mA	12mA (0.4V) 24mA
8. Typ. Output Transition Time*		
true	6ns	15ns
t _{THL}	6ns	6ns
9. Typical Gate Propaga Delay*: t _{PHL} /t _{PLH} V _{CC} = 5V, C _L = 15pF	tion 8ns/8ns	8ns/11ns
10. Typical FF Propagati V _{CC} = 5V, C _L = 15pF	on Delay:	
t _{PLH}	14ns	15ns
t _{PHL}	14ns	22ns
11. Typ. Clock Rate		
of an FF	50MHz	33MHz
12. Input Current		
I _{IL} I _{IH}	-luA luA	-0.4. to -0.8mA 40uA
13. 3-State Output Leakage Current	±5uA	±20uA
14. Reliability %/1000 hours at 60% Confidence	.0019 (RCA Report)	.008 (RADC Report)

*Loading coefficient = 0.055ns/pF (both HC/HCT and LSTTL)

HC/HCT IC Structure

The high speeds and low quiescent power dissipation that characterize the RCA HC/HCT family are made possible by utilizing a three-micron, self-aligned silicon gate CMOS process. The three-micron process minimizes the internal parasitic capacitances of the circuit, which results in increased switching speed.

The polysilicon gates of the transistors are deposited over a thin gate oxide before the source and drain diffusions are defined. Ion implantation is then used to form the source and drain areas, with the polysilicon gates acting as a mask for the implantation. The source and drain are automatically aligned to the gate, hence the expression "self-aligned-gate" process. In this manner, gate-to-source and gate-to-drain capacitances are minimized. Junction capacitances, which are proportional to the junction area, are also reduced because of the shallower diffusions. Fig. 1 shows the parasitic capacitances in a CMOS inverter.

In contrast, the source and drain areas in a metal-gate CMOS process are formed before the gate is deposited.

Moreover, the metal gate must overlap the source and drain to allow for alignment tolerances. These conditions result in higher overlap capacitances than those present in QMOS devices. The metal-gate process also employs deeper diffusions than those in the QMOS process and, consequently, has larger junction capacitances.

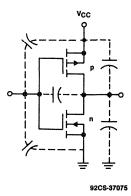
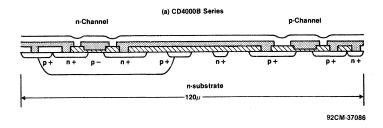


Fig. 1 - Parasitic capacitances in a CMOS inverter

The QMOS structure features a three-micron gate length; the CD4000 series structure has a gate length of seven microns. The equation for the drain current of a MOSFET is: $I_{DS} = K'\frac{width}{length} \big[\text{ (gate voltage) - (threshold voltage) } \big]^2$

where K' is the "beta" of the MOSFET. Therefore, a shortter gate length results in higher drive capability, which in turn increases the speed at which a transistor can charge or discharge capacitance.


The polysilicon in a silicon-gate process is also an interconnect layer, thus, there are three levels of interconnect (diffusion, polysilicon, and metal) instead of the two layers (diffusion and metal) present in a metal-gate process. This situation aids in making a more compact die. Fig. 2 compares the cross sections of the seven-micron metal-gate CMOS structure and the three-micron QMOS structure.

Input Characteristics

The inputs of QMOS devices are voltage-level sensitive, and do not require current, except for input leakage. The definitive switching characteristics for the HC and HCT versions are illustrated in Figs. 3 and 4, respectively.

System designers require the actual MIN/MAX range of expected input switching voltage over the temperature range of -55°C to +125°C. This vital information is contained in the curves of Figs. 5 and 6 for the HC and HCT families, respectively.

The unbuffered HCU04 hex inverter has one stage of active inverting logic from input to output and, therefore, is a special case for input switching voltage as shown in Fig. 7.

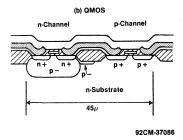


Fig. 2 - Crossectional view of (a) the seven-micron CD4000B Series structure and (b) threemicron QMOS structure

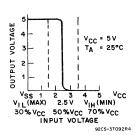


Fig. 3 - Typical switching characteristics of RCA HC series types

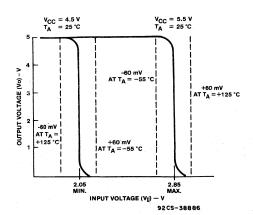


Fig. 5 - Actual Min/Max switching characteristics of RCA HC series types

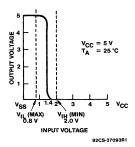


Fig. 4 - Typical switching characteristics of RCA HCT series types

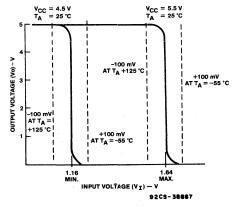


Fig. 6 - Actual Min/Max switching characteristics of RCA HCT series types

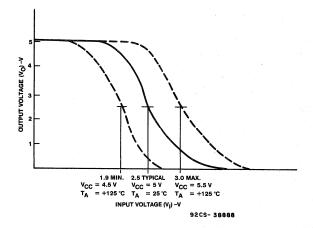


Fig. 7 Actual Min/Max and typical switching characteristics of the HCU04 Unbuffered Hex Inverter

Noise Immunity and Noise Margin

Table II shows the HC, HCT, and HCU input noise immunity and noise margin for use in those applications where like members of the HC, HCT, and HCU families interface with each other at a nominal supply voltage of 5V. Output voltages are also shown.

Table II(a): Noise Immunity and Noise Margin (V_{cc} = 5V).

	HC	HCT	HCU
V _{IL} max.	1.5V	V8.0	1V
V _{IH} min.	3.5V	2V	4V
V _{OL} max.	0.1V	0.1V	0.5V
V _{он} min.	4.9V	4.9V	4.5V
Noise Margin Low (V _{NML})	1.4V	0.7V	0.5V
Noise Margin High (V _{NMH})	1.4V	2.9V	0.5V

Table II(b) shows noise immunity and noise margin voltages for standard HCT devices interfacing with LSTTL logic types with a fully loaded HCT or LSTTL output at $V_{\rm CC}=4.5 V$, and a temperature range of $0^{\circ} C$ to $+70^{\circ} C$. This

limited LSTTL temperature range is the only convenient temperature range when using LSTTL characteristics.

Whenever the HCT output drives either an LS or HCT input, there is an improvement in noise margin over the LSTTL family driving itself or driving HCT. This improvement is especially true for noise margin high where the superior output sourcing current of the rail-to-rail QMOS output swing is far superior to the limited totem-pole pull-up output voltage of LSTTL

Input Current

Fig. 8 is a plot of typical HC/HCT device input current vs. temperature for a $V_{\rm CC}$ of 6V. This actual performance of under 1.5nA over the temperature range of -55°C to +125°C contrasts with maximum family and JEDEC standard input leakage current limit of 100nA for T = -55°C to +25°C, and a limit of 1 μa at $T_{\rm A}=85^{\circ}{\rm C}$ and +125°C. The reason for this difference in performance vs. ratings is high-speed testing limitations associated with test system resolution and the measurement of settling time. A secondary reason is that the limits are end-of-life, thus allowing some leakage current shift due to minor externally introduced foreign material or moisture.

Table II(b) - Noise Immunity and Noise Margin for HCT and LS Device Interfacing

	нст	LSTTL	HCT → LS	LS → HCT	LS → LS	HCT → HCT
V _{IL} MAX	0.8V	0.8V		_	_	_
V _{IH} MIN	2V	2V	_	_	_	_ `
Vol MAX	0.33V	0.4V	_	_	_	_
Von MIN	4.4V	2.7V	_	_	-	_
VNML		. — ·	0.47V	0.4V	0.4V	0.7V
V _{NMH}	_	 '	2.4V	0.7V	0.7V	2.4V

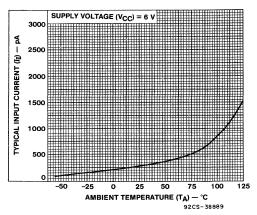


Fig. 8 - Typical HC/HCT input current Vs. temperature

Input Termination

The very low HC/HCT input current and hence, high input resistance is primarily due to low-level leakage currents of the input ESD protection diodes shown in Fig. 9. This excellent input buffering characteristic of CMOS logic IC's is fundamental to the wide range of very low power applications from pure logic to wide range RC oscillators, high Q crystal oscillators, etc. However, in no situation should this high input resistance be left floating or unterminated. Inputs may be tied directly to $V_{\rm CC}$ or GND via resistors of up to 1Mohm; the upper limit is only related to ac noise immunity, i.e., pick up.

Comparing HC/HCT unused input terminations to LSTTL logic, puts the flexibility of QMOS into a very positive light. It is a stated LSTTL design rule that unused inputs be terminated to $V_{\rm CC}$ via a 1.2kohm resistor and not tied directly to GND or $V_{\rm CC}$ nor left floating.

One additional note on HC/HCT input terminations. There are several bidirectional (transceiver) logic types in the QMOS family with common I/O pins. These I/O pins do not have the input poly resistor (R) of Fig. 9. Hence, these pins cannot be terminated directly to V_{CC} or GND. A terminating resistor to V_{CC} or GND of 10kohm is recommended.

Input/Output ESD Protection

HC/HCT device inputs have a resistor-diode protection network, shown in Fig. 9, that protects the gate oxide from electrostatic discharge (ESD) damage. The network provides protection to levels typically greater then 2kV in all modes pertaining to the input, as shown in Fig. 10. The 2kV figure was arrived at by testing devices in the ESD test circuit shown in Fig. 11 while conforming to the MIL-STD-38510 requirements.

The recommended handling practices for QMOS devices are similar to those described in RCA Application Note ICAN-6525, "Guide to Better Handling and Operation of CMOS Integrated Circuits".

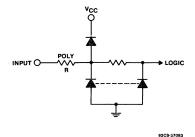


Fig. 9 - Resistor-diode protection network used on inputs of HC/HCT devices to protect device gate oxide from electrostatic discharge damage(ESD).

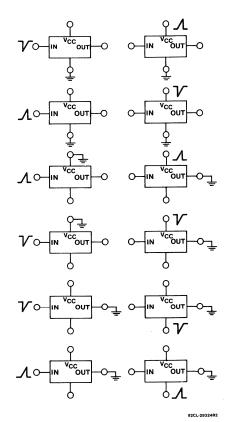


Fig. 10 - HC/HCT ESD test modes

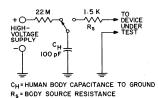


Fig. 11 - Test circuit used to measure electrostatic discharge (ESD) in HC/HCT circuits. The rise time at the output terminal should be 13 \pm 2nS.

16

Input Interaction

Another effect of the input-protection network is the imposition of a parasitic transistor between adjacent input pins. Fig. 12 shows this transistor.

92CA-37078B1

Fig. 12 - Parasitic transistor caused by input-protection network.

This parasitic transistor may cause undesirable interaction between adjacent inputs if the input level is greater than Vcc+Vdiode. RCA QMOS devices minimize the alpha (∝ =I_E/I_C) to less than 0.05. This feature of RCA QMOS inputs permits proper logic operation in the presence of transients and also allows high-to-low voltage translation via series input resistors. The typical value of ∝ for QMOS ICs is .001. Fig. 13 illustrates how control of ∝ in RCA QMOS devices provides for safe conversion of 12V control logic levels to 5V HC system logic simply by insertion of a 100k ohm resistor in each input. The only disadvantage is that logic signals are delayed by 1-2uS and therefore, this scheme works well only with rather slow 12V control logic as for example, in automotive applications. When the input diodes are used as clamps for logic level translation, the input current should be kept to 2mA or less.

Fig. 13 - 12V-to-5V logic-level conversion at HC inputs using 100kOhm series resistors

Input-Voltage Considerations and Maximum Forward-Diode Input Current Limits

As a general rule, CMOS logic devices employing input clamp diodes (Fig. 9) to minimize ESD effects should be operated between the power supply rails. If the input series polysilicon resistor shown in Fig. 9 is not considered, then the rule is:

$$-0.5V \le V_{IN} \le (V_{CC} + 0.5V)$$

This rule is the industry standard (JEDEC Std. No 7) and is intended to keep users from damaging devices because the devices of some HC/HCT device manufacturers the devices do not have the built-in input series polysilicon resistor. RCA HC/HCT data sheets continue to show the conservative rating established by JEDEC. However, RCA HC/HCT device inputs are capable of meeting the following rating: -1.5V≤V_{IN}≤V_{CC} +1.5V.

Furthermore, RCA devices, except for special cases such as transceivers and analog switches or multiplexer signal inputs, can reliably operate with the $\pm 1.5 V$ rule without logic errors. Beyond $\pm 1.5 V$, maximum forward current poses a second limitation with respect to the $V_{\rm CC}$ and GND rail. This QMOS and JEDEC rating is $\pm 20 mA$ of transient current maximum forced into inputs or outputs.

Latch-Up Definition

Latch-up within CMOS IC structures may be initiated or triggered by voltage overshoot or undershoot at inputs, outputs, or supply terminals. A high transient voltage or current at any one or combination of these terminals may initiate turn-on of an SCR-type 4-layer diode parasitic bipolar device, as shown in the simplified diagram of Fig. 14. This parasitic structure, when triggered on, keeps the supply voltage below the $V_{\rm CC}$ voltage and thus permits a high supply current of several hundred mA to flow (see Fig. 14). The resistor values of $r_{\rm c}$, $r_{\rm bb}{}^{-1}$ and $r_{\rm bb}{}^{-2}$ are dependent on circuit layout geometry and p+ and n+ doping levels.

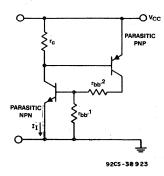


Fig. 14 - Simplified diagram of CMOS 4-layer diode structure

The lower the value of these resistors, the less voltage drop that will occur. A much higher trigger current, therefore, will be required to induce turn on of the SCR structure shown in Fig. 14.

Also important are established layout rules and process parameters that minimize the current gain (Beta) of the parasitic NPN and PNP transistors shown in Fig. 14.

Latch-Up Capability

The trigger current that could potentially trigger latch-up of QMOS ICs is typically $\pm 80 \text{mA}$ at any input or output terminal. Measurements are made at all terminals (see next section for preferred measurement technique), so that these terminals have a minimum acceptable latch current of $\pm 40 \text{mA}$. The absolute maximum rating in the QMOS data sheet and in the industry JEDEC Standard No. 7 is $\pm 20 \text{mA}$. The possibility for transient currents in applications are more likely to appear at input terminals where interfaces could cause voltage transients. The voltage required to induce the $\pm 40 \text{mA}$ measured capability and the $\pm 80 \text{mA}$ typical capability of QMOS ICs as illustrated in Fig. 15, is established by the QMOS built-in 120 ohm minimum current-limiting polysilicon resistor at logic inputs.

Equations:

$$\begin{array}{lll} V_T = I_T R + V_D + V_{CC} & R = 120 \text{ ohms} \\ & V_D = 0.7V \\ -V_T = -I_T R & -V_D & V_{CC} = 4.5V \end{array} \label{eq:potential}$$

Values:

$$\begin{split} &V_T = 40\text{mA X } 0.12\text{k ohms} + 0.7\text{V} + 4.5\text{V} = 10\text{V min.} \\ &V_T = 80\text{mA X } 0.12\text{k ohms} + 0.7\text{V} + 4.5\text{V} = 14.8\text{V typ.} \\ &-V_T = -40\text{mA X } 0.12\text{k ohms} - 0.7\text{V} = -5.2\text{V min.} \\ &-V_T = -80\text{mA X } 0.12\text{k ohms} -0.7\text{V} = -10.3\text{V typ.} \end{split}$$

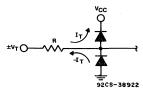


Fig. 15 Input latch transient voltage determination

As developed in Fig. 15, the minimum and typical $\pm V_T$ transient input voltages required to induce either ±40mA or ±80mA are relatively large, and far greater than the transients induced in 5V systems where 2 or 3 volts of ringing transients can be induced via wiring inductance effects. This ±40mA QMOS capability is truly a "latch-up free" condition for operation in a 2V to 6V system. If transients are induced in a particular application beyond +10V/-5.2V, then the use of external series-limiting resistors are advised to keep transient currents below ±40mA. Another consideration is unused inputs. If unused QMOS inputs are tied to a V_{cc} of +5.5V and the V_{cc} of the QMOS IC is temporarily grounded, for example, in a 2-power supply system, or when PC cards are replaced with power on, no possibility of latch-up will exist because the input current will be limited to ±40mA via the built-in 120-ohm polysilicon series resistor.

Measuring Latch-Up Sensitivity Caution

The test methods that follow can damage devices if the following precautions are not strictly observed.

- Apply currents for 1ms (min) to 5 seconds (max).
- Limit power supply currents to 200mA.
- Allow a cool-down period between successive tests to be equal to or greater than the time that is required to apply trigger current.
- These tests may be safely adapted to bench-testing with meters or use of a curve tracer

1. Static Input or Output Triggering for Latch-up

V_{cc} supply to 200mA

For input triggering connect other inputs to V_{CC} or GND

All valid logic conditions are subject to test.

For Output Triggering (Figs. 16c/d):

- · -lo Active outputs must be set low
- +lo Active outputs must be set high
- 3-State outputs Also set output to highimpedance state

Apply trigger current first (Fig. 17)

- Apply ±l₁ or ±l₀(Fig. 16)
- Raise V_{CC to} ±V_{CC} max.
- After the trigger duration, reduce trigger current to zero
- If I_{CC} is less than its quiescent value, the device is not latched.

If the quiescent value of I_{CC} is out of specification, the input and output structure should be electrically checked to determine if the I/O circuitry is damaged and latch-up did not occur. Further device analysis may be required to verify if latch-up did indeed occur.

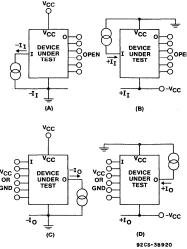


Fig. 16 - Test set-up for positive and negative trigger current

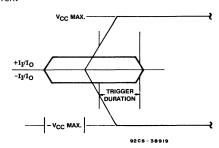


Fig. 17 - Latch test waveforms

V_{CC} Triggered Latch-Up Test by Over-Voltage on V_{CC} (Fig. 18)

Latch-up can occur if the voltage of the power supply is raised above the absolute maximum supply voltage rating.

Apply a V_{CC} overvoltage of 2X V_{CC} max. referenced to GND using a 100-mA limited supply.

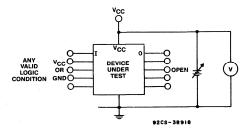


Figure 18: Test set-up for Vc over-voltage latch trigger

Measure the V_{CC} voltage. If it is less than V_{CC} max., the part has latched.

Output Characteristics

QMOS outputs make use of a complementary symmetry transistor configuration, which is different from the LSTTL totem-pole output; both outputs are shown in Fig. 19. QMOS outputs meet the voltage-level requirements necessary to interface to QMOS inputs, and the drive and current requirements needed to interface to bipolar inputs; i.e., TTL, LS, ALS, AS, FAST, etc.

The outputs of the QMOS devices are classified into two categories: standard and bus drive. The two outputs differ in the output transistor widths needed to meet JEDEC standard drive and current requirements. Both standard outputs and bus drive outputs may be active (2-state) or 3-state with a high-impedance mode added and where both the PMOS and NMOS transistors are off. Another type of QMOS output is the open-drain output of the HC/HCT 03 Quad NAND gate shown in Fig. 20. This output has no intrinsic or added diode connected to $V_{\rm CC}$ at the output. The output of this device may be connected to an external load terminated at up to 10V. Thus, outputs can be pulled up above a nominal 5V supply for up-level voltage conversion.

The HC/HCT03 is the only QMOS gate type whose outputs can be used for a "wired OR" arrangement.

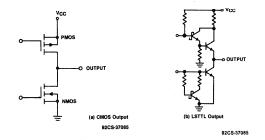


Fig. 19 - Comparison of HC/HCT (a) and LSTTL (b)

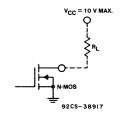


Fig. 20 - HC/HCT 03 output circuit

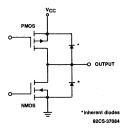


Fig. 21 - Inherent diodes protecting HC/HCT outputs.

Output Protection

The outputs in a QMOS device are protected from ESD damage by diodes. Figure 21 shows these diodes. These intrinsic diodes are effective because of the large geometries (widths) of the output transistors. These diodes are the drain to n-substrate junction of the p device and the drain to p-well junction of the n device. This network provides protection to voltage levels typically greater than 3kV in all ESD discharge modes pertaining to the output (see Fig. 9).

Output Currents

QMOS outputs are specified for both CMOS and LSTTL loads. CMOS inputs are voltage sensitive and the only current is leakage current. The output voltage test for CMOS interfacing is specified for l_0 at $\pm 20 uA$ (20 CMOS loads). The outputs are also specified at $l_0=4 mA$ (10 LSTTL loads) and 6mA (15 LSTTL loads) for standard and bus-drive outputs, respectively. The corresponding V_{OL} (max) and V_{OH} (min) for the outputs, are illustrated in Table III.

The maximum current per output pin (Io) is \pm 25mA and \pm 35mA for standard and bus-drive outputs, respectively. This maximum current rating is specified when the outputs are in their active regions: -0.5V<Vo<Vo<+ 0.5V. The maximum current rating per power pin, Voc or ground, is 50mA and 70 mA, respectively, for standard or bus-drive outputs.

When the output voltage exceeds V_{CC} or is below ground by greater than 500mV, the output protection diodes turn on and conduct current. The maximum diode transient current, I_0K , should not exceed $\pm 40\text{mA}$ to avoid latch-up as described earlier.

Table III - Output Drive Specifications

	Test Conditions/Limits (V _{CC} =4.5V)												
Characteristic	lo	25° C	-40 to 85° C	-55 to 125°C	Unit								
High-Level Output Voltage, V _{он} (min)	-20uA -4mA -6mA (Bus)	4.4 3.98 3.98	4.4 3.84 3.84	4.4 3.7 3.7	> > >								
Low-Level Output Voltage, V _{oL} (max)	20uA 4mA 6mA (Bus)	0.1 0.26 0.26	0.1 0.33 0.33	0.1 0.4 0.4	> > > >								

Output-Current and Interfacing Capability

A comparison of the output drive capabilities for QMOS with those of LSTTL is as follows:

LSTTL capability is usually expressed in unit loads (ULs) where the load is specified to be an input of the same family. This specification assures that the worst case low and high input thresholds will be met and the existing margins of noise immunity preserved.

QMOS capability is expressed as source/sink current at a specified output voltage. Since QMOS requires virtually no input current, the unit load concept does not apply.

With a specified output drive of 0.4mA at 0.4V, the QMOS-to-QMOS interface capability exceeds 1000 ULs, and with a 20uA/0.1V specification, the QMOS capability is 20ULs. Each standard QMOS output has a drive capability of ten LSTTL loads and maintains a VoL of 0.4V over the full temperature range. Bus driver outputs can drive 15 LSTTL loads under the same conditions.

The output drive capabilities of QMOS expressed in LSTTL unit loads are shown in Table IV.

Output Curves

Output current derating versus temperature is shown in Fig. 22 and is valid for all types of output. Output source and sink drives at $V_{\rm Cc}=2,\,4.5,\,{\rm and}$ 6V are given in Figs. 23 to 26 which show output currents versus output voltages. These curves indicate the typical output current at 25°C and minimum output currents that can be expected at 25°C, 85°C, and +125°C, and can also serve as a design aid in interface applications and for calculating transmission line effects on charging highly capacitive loads.

Note to Figs. 22 to 25: The expected minimum curves are included as an aid to equipment designers, and are tested only at the points indicated on device data sheets.

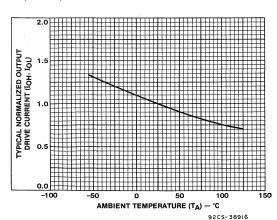
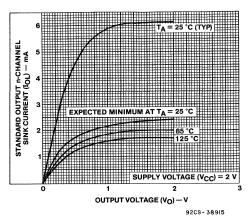
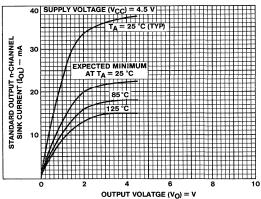
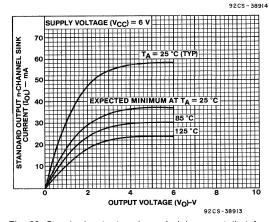
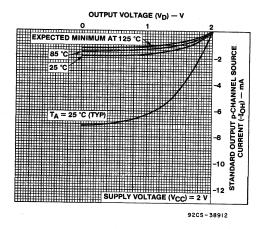
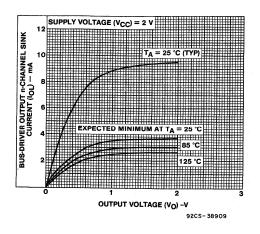
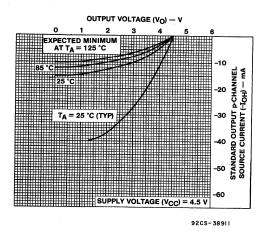
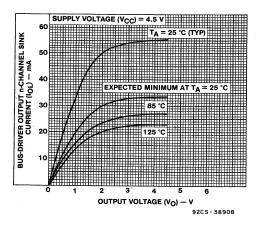
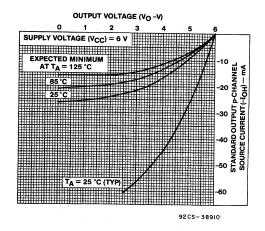




Fig. 22: Output current derating vs. ambient temperature.


Fig. 23: Standard output n-channel sink current (I_{oL}) for $V_{\text{CC}}\!\!=\!\!2V,\,4.5V,$ and 6V.


Table IV: Comparison of Output Drive Capabilities


LS Device	Output Drive	HC/HCT Equivalent	Output Type	Output	Drive		
74LS00	4 mA 10 UL	74HC00	Standard	4 mA	10 UL		
74LS138	4 mA 10 UL	74HC138	Standard	4 mA	10 UL		
74LS245	12 mA 30 UL	74HC245	Bus	6 mA	15 UL		
74LS374	12 mA 30 UL	74HC374	Bus	6 mA	15 UL		

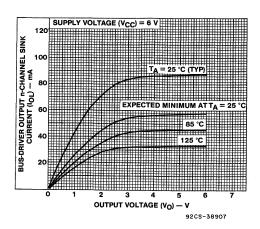
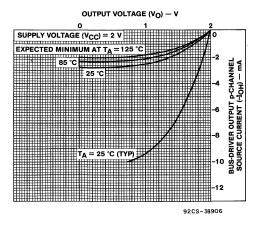
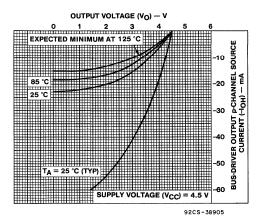




Fig. 24: Standard output p-channel source current (- I_{OH}) for V_{CC} =2V, 4.5V, and 6V.

Fig. 25: Bus-driver output n-channel sink current (IoL) for Vcc=2V, 4.5V, and 6V.

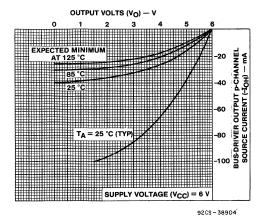


Fig. 26: Bus-driver output p-channel source current (- I_{OH}) for V_{CC} =2V, 4.5V, and 6V.

Dynamic Characteristics

The RCA QMOS family is designed to meet the dynamic switching speeds and operating frequency of low-power Schottky TTL. When compared to metal-gate CD4000 and 74C series CMOS, QMOS shows a 10 to 1 improvement in ac performance. QMOS types feature balanced propagation delays and transition times specified at conditions similar to LSTTL at a nominal $V_{\rm CC}$ =5V and $C_{\rm L}$ = 15pF, so that the user can relate to the equivalent LSTTL specification. Switching speed limits for QMOS are given at a more realistic $V_{\rm CC}$ of 4.5V and a $C_{\rm L}$ of 50pF. Test waveforms for the HC and HCT types are shown at the end of this section.

Capacitive Load (CL) Determination

The external capacitive loading (C_L) seen by a QMOS output is required to calculate the propagation delay and operating power dissipation of a logic function. The three components of C_L at a logic node are:

- 1. n C_{IN} where n is the fan-out.
- 2. m C_{OUT} where m is the number of three-state outputs on a logic bus.
- C_{STRAY} which is the effective wiring and interconnect capacitance.

$$C_L = n C_{IN} + (m-1) C_{OUT} + C_{STRAY}$$
 (1)

 $C_{\rm IN}$ is shown in Fig. 27 for typical HCT and HC type inputs. Note that $C_{\rm IN}$ has peak values at the respective switch points of HCT (1.4V) and HC(2.5V). Capacitance on either side of the peak is a summation of package, lead-frame, reverse-biased input diode, and CMOS gate-to-source/drain capacitance. The peak capacitance results from the Miller multiplication of C gate-to-drain in the high-gain linear-transition region. The values of $C_{\rm IN}$ that most typically represent the average loading effect are 4pF for HCT inputs and 3pF for HC inputs. $C_{\rm IN}$ for HCT inputs is higher than that for HC inputs because of the required large gate-to-source/drain capacitance of the large NMOS device widths.

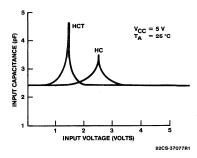


Fig. 27: C_{IN} as a function of V_{IN}.

Output capacitance (C_{OUT}) is typically 10pF for both HCT and HC-type bus-driver outputs when these versions are in their high-impedance state, the only state where C_{OUT} loading is a factor.

The wiring and interconnect capacitance (C_{STRAY}) is determined by estimates of interconnect capacitance and wiring capacitance. These capacitances are highly variable because of differences in interwiring techniques. An often used high-speed wiring technique utilizes strip line with 100-ohm characteristic impedance. C_{STRAY} in this case, is typically 20pF per foot. Capacitances of sockets and connectors are available from their manufacturers.

In a bus system, C_{STRAY} is the largest single C_L component, as the following example illustrates:

Bus Specification: No. of fan-outs (n) = 10 No. of bus drivers (m) = 5 From Equation (1): $C_L = 10 \times 2.5pF + 4 \times 10pF + 7 \times 20pF$ = 25pF + 40pF + 140pF = 205pF

Propagation Delays

Propagation Delays Vs. Supply Voltage

The dynamic performance of a CMOS device is related to its drain characteristics. The drain characteristics are related to the thresholds and gate-to-source voltage potential, Vgs. The Vgs voltage is equal to the power supply voltage, V_{CC} . Therefore, a reduction in V_{CC} adversely affects the drain characteristics which, in turn increases the propagation delays. An increase in V_{CC} decreases the propagation delays.

The voltage range of the HCT version is 5V \pm 10%. Over this range, the effects of propagation delays on performance are minimal. However, the voltage range recommended for the HC version is 2 to 6V. Over such a wide range, the effects on dynamic performance of propagation delay and operating frequency (See Fig. 28) are appreciable.

Propagation Delay Vs. Capacitance

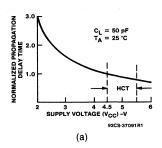
Propagation delay vs. capacitance for the RCA family of HC/HCT types is similar to that of LSTTL types which HC/HCT types may replace in present or new applications.

To determine a propagation delay maximum limit at any value of capacitive loading up to 300pF, the following equation is used:

$$t_{PD}(C_L) = t_{PD}(50pF) + t(C_L)[C_L - 50pF]$$
 (2)

Where:

 $t_{PD}(C_L)=$ maximum propagation delay at the desired C_L $t_{PD}(50pF)=$ maximum propagation delay from device data sheet at 2V, 4.5V, or 6V (See Table V). $t(C_L)$ Maximum (ns/pF) multiplying factor from the following table:


	t(C∟) (nS/pF)							
Vcc	Std. Output	Bus Output						
2V	0.272	0.187						
4.5V	0.102	0.068						
6V	0.082	0.056						

Propagation Delay Vs. Temperature

Because an increase in temperature causes a decrease in electron and hole mobilities, a temperature increase will cause an increase in propagation delays. Correspondingly, ac performance improves with lower temperatures. Typically, speeds derate linearly from 25°C at about -0.3%/°C.

The propagation delay, therefore, can be computed at any temperature between -55° C and +125° C by using the following relationship:

$$t_{PD}(T) = t_{PD}(25^{\circ}C) + [(T(^{\circ}C)-25) (0.003 \text{ns/}^{\circ}C)]$$
 (3)

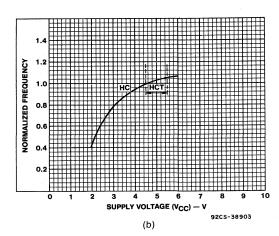


Fig. 28: Typical switching speed characteristic versus supply voltage normalized to 4.5V.

Output Transition Times

Table V shows the RCA standard and maximum ratings for output transition times applicable to all standard and bus-driver outputs. Typical values are approximately one-half the maximum values. Practical unspecified minimum values are one-fourth the limit values.

Table V - Output Transition Time Limits for C_L = 50pF

		Maximum Output Transition Times (ns)									
Output	V _{cc} (V)	T _A = 25°C	T _A = 85°C	T _A = 125°C							
Standard	2 4.5* 6	75 15 13	95 19 16	110 22 19							
Bus Driver	2 4.5* 6	60 12 10	75 15 13	90 18 15							

^{*}Specification for CD54HCT and CD74HCT types.

Output Transition Time Vs. Capacitive Loading

To determine the maximum output transition time on any capacitive loading up to 300pF, the following formula is used:

$$t_T(C_L) = t_T(50pF) + t'(C_L) [C_L - 50 pF] (4)$$

Where:

 $\begin{array}{l} t_T(C_L) = \text{maximum transition time at the desired } C_L \\ t_T(50pF) = \text{limit at 2V, 4.5V, or 6V(Table V)} \\ t_TN(C_L) = (\text{ns/pF}) \text{ multiplying factor from the following} \end{array}$

	t'(C∟) (ns/pF)									
V _{cc}	Std. Output	Bus Output								
2V	0.544	0.374								
4.5V	0.204	0.131								
6V	0.170	0.110								

Transition Time Vs. Temperature

Transition time at HC/HCT outputs typically changes by $-0.3\%/^{\circ}$ C. Equation (3) used to compute increase in propagation delay with temperature (see above), can also be used to compute transition time at any temperature by simply substituting t_T for t_{PD} .

Clock Pulse Considerations

All HC/HCT flip-flops and counters contain master-slave devices with level-sensitive clock inputs. As the voltage at the clock input reaches the threshold level of the device, data in the master (input) section is transferred to the slave (output) section. The use of voltage threshold levels for clocking is an improvement over ac-coupled clock inputs, however, these levels make these devices somewhat sensitive to clock-edge rates. The threshold level is typically 50% of $V_{\rm Cc}$ for HC devices, and 28% of $V_{\rm Cc}$ for HCT devices (1.4V at $V_{\rm CC}=5\rm V$). Temperature has little effect on the clock threshold levels.

When clocking occurs, the internal gates and output circuits of the device dump current to ground. This condition results in a noise transient that is equal to the algebraic sum of internal and external gound plane noise. When a number of loaded outputs change at the same time, it is possible for the **chip** ground reference level (and therefore, the clock reference level) to rise by as much as 500mV. If the clock input of a positive-edge triggered device is at or near its threshold during a noise transient period, multiple triggering can occur. To prevent this condition, the rise and fall times of the clock inputs should be less than 500ns at $V_{\rm CC}=4.5{\rm V}$, the data sheet maximum value.

In the HC/HCT family, several flip-flops have a Schmitt-trigger circuit at their clock input. This circuit increases the maximum permissable rise/fall time on the clock wave-form. The RCA flip-flop types HC/HCT 73, 74, 107, 109 and 112, have special Schmitt-trigger circuits which increase their tolerance to slow rise/fall times and to high levels of ground noise.

Maximum permissible input-clock pulse-frequency ratings on each clocked device type data sheet requires a 50% duty cycle input clock. At these rated frequencies, the outputs will swing rail-to-rail, assuming no dc load on the outputs. This feature is a very conservative and highly reliable method of rating clock-input-frequency limits which for HC/HCT devices, equal or exceed LSTTL ratings.

Power Consumption

The power consumption of a HC/HCT device is composed of two components: one static, the other dynamic. The static component is the result of quiescent current caused principally by reverse junction leakage. The dynamic component results from transient currents required to charge and discharge the capacitive loads on logic elements, that is, transient currents caused by internal and external capacitance, and transients resulting from the overlapping of active p and n transistors. Internal chip power consumption is represented by the value CPD.

Two equations are used to compute the total IC power consumption. The first equation (A) is applicable to an HC or HCT device when the inputs are driven from GND to V_{CC} (rail-to-rail), as follows:

Equation (A):
$$\begin{split} P &= P_{DC} + P_{AC} \\ P &= I_{CC}V_{CC} + C_{PD}V_{CC}^2 f_I + \Sigma \ C_L V_{CC}^2 f_O \end{split}$$

Where

Icc = Quiescent Current (Ref. Table VI)

V_{CC} = Supply Voltage f_I = Input Frequency

fo = Output Frequency

C_{PD} = Device Equivalent Capacitance

C_L = Load Capacitance

(LSTTL level)

The second equation (B) is applicable only to an HCT device where specific input pins are driven at LSTTL levels defined as $V_{\text{IN}} = V_{\text{CC}} - 2.1V$:

Equation (B):
$$\begin{split} P &= P_{DC} + P_{AC} \\ P &= I_{CC}V_{CC} + \Delta \ I_{CC}V_{CC}D + C_{PD}V_{CC}^2f_i + \Sigma \ C_LV_{CC}^2f_0 \end{split}$$
 Where:
$$\Delta \ I_{CC} = \text{Added dc current when } V_{IN} = V_{CC} \text{-2.1V}$$

D = Duty cycle of clock (% of time HIGH)

Table VI - Temperature - Dependent Ratings

				LIF	MIT		
			T _A = 2	25° C	-40 to +85° C	-55 to +125° C	
	VIN	V _{CC}	typ	max	74HCT MAX	54HCT MAX	Units
Δl _{cc} additive dc current per input pin	V _{cc} - 2.1V	4.5V to 5.5V	100	360	450	490	uA
(1-Unit)							

Table VII HC/HCT and LSTTL Maximum Quiescent Current at $V_{CC} = 5V$

Device Complexity		LSTTL			
	Typical		125°C		
	25° C	25°C	85° C	125° C	
SSI	2 nA	2 uA	20 uA	40 uA	4.4 mA
FF	4 nA	4 uA	40 uA	80 uA	8 mA
MSI	8 nA	8 uA	80 uA	160 uA	10 mA
		1 1			to
					95 mA

The temperature dependent ratings for I_{CC} are given in the table below:

HCT load table by type shown on each data sheet:

Example: Input Unit Multiplier
All X 0.6

The dynamic power due to outputs is the sum of the ac power at each output. The user must independently determine the C_L and the average frequency at each output. The latter requires estimating the average freguency of data nodes in a logic system. For example, for HC/HCT counter types, each output is inherently operating at different frequencies.

The source of the C_{PD} or device equivalent-power-dissipation capacitance is made up of 2 sources of internal device power consumption:

- Power consumed by charge and discharge of internal device capacitance.
- Power consumed through current switching transients.

Fig. 29 illustrates the typical I_{CC} vs. V_{IN} characteristic of HC type devices Note that when $V_{IN}=0.1V$ or (V_{CC} -0.1V), zero current flows. Thus, no ΔI_{CC} component is required for computing the power consumption of HC device types. However, the transient switching components of an IC consume power and are a part of the C_{PD} value.

Fig. 30 illustrates the typical I_{CC} vs. V_{IN} characteristic of HCT type devices. Again, if input voltages are 0.1V or $(V_{CC}=-0.1V)$, no ΔI_{CC} value exists. Also for $V_{IN}=0.4V$, ΔI_{CC} is zero. If V_{IN} , however, is an LSTTL logic high level of $(V_{CC}-2.1V)$ or approximately 3V for $V_{CC}=5V$, then **significant** ΔI_{CC} does exit and is indicated in equation (B) as the ΔI_{CC} component.

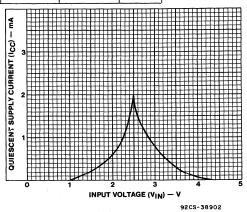


Fig. 29: Icc vs. V_{IN} for RCA HC types

The special input design of RCA's HCT types greatly reduces the value of $\Delta l_{\rm lc}$ such that the added power is very small; for example, RCA's HCT power is minimal compared to LSTTL power. If this special input circuitry were not used, the $\Delta l_{\rm lc}$ values would be relatively high as demonstrated by the dashed line in Fig. 30, and the HCT type would not have very low power when compared to LSTTL.

NOTE: The low value of lcc is due to a special input design that provides a true low-power HCT capability.

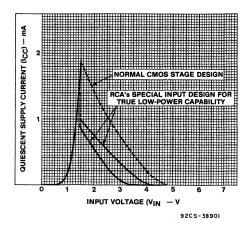


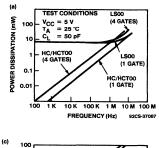
Fig. 30: Icc vs. V_{IN} for HCT types

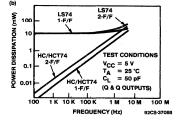
Because appreciable current flows during device input switching as shown in Figs. 29 and 30, it is important to maintain fast input rise and fall times. The JEDEC and RCA recommended maximum input rise and fall times are:

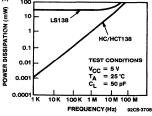
1000 ns for $V_{CC} = 2V$ 500 ns for $V_{CC} = 4.5V$ 400 ns for $V_{CC} = 6V$

Since maximum output transition times are 15ns for the standard logic types and 12ns for bus drivers, a designer must only be concerned with exceeding the rise and fall times shown above for interfacing or linear mode operation in applications such as RC oscillators, crystal oscillators, and amplifiers using the HCU04 types.

When Schmitt-trigger types HC/HCT14 and 132 are used for either shaping up slow signals or as RC oscillators, power is increased due to prolonged through-current. For further information on oscillators and their power consumption, refer to RCA Application Note (ICAN-7337), "Astable Multivibrator Design Using High-Speed QMOS IC's".


The adverse effects of power transitions is another reason to maintain input rise and fall times under the recommended limits. Longer transitions may cause oscillations of logic circuits (and hence, logic errors) or premature triggering depending on system $V_{\rm CC}$ and GND noise, which are amplified when input signals hover near the switching voltages illustrated in Figs. 29 and 30. To reduce the effects of slower transitions, the use of Schmitt trigger types is recommended.


Comparison to LSTTL Power


The dynamic power consumption of HC/HCT devices is frequency dependent, but it should be noted that LSTTL power consumption is also frequency dependent at frequencies greater than 1MHz. At frequencies less than 1MHz, the dynamic component is negligible compared to the static component. The average power consumption of HC/HCT and LSTTL equivalents is illustrated in Fig. 31 for four device types. Because all of the functions in a multi—functional LSTTL device are biased when power is applied, the HC/HCT device characteristics are plotted for a single function and for the total package for the purposes of comparison.

Some observations from Fig. 31 are:

- For SSI gate types, the HC/HCT power approaches LSTTL power at about 1MHz.
- For higher complexity types such as the RCA HC/ HCT 138 3-of-8 line decoder/demultiplexer shown in Fig. 31(c), HC/HCT power approaches LSTTL power at above 10MHz.

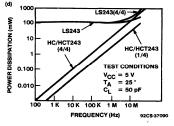


Fig. 31 - Power versus frequency graphs for the (a) LS/HC/HCT00, (b) LS/HC/HCT74, (c) LS/HC/HCT138, and (d) LS/HC/HCT243.

3) Fig. 31 implies continuous operation at the frequencies shown, however, most practical applications of logic in microcomputer systems have variable operation or data/address signal rates. The average operating frequency is much below the peak operating frequency — particularly in the 100KHz region where power savings over LSTTL are several orders of magnitude.

Power-Supply Considerations Power-Supply Voltages

The RCA HC and HCU versions have a power supply range of 2 to 6V; the absolute maximum voltage rating is 7V. The ability to use RCA's HC types with a 2V supply makes these devices particularly useful in battery-operated equipment, especially systems including memories that feature 2V standby operation. The absolute maximum supply or ground current, per pin, is $\pm 50 \text{mA}$ for types with standard output drive, and $\pm 70 \text{mA}$ for types with bus driver outputs.

The operating supply-voltage range for RCA's CD74HCT types is 4.5V to 5.5V, 5V \pm 10%. These figures indicate that there is more tolerance in the regulation of the low-current system supply than is the case with other technologies. The maximum voltage indicated for HC and HCU versions also applies to HCT versions. The advantages of using HC/HCT/HCU with its wider voltage supply range are illustrated in Fig. 32.

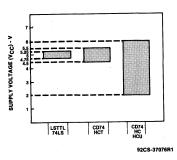


Fig. 32: Power-supply ranges for CD74HCT, CD74HC and CD74HCU versions of the RCA family of devices and 74LS series types.

Battery Back-Up

Battery back-up can be easily implemented in systems of RCA's HC/HCU devices. An example of this arrangement is shown in Fig. 33. The minimum battery voltage required is only 2V plus one diode drop.

In the example, RCA's High-to-Low Level Shifters (HC4049 or HC4050) are used to prevent the flow of positive input currents into the system due to input voltage levels greater than one diode drop above $V_{\rm CC}$. If the circuit design is such that input voltages can exceed $V_{\rm CC}$, then external resistors should be included to limit input currents to 2mA. External resistors may also be necessary in the output circuits to limit currents to 2mA, if the output can be pulled above $V_{\rm CC}$ or below GND. These currents are due to inherent $V_{\rm CC}/{\rm GND}$ diodes that are present in all outputs, including three-state outputs.

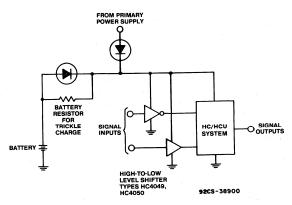


Fig. 33 - Example of an HC/HCU system with battery back-up.

Power Supply Regulation and Decoupling

The wide power supply range of 2 to 6V may suggest that voltage regulation is not necessary, but it must be realized that a changing supply voltage affects system speed, noise immunity and power consumption. Because noise immunity, and even the correct operation of the circuit, can be affected by noise spikes on the supply lines, therefore, matched decoupling is always necessary in dynamic systems.

Both HC and HCT types have the same power supply regulation and decoupling requirement. The best method of minimizing spiking on the supply lines is by implementing good power supply and ground bussing and having low ac impedances from the V_{cc} and GND pins of each device. Because the minimum value of a decoupling capacitor depends on the voltage spikes that can be allowed, it is a general rule to restrict ground and V_{cc} noise peaks to 400mV. A local voltage regulator on the printed-circuit board can be decoupled using an electrolytic capacitor of 10 to 50 uF.

Localized decoupling of devices can be provided by a 22nF capacitor for every two to five packages, and a 1uF tantalum capacitor for every ten packages. The Vcc line of bus driver circuits and level sensitive devices can be effectively decoupled from instantaneous loads by a 22 nF ceramic capacitor connected as close to the package as possible

A practical example of determining the value of a decoupling capacitor is as follows: assume that a buffer output sees a 100-ohm dynamic load and that the output low-to-high transition is 5V, then the current demand is 50 mA per output. For an octal buffer, the current demand would be 0.4A per package, in approximately 6 nS.

The following formula can also be used to determine the value of a decoupling capacitor:

The term Q = CV is differentiated to obtain
$$\frac{\Delta Q}{\Delta t}$$
 = $C\frac{\Delta V}{\Delta t}$.

Since
$$\frac{\Delta Q}{\Delta t}$$
 = I, the equation becomes I = C $\frac{\Delta V}{\Delta t}$.

Hence:
$$C = \frac{I\Delta t}{\Delta V}$$

For an octal buffer, assuming a change in V_{CC} or GND of 0.4V, then;

$$C = \frac{0.4 \text{ A } \times 6 \times 10^{-9} \text{ S}}{0.4 \text{ V}} = 6 \times 10^{-9} \text{ F} = 6 \text{ nF}.$$

For further information on power-supply regulation and decoupling, refer to RCA Application Note ICAN7329, "Power-Supply Distribution and Decoupling for QMOS High-Speed IC's."

Interfacing

Because of the characteristics of the CMOS output, the HC/HCT family is very versatile in interfacing between different logic families. This capability including the corresponding fanout is illustrated in Fig. 34.

Note that the fanout to CMOS devices is limited only by the input rise and fall times, which are dependent on the capacitive loading, C_L. This dependence can be computed by the following relationship:

$$t_{R}, t_{F} = 2.2 \text{ RC}_{L}$$
 (5)

where R is the impedance of the output.

Fanout From:	Te	To Corresponding Logic Families:										
нс/нст	TTL	LS	ALS	FAST	S/AS	4000, 74C						
Standard Types	2	10	20	6	2	See						
Bus Drivers	3	15	30	10	3	Text						

Fig. 34 - HC/HCT interfacing capability and corresponding fanout to other logic families

RCA's HC types cannot be driven from any of the TTL families because the TTL output voltage high, V_{oH} (min), does not satisfy the HC input voltage high, V_{HH} (min) specification. The HCT types can be directly interfaced to the TTL families because the HCT input voltage high, V_{HH} (min) is less than the TTL output voltage high, V_{OH} (min). To meet minimum V_{HH} requirements, HC types can use a pull-up resistor as illustrated in Fig. 35.

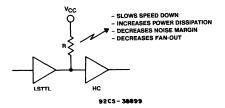


Fig 35 - Use of pull-up resistor to interface TTL and HC devices

However, the use of a pull-up resistor will not give optimum performance because as noted in Fig. 35, the resistor tends to slow down system speed, increase power dissipation, decrease noise margin, and decrease fan-out.

For further information on interfacing, refer to RCA Application Note ICAN7325, "Interfacing HC/HCT QMOS Logic with Other Families and Various Types of Loads."

Logic-Level Conversion

The HC/HCT family contains logic-level conversion types necessary to interface high-voltage logic levels (up to 15V common in control and automation systems) to low voltage levels (down to 2V) as shown in Fig. 36.

QMOS HC4050

B) HEX NON-INVERTING 92CS - 38898

Fig. 36 - High-to-low logic level conversion

The Quad open-drain NAND gate (HC/HCT03) is used to convert from HC (2V to 6V) or HCT (TTL or CMOS) logic levels up to 10V output logic levels as shown in Fig. 37 R_L can be a very wide range of values. For design of this output interface, use

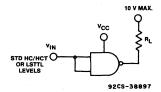


Fig 37 - Low-to-high logic-level conversion

the output N-MOS transistor characteristics of Fig. 23. The minimum value of R_L is that necessary to keep the output current below the 25mA HC/HCT family maximum rating. A large value of R_L will prolong the output rise time.

System (Parallel) Clocking

When utilizing the HC/HCT family in synchronously clocked systems the following guidelines should be followed. Because of variations in switching points between devices, a slow clock edge could cause a logic error. If data in one of the synchronously clocked circuits changes before the switching point of the next sequential circuit is reached, a logic error will occur. This situation is illustrated in Fig. 38.

VS1 = Switching point, device 1 VS2 = Switching point, device 2 tp = Propagation delay Because of variations in input threshold voltages among RCA's HC-version devices, the maximum clock-pulse rise or fall time should adhere to the following relationship:

$$t_r$$
, t_f (max) $\leq 2t_p$ (max) (6

In a system where HC, HCT, and TTL-type families are mixed, the maximum clock pulse rise or fall times should adhere to the following relationship:

$$t_{R}$$
, t_{F} (max) $< t_{P}$ (max) (7)

It is recommended that a Schmitt-trigger circuit be utilized if wave-shaping is required.

The maximum rise or fall time into any RCA HC or HCT device must be limited to 1000, 500, and 400 nS at 2, 4.5, and 6 volts, respectively. If these limits are exceeded, noise on the input or power supply may cause the outputs to oscillate during transition. This oscillation could cause logic errors and unnecessary power consumption.

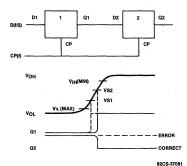


Fig. 38 - Result of changing data in one synchonously clocked circuit before the switching point of the next sequential circuit is reached.

Drop-In Replacement

The use of RCA HCT family devices make it unnecessary to sacrifice noise margins, speed, and quiescent power dissipation in constructing interfaces to achieve mixed-technology designs. This performance is possible because HCT devices are TTL compatible and can directly replace LSTTL counterparts without the addition of pull-up resistors at the LSTTL outputs.

Fan-out capabilities should be taken into account when an HCT device is used to replace a TTL part. TTL fan-out is usually expressed in unit loads (ULs) and the load is specified to be an input of the same family. In fact, TTL fan-out is determined by the ability of the outputs to sink current (a TTL input usually sources current). The outputs of HCT devices are classified in two categories: standard and busdriver. Table VIII shows the fan-out for the different TTL families

For further information on drop-in replacements, refer to RCA Application Note ICAN7330, "Replacing LSTTL with QMOS High-Speed Logic IC's".

The fan-out values shown in Table VIII are derived at a voltage drop of maximum 0.4V (V_{OL}). In the "74" TTL ser-

ies, an extended V_{OL} value is often seen, e.g., 8 mA at 0.5V voltage drop for LSTTL. If this value is used in determining the fan-out of the TTL part, it can result in a higher fan-out than is possible with QMOS. This condition can be resolved by replacing as many of the driven TTL parts as possible by HCT devices to reduce the sink current requirement (the HCT input current is neglegible). Furthermore, the use of HCT devices results in a substantial reduction in power dissipation.

Devices of the HCT family are power-saving, virtually drop-in replacements for LSTTL parts. The total power consumed by a system depends largely on the number of gates switching at any time and on the switching frequency, but in most systems only about 30% of all circuits switch at the maximum system frequency; 70% operate at far lower rates. Thus, even in systems using ALS, AS, S and FAST, the HCT family can be used with consequent power-savings and good reliability improvement in mixed technology designs.

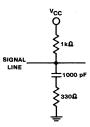
Conversion of LSTTL Test to HCT Test

A simplified technique to convert an LSTTL test program to one that properly tests an HCT type is explained in RCA application note ICAN-7323 "Modification of LSTTL Test Programs to Test HCT High-Speed CMOS Logic IC's".

Bus Systems

Bus systems are commonly used in microcomputer applications. RCA CMOS devices are being increasingly used in these applications, for example, several CMOS versions of popular NMOS processors have recently been introduced.

There are several constraints imposed on microprocessor systems in industrial applications, such as electrically noisy environments, battery stand-by requirements and sealed, gas-tight enclosures. QMOS bus systems, e.g., the proposed CMOS STD bus (a non-proprietary CMOS bus proposed standard) provides a low power solution to virtually all of these problems. In comparison with older bipolar digital IC Bus standards, QMOS bus systems offer superior noise immunity, equal operating speed, lower power dissipation, wider supply voltage range, extended temperature range, and enhanced reliability.


In order to optimize results with QMOS, particularly in circuits which communicate directly with the bus, the use of only HC devices is recommended, because HC QMOS optimizes input-signal noise immunity with HC QMOS a new low-power bus termination can be introduced (see Fig. 39 (b)) which, unlike the conventional high-current TTL bus termination of Fig 39a, draws no heavy dc current and is more suited to QMOS outputs. Both HC and HCT QMOS have the identical rail-to-rail output drive.

The wider supply voltage range of HC type QMOS together with its lower power dissipation virtually eliminates problems caused by voltage drops along power

Table VIII: Fan-Out of HCT to TTL Elements

HCT	TTL	LS	ALS	FAST	S & AS
Standard	2	10	20	6	2
Bus-Driver	3	15	30	10	3

(a) Conventional terminations for TTL buses - 0.25 W per line or 2 W per octal drive and termination.

(b) Proposed low-power termination for CMOS STD bus equivalents.

Fig. 39 - Bus Terminations

buses between cards in a system. It is possible for a circuit to pick up severe noise spikes or differential voltages via the card edge-input protection circuit. Such

pick-up can exceed the CMOS input current maximum ratings if the input current is not limited by a 10k-ohm series resistor in the QMOS logic line. This series resistor will limit transient current to ± 20 mA for external voltages of up to $\pm 200V.$ However, for correct functioning, the dc input current should be kept below 2 mA. This type of card edge input protection is shown in Fig. 40.

In the circuit of Fig. 40, if the input diode current exceeds 2mA, a QMOS high-to-low level shifter should be used (e.g., HC4049, or HC4050).

Because QMOS bus-drivers do not have built-in hysteresis, slowly rising pulses should be avoided or devices with Schmitt-trigger action should be used, such as the QMOS flip-flop series HC/HCT73, 74, 107, 109, 112, or the dedicated Schmitt-trigger types HC/HCT14 and 132. The rise and fall times can be derived from the information given in the section, "Propagation Delays and Transition Times".

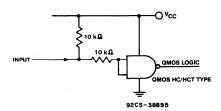


Fig. 40: Example of the card edge-input-protection circuit.

Standardized Capacitance Power Dissipation (CPD) Test Procedure

The purpose of the CPD number is to allow the user to estimate the actual power consumption of his system. Therefore, the table has been set up to exercise each device in the same manner as it would usually be used. Devices which are separable into independent sections are measured on a "per section" basis, the remaining are measured on a "per device" basis. Each part number's unique setup is listed in the "Pin Condition Table." The following paragraphs describe the generic set up for each class of devices:

All part numbers: Measurements are to be made at $T_A = 25^{\circ}$ C, $V_{CC} = 5$ V, and 3-state outputs both enabled and disabled.

Gates: Switch one input. Bias the remaining inputs such that the output switches.

Latches: Toggle as in a flip-flop.

Flip-flops: Switch the clock pin while changing "D" (or biasing "J" and "K") such that the output(s) change each clock cycle. For part numbers with common clocks, exercise the "D", "J", or "K" inputs of only one flip-flop. Set the inputs of the remaining flip-flops so they do not change state.

Decoders / Demultiplexers: Switch one address pin, which changes two outputs.

Data Selectors / Multiplexers: Switch one address input, with the corresponding data inputs at opposite logic levels, so that the output switches.

Counters: Switch the clock pin, with other inputs biased, such that the device counts.

Shift Registers: Switch the clock, adjust the data inputs such that the shift register fills with alternate 1's and 0's.

Transceivers: Switch one data input. For bi-directional transceivers enable only one direction.

One Shots: TO BE DETERMINED

Parity Generators: Switch one input.

Priority Encoders: Switch the lowest priority input.

Rams: TO BE DETERMINED

Display Drivers: Switch one input such that approximately

half the outputs change state.

ALUs / Adders: Switch one least significant input bit, bias the remaining inputs so that the device is alternately adding 0000 (binary) or 0001 (binary) to 1111 (binary).

Since CPD is a measure of device power consumption, and not that of the driven load, each output would ideally be unloaded. However, this is impractical with automatic testers which often have 30 to 40 pF hanging on each pin. Therefore, each output which is switching should be loaded with the standard 50 pF. The equivalent load capacitance, based on the number of outputs switching and their frequency, is then subtracted from the measured gross CPD number to obtain the device's actual CPD value.

If a device is tested at a high enough frequency, static supply current will contribute a negligible amount to power consumption and can be ignored. Thus, it is recommended that power consumption be measured at 1 MHz and the following formula be used to calculate CPD:

$$CPD = \frac{(ICC)}{(VCC)(1E6)} - (equivalent load capacitance)$$

EXPLANATION OF SYMBOLS Key V = V_{CC} (+5 V) G = ground H = logic 1 (V_{CC}) — inputs at V_{CC} for HC types; 3.5 V for HCT types L = logic 0 (ground) D = don't care — either H or L but not switching C = a 50 pF load to ground O = an open pin; 50 pF to ground is allowed P = input pulse (see illustration) Q = half frequency pulse (see illustration) R = 1 kΩ pull-up resistor to an additional 5 V supply other than the V_{CC} supply B = both R and C

Pin Condition Table for CPD Tests

25 26 27 	28
25 26 27 	
-	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Pin Condition Table (Cont'd)

HC/	Equiv-					-							Pin	Nur	nbei	,		-			.,						
HCT Types	Load		•		_		7		0 10	. 44	10	10		45	40	47	40	••	-00					05			
ypes	(Pi)	1 2	-	4	5	0			9 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
138	100	PL							0 0		0	0	C	C	٧		-	-	_	_	-	_	_		_	_	_
139 147	100 50	LP							0 0 C H		О Н	D	D	D	V	_	_	_	_	_	_	_	_	_	_	_	_
151	100	DI				C			LL	P	D	D	D	D	v	-	_	,	_		_	_	-	_	_	-	_
153	50	LL	. C) [L	Н	С	G	0 0	D	D	D	P	D	V	. —	ı —	_	-	-	-	-	-	-	-	_	7
154	100								0 0		G	0	0	0	0	0	L	L	L	L	L	Р	٧	_	-	-	-
157 158	50 50	PI		10					0 L	L	0	L	L	L	V	_	_	_	_	_	_	_	_	_	_	_	_
160	55	HF							НН		c	c	c	c	v	_		_		_	_	_	_	-	_	-	_
161	50	H F	, C) [D	D	Н	G	нн	С	С	С	С	С	٧	-	-	-	-	_	-	_	_	_	-	-	-
162	55	H F	, () [ם	D	Н	G	нн	С	С	С	С	С	٧	_		_	_	_	_	_	_	-	_	_	_
163	50	H F				D			HF		С	С	C	С	٧	-	-			_	_	_	-	_	-		-
164 165	200 50	Q H				; C			H C		C D	C D	V	L	_ V	_	_	_	_	_	_	_	_		_	_	_
166	25		_						HE		D	c	D	Н	٧	_	_	_	_	_	_	_	_	_		_	_
173	25	LI	_ (: 0	0	0	P	G	LL	D	D	D	Q	L	V	_	_	_	_	_	_	_	_	_	_	_	_
174	25								PC		0	D	D	0	٧	_	-	_	_	_	_	-		-	-	-	-
175 181	50 250								PC		D G	D C	O B	0 C	C C	C	L	Н	L	Н	L	Н	v	_	_	_	_
182	150	HI							CC		c	Р	Н	L	v	_	_	_	_	_	_		_		_		_
190	60	D (c c	: L	. L	. с	С	G	D D	н	С	С	P	D	٧		_	_	_	_	_	_	_	_	_	_	
191	53	D (. L				D C		С	С	Ρ	D	٧	-	-	-	-	_	-	_	-	-	-	-	-
192 193	60 50	D (D 0		C	C	L	D	V	_		_	_	_	_	_	_	_	_	_	_
193	100								HL		C	c	C	c	v	_	_	_	_	- =	1_	_	_	_	_	_	_
195	125	н	4 L		ם כ	ם כ	D	G	нР	С	С	С	С	С	v	_	_	_	_	_	_	_	_	_	_	_	
221	100	LI	4 P	C	; c	0	0	G	D C	D	0	С	0	R	٧	_		_	-	_	_	-	_	_	-	_	-
237	100		LL						0 0		0	0	С	С	V	-	_	_	_	_	_	-	-	_	-		_
238 240	100 50	PI							0 0		0	O D	С О	C	۷ 0	_ D	C	D	v	_	_	_	_	_	_	_	_
241	50	LF							0 0		0	D	0	D	0	D	С	н	v	_	_	_	_		· _	_	_
242	50) P						0 0		ō	L	v	_	_	_	_	_		_	_	_	_	_	_	_	_
243	50								0 0		0	L	٧	_	_	_	_	_	-	_	-	_	-	-	_	-	-
244 245	50 50	LF							0 G		0	D O	0	D O	0	D O	C	D L	V V	_	_	_	_	_	_		_
2 4 5	100								LL		D	D	D	D	V	_	_	_	_	Ξ		_	_		_	_	_
253B	50								0 0		D	D	Р	D	v	_	_	_	_	_	_	_	_	_	_	_	_
257	50	PI	LH	1 () C	D (0	G	0 [D	0	D	D	Ł	V	_	_	, -	_	_	_	_	_	_	_	_	_
258	50 25	PI							0 0		0	D	D P	L	V	_	_	_	-	_	_	_	-	_	-	_	-
259	25 50								0 0		0	a		н	٧	_	_	_	_	-	_	_		-	_		_
7266 273	50 25								0 0		D O	D D	V D	0	0	D D	– D	Ö	_ V	-	_	_	_	_	_	_	_
280	100	L				c			LL		L	L	v	_	_	_	_	_	_	_		_	_	_	_		_
283	250	C				Н					L	С	L	Н	٧	-		_	_	_	-	-	_	_	_	_	-
297	12	ΗΙ	H H	1 F	, C	2 L	С	G	D E	0	0	D	Н	Н	V	-	_	-		-	-	-	_	_	-	-	-

Pin Condition Table (Cont'd)

	Equiv-														Pin	Nun	nber												
HC/ HCT Types	alent Load (pF)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
299 354 356 365 366	250 100 50 50 50	H D L L	D D P	D C	D D D	D D O	C D D D	L D O	H Q G	L P O	G G D	Q L L O	P L L D	C L O O	C P L D	C L L	C L V V	С Н Н	D C C -	L C C	V V -	- - - -	- -		-	- - - -	- - - -	- - - -	
367 368 373 374 377	50 50 25 25 25	L L L	С	С Q Q	D D D	0	D D O O	0 D D	G D D	0	D G G	O O P P	D D O O	O O D D	D D D D	L 0 0	V V O O	_ D D	_ D D	- 0 0		- · · · · · · · · · · · · · · · · · · ·	-	- - - -	- - - -	- - -	 	- - - -	- - - -
390 393 423 533 534	50 47 100 25 25	L	L P C	С Н Q	C C D	0 0	C C O O	G O D	O G D	0 D 0	O D G	O O D P P	D D O O	O D C D	D V O D	D R O O	V - V 0 0	_ _ D D	- - D D	- - 0 0	- - V V		- - - -	- - - - - -	- - -	- - - -		- - - -	
540 541 563 564 573	50 50 25 25 25	L	Ρ Q Q	D D D	D D D	D D D	D D D D	D D D	D D D	D D D D	G G G	O P P H	0 0 0 0	0 0 0 0	00000	0 0 0 0	0 0 0 0	0 0 0 0	C C O O	L C C C	>>>>>		_ _ _ _	- - - - -	- - - -	- - -		- - -	
574 583 597 7597 640	25 250 25 25 25 50	H D	H D D	H D D	L D	L D D	D C D D D	C D	G G G	C C	G C H H G	P C P P	O H D D	O P H H O	0 L Q O	0 L D 0	0 V V V 0	0 - - - 0	0 - - c	C L	v - - v		- - -	- - - - :	- - - -		- - - -	- - - -	
643 646 648 670 688	50 50 50 100 50	H D Q L	L L Q	Н О	P P L	D D P	D D C L	D D C	D D G	D D C	G D D C G	0 D D L	0 G L L	0 0 0 L L	0 0 0 P L	0 0 0 0 L	0 0 0 V L	0 0 - L	C 0 0 - L	L 0 - c	V C C - V	_ L _ _	_ D D _	 D D 	- v v -	- - -	- - -	- - - -	- - - -
4002 4015 4016 4017 4020	50 100 0 55 48	P O C	C O	0 0 0	0 0	0 D C	0 D D C C	D G C	G O G	D O C	0 0 C	D C O C L	D C D C	O C P L C	V L V P C	_ Q _ L C	- v - v v	_ _ _ _	_ '	_ _ _ _		- - - -	- - - -		- - - -	- - - -	- - - - -	- - - -	
4024 4040 4046A 4049 4050	48 48 50 50 50	0 V	С С	C L P	0 0	C H D	C C O O	C O D	G G G	C C O D D	P O O	C L O D	C C O O	0 0 0 0 0	V C P D	- 0 0	- v v o o	- - - -	_ _ _ _		- - - - -		- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - - - - - - -
4051 4052 4053 4059 4060	0 0 0 17 106	0 0 P	0 0 D	0 0 H	0 0 L	0 0 L	LLLC	G G L	G G L	LLL	L P L C	P O P H P	0 0 0 G L	0 0 0 H C	0 0 0 H C	0 0 L C	V V V L V	- - L	_ _ _ L	_ _ _ L	_ _ L _		_ _ L _	- - c	- - V -	- - - -	- - -	- - - -	- - - -

Pin Condition Table (Cont'd)

	Equiv-														Pin	Nu	mbe	r											
HC/ HCT Types	alent Load (pF)					_	_	_			40		40	40													•		00
Types	(Pr)		2	3	4	5	6		8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
4066	0	o	o	o	o	D	D	G	o	o	0	o	D	Р	ν	_	_	_	_	_	_	_		_		_	_	_	_
4067	0	О	0	0	0	0	0	0	0	0	Р	L	G	L	L	L	0	0	0	0	0	0	0	0	V		_	_	-
4075	50	Ρ	L	D	D	D	0	G	L	С	0	D	D	D	V		_	_	_	_	_	_	_	-	_	_	_	_	_
4094	250	Н	Q	Ρ	С	С	С	С	G	С	С	С	C	С	С	Н	٧	_	_	-		-	-	_		-	-	-	_
4316	0	0	0	0	0	P	D	L	G	G	0	0	0	0	D	D	٧	_		-	-	_	_	-	-	_			-
4351	0	0	0	o	o	0	0	L	Н	G	G	н	P	L	0	Ĺ	0	0	0	0	٧	_			_	_	_		-
4352	0	o	0	0	0	0	0	L	Н	G	G	Н	Р	L	0	0	0	0	0	0	V	_	_	_	_ '		_		_
4353	0	0	0	0	0	0	0	L	Н	G	G	Н	Ρ	L	0	L	0	0	0	0	V		_	_			-	_	
4510	55	L	С	D	D	L	С	С	G	L	Н	С	D	D	С	P	٧	_	_	_			_		_	_		-	- ,
4511	200	L	L	Н	Н	L	L	Ρ	G	С	С	0	0	С	0	С	٧	_	-	-	_	-	-		_	-	_	_	
4514	100	н	Р	L	0	0	0	o	0	С	0	С	G	0	0	o	0	0	0	0	o	L	L	L	٧	_	'		_
4515	100	Н	Ρ	L	0	О	0	О	0	С	0	С	G	0	0	0	0	0	0	0	0	L	L	L	V	_			_
4516	50	L	C	D	D	L	С	C	G	L	H	С	D	D	С	Ρ	V	_	_		_	_		_		_	_	_	_
4518	50	Р	H	С	C	С	С	L	G	D	D	0	0	0	0	D	٧		_ '	_	_		_	_		_	_	_	_
4520	47	P	Н	С	С	С	С	L	G	D	D	0	0	0	0	D	٧	-	_		- ,	_	_		_	_	_	_	_
4538	100	G	R	Н	Р	н	С	С	G	0	0	D	D	L	0	G	٧	_		_	_	_	_	_	_	_	_		_
4543	50	Н	L	L	Н	L	P	L	G	С	С	С	С	С	С	С	V	_		_	_		_	-	_	_	_	_	_
7030	325	G	G	С	P	Q	Q	Q	Q	Q	Q	Q	Q	Q	G	L	С	С	С	С	С	С	С	C	С	С	Р	Н	٧
7046A	50	О	С	L	0	Н	0	0	G	О	0	0	0	О	Р	0	٧	-	_	_	-	_	_	_			_		_
40102	5	P	Н	L	L	L	L	L	G	Н	L	L	L	L	С	Н	٧	-	-	-			_	-	_	-	_	-	_
40103	3	P	н	L	L	L	L	L	G	н	L	L	L	L	С	Н	٧	_		_	_	_	_	_		_	_	_	_
40104	100	Н	Q	D	D	D	D	D	G	н	L	P	С	С	С	С	٧		_	_	_			_	_	_	_		
40105	200	L	С	Р	Q	Q	Q	Q	G	L	С	С	С	С	С	Р	٧	_	_		_	_		_	_		_		_

Revised Maximum Ratings

RCA Standardized Maximum Ratings and Recommended Operating Conditions for CD54/74HC, CD54/74HCT, and CD54/74HCU Integrated Circuits

MAXIMUM RATINGS, Absolute-Maximum Values:

	DC SUPPLY-VOLTAGE, (Vcc):	
	(Voltages referenced to ground)	
	DC INPUT DIODE CURRENT, IIK (FOR VI < -0.5 V OR VI > Vcc +0.5 V)	±20 mA
	DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5	5 V)
	DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V	V):
	STANDARD OUTPUT	±25 mA
	BUS DRIVER OUTPUT	
	DC Vcc OR GROUND CURRENT, (Icc):	
	STANDARD OUTPUT	+50 mA
	BUS DRIVER OUTPUT	
	POWER DISSIPATION PER PACKAGE (PD):	±10 m/s
*	For T _A = -40 to +100° C (PACKAGE TYPE E)	500 mW
*	For T _A = +100 to +125° C (PACKAGE TYPE E)	Derete I inserty at 8 mW/°C to 300 mW
^	For T _A = -55 to +100° C (PACKAGE TYPE F, H)	
	For T _A = +100 to +125° C (PACKAGE TYPE F, H)	
	For T _A = -40 to +70° C (PACKAGE TYPE M)	
	For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
	OPERATING-TEMPERATURE RANGE (TA):	4
	PACKAGE TYPE F, H	55 to +125° C
*	PACKAGE TYPE E, M	
	STORAGE TEMPERATURE (Tatg)	65 to +150° C
	LEAD TEMPERATURE (DURING SOLDERING):	
	At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	+265° C
	Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
	with solder contacting lead tips only	+300° C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	IITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNIIS
Supply-Voltage Range (For Ta=Full Package Temperature Range) Vcc:*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _i , V _o	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+125	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times tr.tr			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*} Unless otherwise specified, all voltages are referenced to Ground.

* These ratings and operating conditions have been revised.

They also apply to all Maximum Ratings and Recommended Operating Conditions that appear in the Technical Data section starting on page 47.

Static Electrical Characteristics for CD74HC/CD54HC Types

(Table 1-JEDEC Standard No. 7A)

				Terr	peratu	e.C								
Symb	Parameter		54HC/7				54		U	Test Conditions				
		VCC		5	- 40	to 85	- 55	to 125	i t					
		٧	min	max	min	max	min	max						
VIH	High Level	2.0	1.5		1.5		1.5		v					
	Input Voltage	4.5	3.15	ļ	3.15	Ì	3.15		v	-				
		6.0	4.2		4.2		4.2		v					
VIL	Low Level	2.0		0.3		0.3		0.3	٧					
	Input Voltage	4.5		0.9		0.9		0.9	v					
		6.0		1.2		1.2		1.2	v					
										VI	STD	I _O	Unit	
Vон	High Level	2.0	1.9		1.9		1.9		v	<u> </u>		- 20.0	μA	
	Output Voltage	4.5	4.4		4.4		4.4		v		- 20.0	- 20.0	μΑ	
Note 1		6.0	5.9		5.9		5.9		v	VIH	- 20.0	20.0	μА	
		4.5	3.98		3.84		3.7		v	or V _{IL}	- 4.0	- 6.0	mA	
		6.0	5.48		5.34		5.2		v		- 5.2	- 7.8	mA	
VOL	Low Level	2.0		0.1		0.1		0.1	v		20.0	20.0	μΑ	
	Output Voltage	4.5		0.1		0.1		0.1	v		20.0	20.0	μА	
		6.0		0.1		0.1		0.1	v	VIH	20.0	20.0	μΑ	
		4.5		0.26		0.33		0.4	v	or V _{IL}	4.0	6.0	mA	
		6.0		0.26		0.33		0.4	٧		5.2	7.8	mA	
l _I Note 2	Input Leakage Current	6.0		±0.1		± 1.0		± 1.0	μА	V _I = V _C	C or GND			
IOZ Note 3	3-state Output Off-State Current	6.0		±0.5		± 5.0		± 10.0	μΑ	V _I = V _I +	or VIL)		
lcc	Quiescent Supply Current							·		V. V.	- ar OND			
	SSI	6.0		20.0		40.0	μА	V _I = V _{CC} or GND						
	FF	6.0	-	4.0		40.0		80.0	μΑ	10=0				
	MSI	6.0		8.0		80.0	[160.	μА					

Notes:

- Not applicable to open drain outputs.
 For digital I/O pins use I_{OZ} limits
- 3. Also applicable to open drain outputs.

Static Electrical Characteristics for CD74HCT/CD54HCT Types

(Table 2-JEDEC Standard No. 7A)

				Temp	eratur	e°C							
Symb	Parameter	vcc		7/74HCT 25	_	<u>HCT</u>) to 85	<u>54HCT</u> - 55 to 125		Uni	Test Conditions		;	
		v	min	max	min	max	min	max	¹ l				
V _{IH}	High Level Input Voltage	4.5 to 5.5	2.0		2.0		2.0		v				
V _{IL}	Low Level Input Voltage	4.5 to 5.5		0.8		0.8		0.8	v				-
										V _I	STD	I _O BUS DRIVER	Unit
V _{OH} Note 1	High Level Output Voltage	4.5	4.4 3.98		4.4 3.84		4.4			V _{IH} or V _{IL}	-20.0 -4.0	-20.0 -6.0	μA mA
VOL	Low Level Output Voltage	4.5		0.1		0.1		0.1	v	V _{IH}	20.0	20.0	μА
l ₁ Note 2	Input Leakage Current	5.5		0.26 ± 0.1		0.33 ± 1.0		± 1.0	μΑ	VI = VCC	4.0 or GND	1	mA
lOZ Note 3	3-state Output Off-State Current	5.5		± 0.5		± 5.0		± 10.0	μА	V _I = V _I H		D	
lcc	Quiescent Supply Current												
	SSI	5.5		2.0		20.0		40.0	μА	V _I = V _{CC}	or GND		
	FF	5.5		4.0		40.0		80.0	μА	$I_{O} = 0$			
	мѕі	5.5		8.0		80.0		160.	μΑ				
ΔI _{cc}	Additional Worst Case Supply	5.5		2.7		2.9		3.0	mA	Per input-pir V _I = 2.4	n lir	other nputs: t V _{CC} or t	
	Current Note 4											10=1	0

Notes:

- 1. Not applicable to open drain outputs.
- 2. For digital I/O pins use I_{OZ} limits
- 3. Also applicable to open drain outputs.
- 4. Total supply current = $I_{CC} + \Sigma \Delta I_{CC}$

Dynamic Electrical Characteristics

Definitions

Characteristic	Symbol	Lir	nits	Notes
		Max.	Min.	
Propagation Delay:				40 1 1445
Outputs going high to low	t _{PHL}	X		
Outputs going low to high	t _{PLH}	X 1	. 600	
Output Transition Time:			1	
Outputs going high to low	t _{THL}	×		
Outputs going low to high	t _{TLH}	X		
Pulse Width-Set, Reset, Preset			10.416	
Enable, Disable, Strobe, Clock	twL or twH		Х	1
Clock Input Frequency	f _{CL}	×		1,2
Clock Input Rise and Fall Time	t _{rCL} , t _{fCL}	x		
Set-Up Time	t _{su}		х	1
Hold Time	t _H		X	1
Removal Time - Set, Reset, Preset-Enable	t _{REM}		Х	1
Three State Disable Delay Times:				
High level to high impedance	t _{PHZ}	X		
High impedance to low level	t _{PZL}	Х		
Low level to high impedance	t _{PLZ}	Х		
High impedance to high level	t _{PZH}	X		

NOTE: (1) By placing a defining min. or max. in front of definition, the limits can change from min. to max., or vice versa.

(2) Clock input waveform should have a 50% duty cycle and be such as to cause the outputs to be switching from 10% Vcc to 90% Vcc in accordance with the device truth table.

OPERATING AND HANDLING CONSIDERATIONS

1. Handling

All inputs and outputs of RCA CMOS devices have a network for electrostatic protection during handling. Recommended handling practices for CMOS devices are described in ICAN-6525. "Guide to Better Handling and Operation of CMOS Integrated Circuits."

2. Operating

Operating Voltage

During operation near the maximum supply voltage limit, care should be taken to avoid or suppress power supply turn-on and turn-off transients, power supply ripple, or ground noise; any of these conditions must not cause $V_{\rm CC}$ — Gnd to exceed the absolute maximum rating.

Input Signals

To prevent damage to the input protection circuit, input signals should never be greater than V_{CC} nor less than Gnd. Input currents must not exceed 20 mA even when the power supply is off.

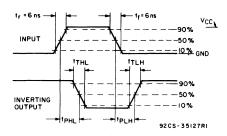
Unused Inputs

A connection must be provided at every input terminal. All unused input terminals must be connected to either V_{CC} or Gnd, whichever is appropriate.

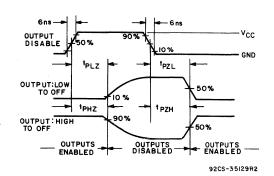
Output Short Circuits

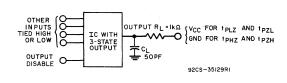
Shorting of outputs to V_{CC} or Gnd may damage CMOS devices by exceeding the maximum device dissipation.

Substrate Connection

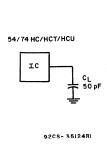

When these devices (HC or HCT) are used in chip form, as in hybrid applications, the substrate is connected to V_{CC} (as in all n-substrate devices).

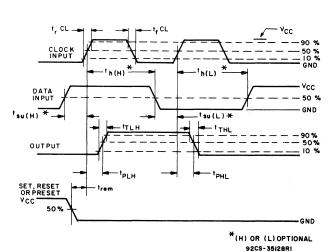
Switching Waveforms for CD54/74HC and CD54/74HCU Integrated Circuits

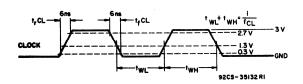


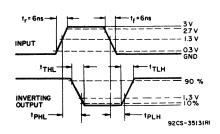

Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{max} , input duty cycle=50%.

Clock-pulse rise and fall times and pulse width.

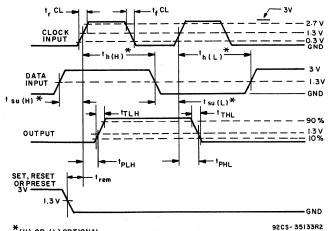



Transition times and propagation delay times, combination logic.


Three-state propagation delay wave shapes and test circuit.

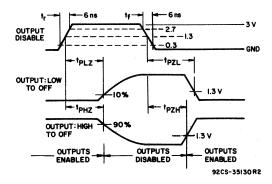

Setup times, hold times, removal time, and propagation delay times for edge triggered sequential logic circuits.

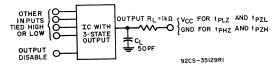
Switching Waveforms for CD54/74HCT Integrated Circuits



Outputs should be switching from 10% VCC to 90% VCC in accordance with device truth table. For $f_{\it max}$, input duty cycle=50%.

Clock-pulse rise and fall times and pulse width.


Transition times and propagation delay times, combination logic.


*(H) OR (L) OPTIONAL

Setup times, hold times, removal time, and propagation delay times for edge triggered sequential logic circuits.

Three-state propagation delay wave shapes and test circuit.

Open drain waveforms t_{PLZ} and t_{PZL} are the same as those for three-state shown on the left. The test circuit is Output R_L = $1k\Omega$ to V_{CC} , $C_L = 50$ pF.

Enhanced Product

The need to achieve the enhanced reliability resulting from burn-in screening must be determined by careful analysis of system design and application.

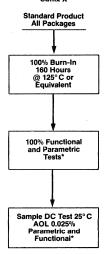
How many IC's are incorporated into the total system?

How many devices on each board?

Is the proper device being used for the application?

What are the reliability goals?

What failure rates are being experienced without screening?


Cost-effectiveness of using enhanced CMOS can be determined by mutual analysis of the economic trade-offs made possible by the following features of the program:

- Available in both plastic and frit-seal ceramic packages.
- Offered on the industry's broadest line of circuit functions.
- 0.025% AQL cumulative.
- Reduction in PC board reworking through fewer line rejects.
- Lower warranty requirements through the elimination of infant mortality failures.
- Reduced incoming inspection cost by reduction or complete elimination of test procedures.
- Reduction of system failures and related service expenses and customer complaints.

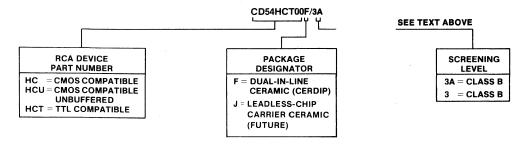
Screening

Digital IC's (CD Types)

Suffix X

"X" Product

*For the High-Speed CD54/74HC/HCT/HCU products. AC parameters are tested by selecting certain critical propagation delays (which vary from part to part) as indicators of proper AC performance and sample tested to an AQL of 0.025%.


RCA MIL-STD-883 Slash-Series HC/HCT ICs

RCA high-reliability slash-series products are available in both CD54HCXXXX-series and CD54HCTXXXX-series types. These devices are supplied in hermetic dual-in-line frit packages. The CD54HC/HCT (Slash series) types are provided to screening level /3 that corresponds to MIL-STD-883, Method 5004, Class B requirements. This /3 is a non-compliant part using glass die attach. Product is also available as a level /3A which is a fully compliant part using gold eutectic die attach.

Detailed information pertaining to the screening performed can be found in the RCA "High-Reliability Integrated Circuits" DATABOOK, SSD-230B.

Contact your RCA representative for specific timing and availability.

Guide to the Reliability Class and Package of RCA High-Reliability 54HC/HCT Integrated Circuits

High-Speed CMOS (HC/HCT) Macro Cells for RCA Silicon Circuit Board ASIC Design Program

RCA offers a unified Computer-Aided Engineering (CAE) system that supports the high-speed CMOS (HC/HCT QMOS) library of standard logic functions defined as Macro Cells. The system provides not only automatic placement and routing but also the interactive editing of a mixture of CMOS standard cells and rectangular Macro Cells of different sizes.

The HC/HCT Macro Cells are equivalent in performance to the high-speed CMOS HC/HCT series of standard devices as specified in this DATABOOK; only the bond pads have been removed and large drivers down-sized. The Macro Cells are fully characterized and behaviorally described over the operating voltage and temperature ranges. These capabilities provide the system designer a fast, predictable, integration path from a PC board designed with high-speed CMOS or LSTTL, SSI/MSI discrete devices to a single Application-Specific Integrated Circuit (ASIC) that meets all criteria for PC board design.

The Silicon Circuit Board approach to ASIC design is distinctive because it allows the system engineer to develop a circuit using large, predesigned, fully characterized Macros. The characterization data for these Macros provide the engineer with the performance information needed to evaluate the feasibility of differing design approaches quickly and efficiently. The Macros have been developed to provide the optimum performance available within a given technology and are guaranteed to meet these performance specifications over the stated voltage and temperature ranges. All HC/HCT logic functions specified in RCA's QMOS family are included in the Silicon Circuit Board family of logic Macro Cells.

Features of the RCA Silicon Circuit Board and Related User Benefits.

Features:

- Works with 137 high-speed CMOS (QMOS-HC/HCT) standard logic Macro Cells
- Also works with RCA's new ACL standard part Macro Cells
- Intermixes Macros and standard logic function elements providing high-density designs
- Uses double-level metal technology with a polysilicon level option
- Uses fully characterized Macro Cells behaviorally described over the operating voltage and temperature ranges
- Provides simulation based on performance of characterized parts
- Provides fully automatic placement and routing plus interactive editing
- Provides automatic generation of test patterns for use in manufacture
- Integrates with RCA Semicustom FASTRACK system for Standard Cells and Gate Arrays

Benefits:

- Provides high probability of first-time success
- Reduces design development time
- Converts existing HCMOS/TTL boards to CMOS ASICs
- Reduces simulation costs
- Reduces parts costs
- Logic speed increase to x3 or more with high-speed process and ACL Macro Cells

How to Benefit from the RCA Modular Approach to CMOS ASIC Design and Fabrication

The RCA Silicon Circuit Board addresses the most difficult areas in the development of ASICs. These areas are performance, development time, and costs. If the following questions are part of your work assignment in the design of Application-Specific Integrated Circuits, the answers given here will be of significant interest to you.

1. Will the RCA ASIC approach work in my design?

The advantages of the RCA Silicon Circuit Board approach in a specific application can best be determined by a nocost consultation with our technical staff. We can help you make a reasoned decision whether the RCA modular approach will work in your design. And, if that is the route selected, we will help you save engineering development time and money by working with you on the entire program through to final manufacturing and performance tests.

2. How long will the design take?

The overall development time will be equal to or less than the time normally required for the development of SSI/MSI designs. The RCA Silicon Circuit Board achieves a shortened development time because it incorporates into a design a large number of cells containing from a handful to thousands of gates. Not only is the actual design time reduced, but simulation times also are substantially diminished by the utilization of behavioral modeling of these larger functional levels.

3. Will it work the first time?

The Silicon Circuit Board uses tried and tested high-speed CMOS cells that are fully characterized and behaviorally described. These cells have been developed to provide the optimum performance available within a given technology and are guaranteed to meet those performance specifications over the stated voltage and temperature ranges. Furthermore, RCA will provide any specialized support necessary to assure first-time success.

4. How much will it cost?

This program, involving newly available CAE software and a modular approach, can provide considerable cost savings (as much as 60%) in combined development and die costs. By providing a substantially more efficient methodology for ASIC design, RCA's Silicon Circuit Board greatly reduces engineering development costs. Additionally, the optimized layout of the Macro Cells provides for a significant reduction in the cost of manufacturing the ASIC chip.

How Do I Interface with RCA in Designing a Silicon Circuit Board?

The interface between the RCA Silicon Circuit Board Program and the customer's system engineer is very flexible and can be tailored to fit the specific needs, capabilities, and resources of the customer. Regardless of where the customer enters the system—and it can be anywhere in the flow of the program, as shown in the chart of Fig. 1—RCA will provide the support necessary to assure first-time success in the ASIC design. Following are examples of different interface choices.

One choice is to supply RCA with an SSI/MSI-level schematic, a description of how your circuit works, and timing information so that we can verify its operation in silicon and generate test programs. RCA will handle simulation, placement, routing, mask tooling, and prototype production.

Another choice is for your systems engineer to capture the schematic on a supported popular workstation using a generic SSI/MSI library. Supply RCA with a copy of the schematic, extracted net list, circuit description, and pattern files on magnetic tape or a floppy disk. RCA will then handle the rest.

A third choice is for your system engineer to do all the initial design work on RCA equipment at an RCA Design Center utilizing the assistance and guidance of an RCA applications engineer skilled in ASIC development. Again, RCA will handle the rest.

A fourth choice is for RCA to supply you with the RCA ASIC Design System software tools that will enable you to take your design through the layout step.

For more information on interfacing the RCA Silicon Circuit Board and on the additional benefits this advanced design technology can provide you, contact RCA ASIC Product Marketing at (201) 685-6585 or (201) 685-7119.

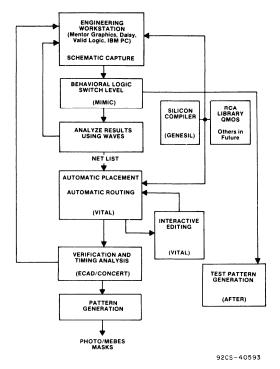
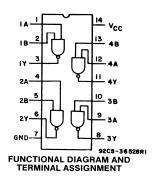
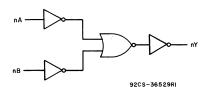



Fig. 1 — Flow Chart of RCA Silicon Circuit Board Design Process

Technical Data

High-Speed CMOS Logic


Quad 2-Input NAND Gate

Type Features:

- Buffered inputs
- Typical propagation delay = 7 ns @ V_{CC} = 5V C_L = 15 pF, T_A = 25° C

The RCA-CD54/74HC00 and CD54/74HCT00 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC00 and CD54HCT00 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC00 and CD74HCT00 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

LOGIC DIAGRAM

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL}=30%, N_{IH}=30% of V_{CC} @ V_{CC}=5 V
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation

 Direct LSTTL Input Logic Compatibility

 V_{IL}=0.8 V Max., V_{IH}=2 V Min.

 CMOS Input Compatibility

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

TRUTH TABLE

INP	UTS	OUTPUTS
nA	nB	nY
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC} + 0.5$ V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V $<$ V _o $<$ V _{cc} + 0.5V)	±25mA
DC V _{cc} OR GROUND CURRENT (I _{cc})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	-65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. \ldots	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	IITS	UNITS	
CHANACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A =Full Package Temperature Range) V _{cc} :*				
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _{in} , V _{out}	0	Vcc	V	
Operating Temperature T _A :				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times t _r ,t _f				
at 2 V	0	1000	ns	
at 4.5 V	0	500	ns	
at 6 V	0	400	ns	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD74	HC00	/CD5	4HC0	0				CD74HCT00/CD54HCT00									
CHARACTERISTIC	TEST CONDITIONS				74HC/54HC TYPES			74HC TYPES		HC PES	TEST CONDITIONS		74HCT/54HCT TYPES			74HCT TYPES		54HCT TYPES		UNITS
CHAILACTEIIICTIC	V,	I _o	V _{cc}		+25° C		-40/ +85° C		-55/ +125° C		v,	V _{cc}		+25° (:		10/ 5°C	1	i5/ :5° C	
			'	Min	Тур	Max	Min	Max	Min	Max	'	ľ	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	_	_	2	-	2	-	v
			6	4.2	_	_	4.2	_	4.2	_		5.5							١.	
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{1L}			4.5	_		1.35		1.35	_	1.35	_	to	-	-	0.8		0.8	-	8.0	y,
			6	_	_	1.8	_	1.8	_	1.8		5.5					-			
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	V _{IL}									
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	٧
CMOS Loads	V _{iH}		6	5.9	-		5.9	_	5.9	_	V _{IH}					-				,
	V_{IL}										VIL							į.		
TTL Loads	or	-4	4.5	3.98	_	<u>L-</u>	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	-	3.7		٧
	V _{IH}	-5.2	. 6	5.48	_	-	5.34	_	5.2	_	V _{IH}									
Low-Level	$V_{\text{\tiny IL}}$		2	_	_	0.1	_	0.1	_	0.1	VIL				:					i
Output Voltage V _{OL}	or	0.02	4.5	_	_	0.1		0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	٧
CMOS Loads	V _{IH}		6	-		0.1	_	0.1		0.1	V _{IH}									
	$V_{\text{\tiny HL}}$										VIL									
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5		_	0.26	_	0.33	-	0.4	v
	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}							,		
Input Leakage	V_{cc}										Any Voltage									
Current I,	or		6	_	-	±0.1	_	±1	_	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1		±1	μΑ
	Gnd										& Gnd									
Quiescent	V_{cc}										Vcc									
Device	or	0	6	-	-	2	_	20	-	40	or	5.5	_	-	2	-	20	-	40	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent												4.5								
Device Current per input pin: 1 unit load Δ Icc*											V _{cc} -2.1	to 5.5	-	100	360	-	450	-	490	μΑ

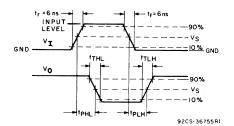
^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
nA	1.8
nB	1.1

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

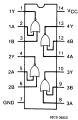
SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r , t_i = 6 ns)


CHARACTERISTIC	SYMBOL	Ту	pical	Units
	STMBOL	HC	HCT	Units
Propagation Delay, Data Input to Output Y (Fig. 1) (C _L =15 pf)	t _{PLH}	7	8	ns
Power Dissipation Capacitance*	C _{PD}	25	25	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per gate. PD = V_{cc}^2 fi $(C_{PD} + C_L)$ where fi=input frequency

C_L = output load capacitance Vcc = supply voltage.

SWITCHING CHARACTERISTICS (C, =50 pF, input t, t,=6 ns)

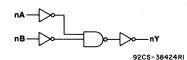

			25° C				-4	0°C t	o +85°	°C	-55°C to +125°C				
CHARACTERISTIC	SYMBOL	Vcc	HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
2.47			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	tpLH	2	_	90	_	_	_	115	_	_	_	135	_	_	
Input to Output	tpHL	4.5	_	18	 	20		23	l —	25	l —	27	-	30	ns
(Figure 1)		6	_	15	_	l —	_	20	_	_	l —	23		_	
Transition Times	tTLH	2	_	75	_	_	-	95		_	_	110	_	_	
(Figure 1)	tTHL	4.5	_	15	l — .	15		19		19	_	22	_	22	ns
		6	<u> </u>	13	_	_	_ 1	16	l —	_	l —	19	_	_	
Input Capacitance	C,	-		10		10		10		10		10		10	pF

	54/74HC	54/74HCT
INPUT LEVEL	v _{cc}	3V
V _S	50% V _{CC}	1.3V

Fig. 1 - Transition times and propagation delay times.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM and TERMINAL ASSIGNMENT


Quad 2-Input NOR Gate

Type Features:

- Buffered Inputs
- Typical Propagation Delay = 7ns
 @ V_{CC} = 5v, C_L= 15pF, T_A = 25° C

The RCA-CD54/74HC02 and CD54/74HCT02 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The CD54/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC02 and CD54HCT02 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC02 and CD74HCT02 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

LOGIC DIAGRAM

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}, @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

TRUTH TABLE								
nA	nB	nΥ						
L	L	Н						
L	Н	L						
Н	L	L						
Н	Н	L						

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR V_{i} $<$ -0.5 V OR V_{i} $>$ V_{CC} +0.5V) $\ldots\ldots$	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o $<$ -0.5 V OR V_o $>$ V_{CC} +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Voc + 0.5V) \ldots	
DC V _{CC} OR GROUND CURRENT (I _{CC})	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE F, H	-40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. \dots	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	#300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LINUTO		
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*				
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V	
Operating Temperature T _A :				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	1	
Input Rise and Fall Times t _r , t _f				
at 2 V	0	1000		
at 4.5 V	0	500	ns	
at 6 V	0	400		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

				CD74	HC02	CD54	4HC02	2					С	D74H	CT02	/CD54	4HCT	02			4
CHARACTERISTIC		TEST CONDITIONS			1	1			74HC 54HC ERIES SERIES		TEST CONDITIONS		74HCT/54HCT SERIES			74HCT SERIES		54HCT SERIES		UNITS	
		V, V	l _o mA	V _{cc}		+25° C	:		0/ 5° C	-5 +12	5/ 5° C	V,	V _{cc}		+25° C	;	I	0/ 5° C		5/ 5°C	00
		·			Min	Тур	Max	Min	Max	Min	Max			Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V	н			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	-	-	2	-	2		V
				6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level				2	_	_	0.5	_	0.5		0.5		4.5								
Input Voltage V	'ı.			4.5	_	_	1.35	_	1.35	_	1.35	-	to	-	-	0.8	-	0.8	-	0.8	٧
	_			6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		V _{IL}		2	1.9	_	_	1.9	_	1.9	_	V _{IL}									
Output Voltage Vo	эн	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	_	v
CMOS Loads	1	V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
		V _{IL}								ļ		V _{IL}									
TTL Loads		or	-4	4.5	3.98	_		3.84		3.7	_	or	4,5	3.98	-	-	3.84	-	3.7	-	v
	1	V _{IH}	-5.2	6	5.48	_	-	5.34	_	5.2	_	V _{IH}									
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage V	DL	or	0.02	4.5	_	_	0.1		0.1	_	0.1	or	4.5		-	0.1	-	0.1	-	0.1	v
CMOS Loads	1	V _{iH}		6	_	_	0.1	-	0.1	_	0.1	V _{IH}									
		V _{IL}										V _{IL}									
TTL Loads		or	4	4.5		_	0.26	_	0.33		0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
	_	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage		V _{cc}										Any Voltage									
Current	4	or		6		-	±0.1	_	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	4	Gnd										& Gnd									
Quiescent		V _{cc}										V _{cc}									
Device		or	0	6	-	_	2	_	20	_	40	or	5.5	-	-	2	-	20	-	40	μΑ
Current I _c	с	Gnd		<u> </u>			<u> </u>				<u> </u>	Gnd					<u></u>				
Additional Quiescent Device Current per input pin: 1 unit load Δlcc												V _{cc} -2.1	4.5 to 5.5	-	100	360		450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
All	1.5

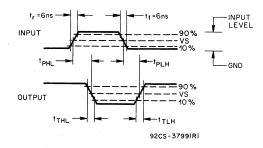
^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t, = 6 ns)

CHARACTERISTIC	CL	SYMBOL	TYP	ICAL	UNITS	
GIANACIENIONO	(pF)	STWBOL	HC	HCT		
Propagation Delay, Data Input to Output Y (Fig. 1)	15	t _{PLH} t _{PHL}	7	8	ns	
Power Dissipation Capacitance*		C _{PD}	26	26	pF	

^{*}C_{PD} is used to determine the dynamic power consumption, per gate.

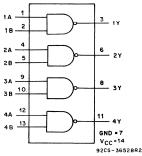
PD =VCC2 f, (CPD + CL)


f, = input frequency

C_L = output load capacitance

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input $t_{\rm f}$, $t_{\rm f}$ = 6 ns)


			25° C				-40°C to +85°C				-55°C to +125°C				
CHARACTERISTIC	SYMBOL	Vcc	HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		90		_		115				135	-		
Input to Output	t _{PHL}	4.5		18		21	,	23		26		27		32	ns
(Fig. 1)		-6		15	l	-		20		-		23		-	
Transition Times	t _{TLH}	2		75		_		95			-	110		_	
(Fig. 1)	t _{THL}	4.5	1	15		15		19		19		22		22	ns
		6		13		_		16		'		19		-	
Input Capacitance	Cı			10		10		10		10		10		10	pF

	54/74HC	54/74HCT
Input Level	V _{CC}	3V
Switching Voltage, V _s	50% V _{CC}	1.3 V

Fig. 1 - Transition times and propagation delay times.

High-Speed CMOS Logic

Quad 2-Input NAND Gate With Open Drain

Type Features:

- Buffered inputs
- Typical propagation delay = 8 ns @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C
- Output pull-up to 10 V

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC03 and CD54/74HCT03 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

These open-drain NAND gates can drive into resistive loads to output voltages as high as 10 V. Minimum values of R_L required vs. load voltage are shown in Fig. 2.

The CD54HC03 and CD54HCT03 are supplied in 14-lead dual-in-line frit-seal ceramic packages (F suffix). The CD74HC03 and CD74HCT03 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range):
 Standard outputs 10 LSTTL loads
 Bus driver outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
 - CD54HC/CD74HC Types:

2 to 6 V Operation

High noise immunity: N_{IL} = 30%, N_{IH} = 30%

of V_{CC} , @ $V_{CC} = 5 V$

CD54HCT/CD74HCT Types:

4.5 to 5.5 V Operation
Direct LSTTL input logic compatibility

 $V_{IL} = 0.8 V max., V_{IH} = 2 V Min.$

CMOS input compatiblity

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

LOGIC DIAGRAM

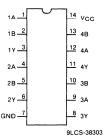
TRUTH TABLE

Α	В	,	1
L	L	Z #	н*
н	L	Z #	н*
L	Н	Z #	н*
н	н	l	-

- * Requires pull-up (R_L to V_L)
- # Without pull-up (high impedance)

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_I < -0.5$ V OR $V_I > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, Iox (FOR Vo < -0.5 V)	20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo)	25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Lineary at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C


RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

QUADA OTERIOTIO	LIN			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} : *				
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	· v	
DC Input Voltage V ₁	0	Vcc	V	
DC Load Voltage V _L	0	10 #	V	
Operating Temperature T _A :				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times, t, t				
at 2 V	0	1000	ns	
at 4.5 V	0	500	ns	
at 6 V	0	400	ns	

^{*} Unless otherwise specified, all voltages are referenced to Ground.

[#] With pull-up resistor whose value limits output current to 25 mA.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

				CI)74H	03/0	D54F	IC03					CD	74HC							
CHARACTERIS	TIC	1	TEST	NS		IC/54			HC PES	541 TY!	HC PES	TEST CONDITION	NS	74HCT/54HCT TYPES			74HCT TYPES				UNITS
CHANACIENIS	110	V,	lo	Vcc		25° (;	1 '	0/ 5°C	-5 +12	5/ 5°C	V,	Vcc		+25° (·		0/ 5° C	1	5°C	UNITS
		V	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage	ViH			4.5	3.15		_	3.15	_	3.15	_	_	to	2	_	-	2	-	2	-	v
				6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								, , , , , , , , , , , , , , , , , , , ,
Input Voltage	VIL		ĺ	4.5	_		1.35	_	1.35	_	1.35	-	to	 - ,	_	0.8	-	0.8	-	0.8	V.
				6	<u> </u>		1.8		1.8	<u> </u>	1.8		5.5	L						1	
Low-Level		VIL		2			0.1		0.1	_	0.1	VIL		l							
Output Voltage	Vol	or	0.02	4.5	_		0.1	_	0.1		0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V
CMOS Loads		V _{IH}		6	<u> </u>	_	0.1	_	0.1	<u> </u>	0.1	V _{IH}			L	<u> </u>		<u> </u>			
		VIL										V _{IL}									
TTL Loads		or	4	4.5	_	_	0.26	_	0.33		0.4	or _	4.5	_	-	0.26	-	0.33		0.4	٧
· · · · · · · · · · · · · · · · · · ·		ViH	5.2	6	_	_	0.26	_	0.33	_	0.4	Viн		ļ	<u> </u>			L			
Input Leakage Current	l ₁	V _{cc} or Gnd		6	-	_	±0.1	_	±1	_	±1	Any Voltage Between	5.5	-	_	±0.1	_	±1	_	±1	μΑ
		Gila										V _{cc} & Gnd									
Quiescent		Vcc										Vcc									
Device Current	lcc	or	0	6	-	-	2	_	20	-	40	or	5.5	-	-	2	-	20	-	40	μΑ
Additional		Gnd	L	L	L	L	L		L	L		Gnd	-		-				ļ		
Quiescent Device													4.5								
Current per input												V _{cc} -2.1	to		100	360	-	450	-	490	μΑ
pin: 1 unit load	Δlcc*												5.5								
Output Leakage	44100		Vo=	Γ-			·		T	Ι	Γ	V _I = V _{IL}		-	-	-	\vdash	├	\vdash	-	
Current	loz	VIL	10 V thru	6	_	_	0.5	_	5	_	10	V ₀ = 10 V thru 1 KΩ	5.5	_	_	0.5	_	5	_	10	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
nA, nB	1

 $^{^*}$ Unit Load is Δl_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, input t_r , $t_f = 6 \text{ ns}$)

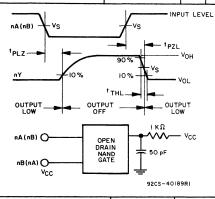
CHARACTERISTIC	*.		TYPICAL	UNITS		
CHARACTERISTIC		C∟ (pF)	нс	нст	UNITS	
Propagation Delay, (Fig. 1)	t _{PZL} , t _{PLZ}	15	8	9	ns	
Power Dissipation Capacitance *	Срд		6.4	9	pF	

^{*} CPD is used to determine the dynamic power consumption, per gate.

 $P_D = C_{PD} V_{CC}^2 f_i + \sum (C_L V_{CC}^2 f_o) + \sum (V_L^2 / R_L) (Duty Factor "Low")$

where f_i = input frequency

Duty factor "low" = percent of time output is "low" V_L = output voltage


fo = output frequency C_L = output load capacitance

R_L = pull-up resistor

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t = 6 ns)

							LIN	IITS	4					
	TEST		25	°C		-4	0°C t	o +85°	°C	-5	°C			
CHARACTERISTIC	V _{cc} V	нс		нст		74HC		74HCT		54HC		54НСТ		UNITS
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay t _{PLZ} Output Low to t _{PZL} High Impedance and High Impedance to Output Low	2 4.5 6	 - -	100 20 17	=	 24 		125 25 21	<u>-</u> .	_ 30 _		150 30 26	- -	_ 36 _	ns
Transition Times t_{THL} (Figure 1)	2 4.5 6	 - -	75 15 13	-	_ 15 _	_	95 19 16	_	_ 19 _		110 22 19		_ 22 _	ns
Input Capacitance C _I		-	10	_	10		10	_	10	_	10	_	10	pF

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _s	50% V _{cc}	1.3 V

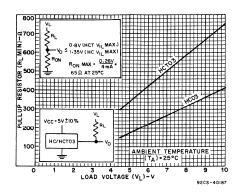
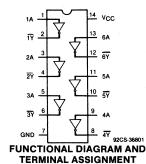
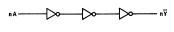



Fig. 2 - Minimum resistive load vs load voltage.

Fig. 1 - Transition times, propagation delay times, and test circuit.

High-Speed CMOS Logic


Hex Inverter

Type Features:

- Input and Output are both buffered
- Typical propagation delay = 6 ns @ V_{CC} = 5V, C_L = 15 pF, T_A = 25° C

The RCA-CD54/74HC04 and CD54/74HCT04 hex inverter utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC04 and CD54HCT04 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC04 and CD74HCT04 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

92CS-36947RI

LOGIC DIAGRAM

TRUTH TABLE

INPUTS	OUTPUTS
nA	nY
L	Н
Н	L

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: NIL = 30%, NIH = 30% of VCC; @ VCC = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility VIL = 0.8 V Max.. VIH = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 µA @ VoL, VOH

MAXIMUM RATINGS, Absolute-Maximum Values:

0.5 to + 7 V
±20mA
±20mA
±25mA
±50mA
500 mW
Derate Linearly at 8 mW/°C to 300 mW
500 mW
Derate Linearly at 8 mW/°C to 300 mW
400 mW
Derate Linearly at 6 mW/°C to 70 mW
,,
55 to +125° C
-40 to +85° C
65 to +150° C
+265°C
+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIR			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply Voltage Range (For TA = Full Package Range) Vcc:*	†		1	
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage VIN, VOUT	0	Vcc	V	
Operating Temperature TA:				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°c	
Input Rise and Fall Times, tr, tr				
at 2 V	0	1000	ns	
at 4.5 V	0	500	ns	
at 6 V	0	400	ns	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD74	HC04/	CD54	HC04	1					CI	D74H	CT04/	CD54	нст)4			
CHARACTERISTIC		TEST NDITIONS			IC/54			HC PES	541 TYI	-	TEST CONDITIO		74HCT/54HCT TYPES			74H TYI		54HCT TYPES		UNITS
CHARACTERISTIC	V, V	I _o	V _{cc}		+25° C	;	-4 +85	0/ 5° C	-5 +12		V,	V _{cc}		+25° C			-40/ +85° C		5°C	UNITS
•		mA	•	Min	Тур	Max	Min	Max	Min	Max			Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	<u> </u>	1.5	_	1.5	-		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	_	3.15	-	_	to	2	-		2	_	2	_	v
			6	4.2	-	-	4.2	_	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5		0.5		4.5								
Input Voltage V _{IL}			4.5	_	-	1.35	_	1.35	-	1.35	 -	to	-	-	0.8	-	0.8	-	0.8	v
			6	_	_	1.8	_	1.8		1.8		5.5								
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	Vil									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	-	4.4	_	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	-	V _{IH}									
-	V _{IL}										V _{IL}									
TTL Loads	or	-4	4.5	3.98	_	-	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	Vil		2	_	-	0.1	_	0.1	-	0.1	VIL									
Output Voltage V _{OL}	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	-	0.1	_	0.1	v .
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	VIH									
	VIL										V _{IL}									
TTL Loads	or	4	4.5	_	_	0.26	-	0.33	_	0.4	or	4.5	-	_	0.26	-	0.33	-	0.4	v
	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any Voltage									
Current I,	or		6	_	_	±0.1	_	±1	_	±1	Between V _{cc}	5.5	_	-	±0.1		±1	-	±1	μΑ
·	Gnd										& Gnd									
Quiescent	V _{cc}								-		Vcc									
Device	or	0	6	-	-	2	-	20	_	40	or	5.5	-	-	2		20	-	40	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current per input pin: 1 unit load			•							-	V _{cc} -2.1	4.5 to 5.5		100	360	_	450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
ALL	1.2

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r, t_f = 6 ns)

OLIADA OTEDIOTIO	Тур	ical	Units
CHARACTERISTIC	HC	HCT	Units
Propagation Delay, Data Input to Output Y (Fig. 1) t _{PLH}	6	7	
$(C_L = 15 \text{ pF}) t_{PHL}$	"	′	ns
Power Dissipation Capacitance* C _{PD}	21	24	pF

*CPD is used to determine the dynamic power consumption, per inverter where:

PD = VCc2f (CPD + CL) where f = input frequency

CL = output load capacitance

Vcc = supply voltage

SWITCHING CHARACTERISTICS ($C_L = 50 \ pF$, Input t_r , $t_f = 6 \ ns$)

	LIMITS														
		TEST		25°C			-	40°C t	o +85°	С	-55°C to +125°C				
CHARACTERISTIC		CONDITION	Н	IC	н	СТ	74	нс	74F	ICT	54	нс	541	ICT	UNITS
		V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2		85	_	_		105		_	_	130	_	_	
Input to Output	t _{PHL}	4.5	_	17	_	19	_	21	_	24	_	26		29	ns
(Fig. 1)		6	_	14		_		18	<u> </u>	_		22			
Transition Times	t _{TLH}	2 .		75	_	-	·	95	_	_	_	110		-	
(Fig. 1)	t _{THL}	4.5	_	15	_	15	-	19	_ '	19		22		22	ns
		6		13				16	_		_	19			
Input Capacitance	Cı			10	_	10		10	_	10	_	10	_	10	pF

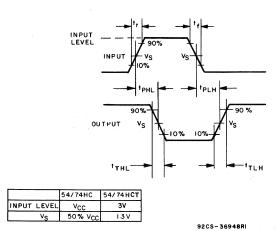
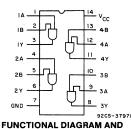



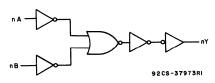
Fig. 1 - Transition times and propagation delay times.

High-Speed CMOS Logic

TERMINAL ASSIGNMENT

Quad 2-Input AND Gate

Type Features:


- Buffered inputs
- Typical CD54/74HC08 propagation delay=7 ns @ V_{CC}=5 V, C_L=15 pF, T_A=25° C

The RCA-CD54/74HC08 and CD54/74HCT08 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC08 and CD54HCT08 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC08 and CD74HCT08 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic package (M suffix). Both types are also available in chip form (H suffix).

LOGIC DIAGRAMS

CD54/74HC08

CD54/74HCT08

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation
 - High Noise Immunity:
 - $N_{\rm IL}$ =30%, $N_{\rm IH}$ =30% of $V_{\rm CC}$ @ $V_{\rm CC}$ =5 V
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 Direct LSTTL Input Logic Compatibility
 V_{IL}=0.8 V Max., V_{IH}=2 V Min.
 - CMOS Input Compatibility
 - $I_1 \leq 1 \mu A @ V_{OL}, V_{OH}$

TRUTH TABLE

INF	PUTS	OUTPUTS
nA	nB	nY
L	L	L
L	н	L
Н	L	L
Н	Н	н

MAXIMUM RATINGS, Absolute-Maximum Values:

(Voltages referenced to ground)	DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} +0.5$ V) ± 20 MA DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_0 < -0.5$ V OR $V_0 > V_{CC} +0.5$ V) ± 20 MA DC DRAIN CURRENT, PER OUTPUT (I_0) (FOR -0.5 V $< V_0 < V_{CC} +0.5$ V) ± 25 MA DC V_{CC} OR GROUND CURRENT (I_{CC}): ± 50 MA POWER DISSIPATION PER PACKAGE (P_0): For $T_A = -40$ to $+60^\circ$ C (PACKAGE TYPE E) ± 500 mW For $T_A = +60$ to $+85^\circ$ C (PACKAGE TYPE E) Derate Linearly at 8 mW/° C to 300 mW For $T_A = -55$ to $+100^\circ$ C (PACKAGE TYPE F, H) ± 500 mW
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_2 > V_{CC} +0.5$ V) $+0.5$ V) $+0.5$ V) $+0.5$ V DR Vo $+0.5$ V DR Vo $+0.5$ V) $+0.5$ V DR DISSIPATION PER PACKAGE (Po): FOR $T_A = -40$ to $+60^{\circ}$ C (PACKAGE TYPE E) $+0.5$ C (PACKAGE TYPE F, H) $+0.5$ Derate Linearly at 8 mW/° C to 300 mW For $T_A = -55$ to $+100^{\circ}$ C (PACKAGE TYPE F, H) $+0.5$ Derate Linearly at 8 mW/° C to 300 mW For $T_A = -40$ to $+70^{\circ}$ C (PACKAGE TYPE F, H) $+0.5$ Derate Linearly at 8 mW/° C to 300 mW For $T_A = -40$ to $+70^{\circ}$ C (PACKAGE TYPE M) $+0.5$ Derate Linearly at 6 mW/° C to 70 mW Por $T_A = -40$ to $+70^{\circ}$ C (PACKAGE TYPE M) $+0.5$ Derate Linearly at 6 mW/° C to 70 mW OPERATING-TEMPERATURE RANGE (T_A): PACKAGE TYPE F, $T_A = -40$ To -40 To	DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} +0.5$ V) ± 20 MA DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_0 < -0.5$ V OR $V_0 > V_{CC} +0.5$ V) ± 20 MA DC DRAIN CURRENT, PER OUTPUT (I_0) (FOR -0.5 V $< V_0 < V_{CC} +0.5$ V) ± 25 MA DC V_{CC} OR GROUND CURRENT (I_{CC}): ± 50 MA POWER DISSIPATION PER PACKAGE (P_0): For $T_A = -40$ to $+60^\circ$ C (PACKAGE TYPE E) ± 500 mW For $T_A = +60$ to $+85^\circ$ C (PACKAGE TYPE E) Derate Linearly at 8 mW/° C to 300 mW For $T_A = -55$ to $+100^\circ$ C (PACKAGE TYPE F, H) ± 500 mW
DC DRAIN CURRENT, PER OUTPUT (I₀) (FOR -0.5 V < V₀ <	DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ V $_{\circ}$ $<$ V $_{cc}$ + 0.5 V) \pm 25 mA DC V $_{cc}$ OR GROUND CURRENT (Icc): \pm 500 mA POWER DISSIPATION PER PACKAGE (P $_{0}$): For T $_{A}$ = -40 to $+60$ °C (PACKAGE TYPE E) \pm 500 mW For T $_{A}$ = $+60$ to $+85$ °C (PACKAGE TYPE E) Derate Linearly at 8 mW/°C to 300 mW For T $_{A}$ = -55 to $+100$ °C (PACKAGE TYPE F, H) \pm 500 mW
DC V _{CC} OR GROUND CURRENT (I _{CC}): ±50 mA POWER DISSIPATION PER PACKAGE (P _D): For T _A = -40 to +60° C (PACKAGE TYPE E) 500 mW For T _A = -55 to +85° C (PACKAGE TYPE E) Derate Linearly at 8 mW/° C to 300 mW For T _A = -55 to +100° C (PACKAGE TYPE F, H) 500 mW For T _A = -100 to +125° C (PACKAGE TYPE F, H) 500 mW For T _A = -40 to +70° C (PACKAGE TYPE M) 500 mW For T _A = -40 to +70° C (PACKAGE TYPE M) 500 mW OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H 555 to +125° C PACKAGE TYPE F, M 550 to +125° C STORAGE TEMPERATURE (T _{stg}) 65 to +150° C LEAD TEMPERATURE (DURING SOLDERING):	DC V_{CC} OR GROUND CURRENT (I_{CC}): ± 50 mA POWER DISSIPATION PER PACKAGE (P_D): For $T_A = -40$ to $+60^{\circ}$ C (PACKAGE TYPE E) ± 500 mW For $T_A = +60$ to $+85^{\circ}$ C (PACKAGE TYPE E) Derate Linearly at 8 mW/° C to 300 mW For $T_A = -55$ to $+100^{\circ}$ C (PACKAGE TYPE F, H) ± 500 mW
POWER DISSIPATION PER PACKAGE (Po): 500 mW For TA = -40 to +60° C (PACKAGE TYPE E) 500 mW For TA = +60 to +85° C (PACKAGE TYPE E) Derate Linearly at 8 mW/° C to 300 mW For TA = -55 to +100° C (PACKAGE TYPE F, H) 500 mW For TA = -40 to +70° C (PACKAGE TYPE M) 400 mW For TA = -70 to +125° C (PACKAGE TYPE M) 400 mW For TA = +70 to +125° C (PACKAGE TYPE M) Derate Linearly at 6 mW/° C to 70 mW OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE F, H PACKAGE TYPE F, H -55 to +125° C PACKAGE TYPE F, M -40 to +85° C STORAGE TEMPERATURE (Tasp) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING): -65 to +150° C	POWER DISSIPATION PER PACKAGE (Po): 500 mW For T _A = -40 to +60° C (PACKAGE TYPE E) 500 mW For T _A = +60 to +85° C (PACKAGE TYPE E) Derate Linearly at 8 mW/° C to 300 mW For T _A = -55 to +100° C (PACKAGE TYPE F, H) 500 mW
For T _A = -40 to +60° C (PACKAGE TYPE E)	For T _A = -40 to +60° C (PACKAGE TYPE E)
For T _A = +60 to +85° C (PACKAGE TYPE E). For T _A = -55 to +100° C (PACKAGE TYPE F, H). For T _A = -100 to +125° C (PACKAGE TYPE F, H). For T _A = -100 to +125° C (PACKAGE TYPE F, H). For T _A = -40 to +70° C (PACKAGE TYPE M). For T _A = -40 to +125° C (PACKAGE TYPE M). OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H. PACKAGE TYPE F, H. PACKAGE TYPE E, M. -40 to +85° C STORAGE TEMPERATURE (T _{sto}). -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING):	For T _A = +60 to +85° C (PACKAGE TYPE E)
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	For T _A = -55 to +100° C (PACKAGE TYPE F, H)
For T _A = +100 to +125°C (PACKAGE TYPE F, H) For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = +70 to +125°C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H -55 to +125°C PACKAGE TYPE E, M -40 to +85°C STORAGE TEMPERATURE (T _{stg}) -65 to +150°C LEAD TEMPERATURE (DURING SOLDERING):	
For T _A = -40 to +70°C (PACKAGE TYPE M)	For T ₄ = +100 to +125° C (PACKAGE TYPE F. H) Denote Linearly at 8 mW/° C to 300 mW
For T _A = +70 to +125° C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H -55 to +125° C PACKAGE TYPE E, M -40 to +85° C STORAGE TEMPERATURE (T _{stg}) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING):	TOTAL TION OF THE CHARLES OF THE CHA
OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE F, H -55 to +125° C PACKAGE TYPE E, M -40 to +85° C STORAGE TEMPERATURE (Tstg) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING):	For T _A = -40 to +70°C (PACKAGE TYPE M)
PACKAGE TYPE F, H -55 to +125° C PACKAGE TYPE E, M -40 to +85° C STORAGE TEMPERATURE (Tstg) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING):	For T _A = +70 to +125°C (PACKAGE TYPE M)
PACKAGE TYPE E, M -40 to +85° C STORAGE TEMPERATURE (Tsig) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING):	OPERATING-TEMPERATURE RANGE (T _A):
PACKAGE TYPE E, M -40 to +85° C STORAGE TEMPERATURE (Tsig) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING):	PACKAGE TYPE F, H
STORAGE TEMPERATURE (Tstg) -65 to +150°C LEAD TEMPERATURE (DURING SOLDERING):	PACKAGE TYPE E, M
At distance 1/16 + 1/32 in (1.59 + 0.79 mm) from case for 10 s may +265° C	LEAD TEMPERATURE (DURING SOLDERING):
The distance in to ± mot mit (1.00 ± 0.10 min) from case for to 5 max.	At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. +265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only +300° C	with solder contacting lead tips only+300° C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	IITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package-Temperature Range) V _{cc} :*	1		
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	·
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	l ∘c
CD54 Types	-55	+125	
Input Rise and Fall Times t,t			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD74	HC08	C08/CD54HC08						CD74HCT08/CD54HCT08								31.5 ₀	
QUADA OTERIOTIO	1 1	TEST CONDITIONS			74HC/54HC 74HC TYPES TYPES			54HC TYPES		TEST CONDITIONS		74HCT/54HCT TYPES			74HCT TYPES		54HCT TYPES		UNITS	
CHARACTERISTIC	V,	I _o	V _{cc}		+25° C	;	i	0/ 5° C	-5 +12		V, V	V _{cc}		+25° C	;	-4 +85	0/ i°C	-5 +12	5/ 5° C	UNITS
		IIIA		Min	Тур	Max	Min	Max	Min	Max	ľ		Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5			4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	v
-			6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5							-	
Input Voltage VII.			4.5	_	_	1.35	_	1.35	_	1.35	-	to.	-		0.8	-	0.8	-	0.8	. v
			6	_	_	1.8	_	1.8	_	1.8	<u></u>	5.5								
High-Level	V _{IL}		2	1.9	_		1.9	_	1.9	_	ViL									
Output Voltage Von	or	-0.02	4.5	4.4	_	_	4.4	_	4.4		or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9		V _{IH}									
	V _{IL}								<u> </u>		VıL									
TTL Loads	or	-4	4.5	3.98		_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	V
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	V _{IL}		2	_	<u> </u>	0.1		0.1		0.1	VıL									
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	v
CMOS Loads	V _{IH}		6		_	0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}										VıL						-			
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26		0.33	-	0.4	V
	V _{IH}	5.2	6	_	_	0.26		0.33	_	0.4	V _{IH}					<u> </u>	١			
Input Leakage	V _{cc}										Any Voltage									
Current I	or		6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5 .5	-	-	±0.1	-	±1	-	±1,	μΑ
	Gnd										& Gnd			<u> </u>				<u> </u>	ļ	
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	-	-	2	-	20	-	40	or	5.5	-	-	2	-	20	-	40	μА
Current I _{cc}	Gnd										& Gnd	<u> </u>	_		<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	
Additional Quiescent												4.5								
Device Current per input pin: 1 unit load Δ Icc											V _{cc} -2.1	to 5.5	-	100	360	-	450	-	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

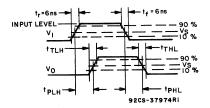
HCT Input Loading Table

Input	Unit Loads*
All	0.6

^{*}Unit Load is $\Delta l_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu{\rm A}$ max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, input t, t = 6 ns)

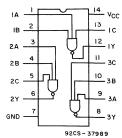
CVMPOL	TYP	ICAL	UNITS
STMBUL	HC	HCT	UNITS
t _{PLH}	7	10	ns
t _{PHL}		"	
CPD	37	51	pF
	t _{PHL}	TPLH TPHL 7	t _{PLH} 7 10


^{*}CPD is used to determine the dynamic power consumption, per gate.

PD= Vcc^2 fi $(C_{PD} + C_L)$ where fi=input frequency

C_L=output load capacitance V_{cc}=supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r, t_f = 6 ns)

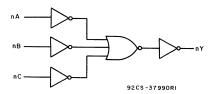

			25°C			-40°C to +85°C				-55°C to +125°C					
CHARACTERISTIC	SYMBOL	Vcc	Н	IC.	H	CT	74	НС	74F	ICT	54	НС	541	ICT	UNITS
		,-	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		90		_		115		T —		135		-	
Input to Output	t _{PHL}	4.5		18		25	ŀ	23		31		27		38	ns
(Fig. 1)	,	6		15		_		20				23		_	
Transition Times	t _{TLH}	2		75				95		_		110		_	
(Fig. 1)	t _{THL}	4.5		15		15		19		19		22		22	ns
		6		13				16				19		_	
Input			†												
Capacitance	Cı			10		10		10		10		10		10	pF
			.												

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

Fig. 1 - Transition times and propagation delay times.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT


Triple 3-Input NAND Gate

Type Features:

- Buffered inputs
- Typical propagation delay = 8 ns @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C

The RCA-CD54/74HC10 and CD54/74HCT10 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC10 and CD54HCT10 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC10 and CD74HCT10 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-inline surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

LOGIC DIAGRAM

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 2 to 6 V Operation
 High Noise Immunity:

 $N_{\rm IL}{=}30\%$, $N_{\rm IH}{=}30\%$ of $V_{\rm CC}$; @ $V_{\rm CC}{=}5~V$

■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL}=0.8 V Max., V_{IH}=2 V Min. CMOS Input Compatibility

 $I_{\rm I} \leq$ 1 μ A @ $V_{\rm OL},~V_{\rm OH}$ TRUTH TABLE

	INPUTS		OUTPUTS
nA	nB	nC	nY
L	L	L	Н
L	L	Н	Н
L	Н	L	Н
L	Н	Н	Н
Ι	L	L	Н
Τ	L	Н	Н
н	Н	L	Н
Н	Н	Н	L

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, lok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V	/) ±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc + 0.5 V)
DC Vcc OR GROUND CURRENT (Icc):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OHADAOTEDIOTIO	LIN	IITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	l v
CD54/74HCT Types	4.5	5.5	· ·
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times t _r ,t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

	CD74HC10/CD54HC10										CD74HCT10/CD54HCT10									
CHARACTERISTIC	coi	74HC/54HC TYPES			74HC TYPES		54HC TYPES		TEST CONDITIONS		74HCT/54HCT TYPES			74HCT TYPES		54HCT TYPES		UNITS		
ONAILE TEMBRIO	V _i	I _o mA	V _{cc}	+25° C			-40/ +85° C		-55/ +125° C		V,	V _{cc}	+25° C		;	-40/ +85° C		-55/ +125° C		UNITS
				Min	Тур	Max	Min	Max	Min	Max		ľ	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-		1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	-	_	3.15	_	3.15	_		to	2	_	-	2	-	2	-	v
			6	4.2	_		4.2	_	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								1 1 1
Input Voltage V _{II}			4.5	_	_	1.35	_	1.35	_	1.35	_	to	-	-	8.0	-	0.8	-	0.8	. v
			6	_	_	1.8	_	1.8	-	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	-		4.4	_	4.4	-	or	4.5	4.4	-	_	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	-	_	5.9	_	5.9	1	V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	-4	4.5	3.98			3.84	_	3.7	_	or	4.5	3.98		-	3.84	-	3.7		v
	V _{IH}	-5.2	6	5.48		_	5.34	_	5.2		V _{IH}									
Low-Level	V _{IL}		2	_	-	0.1	_	0.1	_	0.1	V _{IL}			,						
Output Voltage V _{oL}	or	0.02	4.5		-	0.1	_	0.1		0.1	or	4.5		_	0.1	-	0.1	_	0.1	V
CMOS Loads	V _{IH}		6	_	-	0.1	-	0.1	_	0.1	V _{IH}									
	V _{IL} .										V _{IL}			-						
TTL Loads	or	4	4.5	-	_	0.26	_	0.33	_	0.4	or	4.5		_	0.26	-	0.33	_	0.4	v
	V _{IH}	5.2	6	<u> </u>	_	0.26	_	0.33		0.4	V _{IH}									1
Input Leakage	V _{CC}										Any Voltage									
Current I,	or		6	_	-	±0.1		±1	_	±1	Between V _{cc}	5.5		-	±0.1	_	±1	-	±1	μΑ
	Gnd										& Gnd									
Quiescent	\mathbf{V}_{cc}										Vcc									
Device	or	0	6	-	-	2	-	20	-	40	or	5.5	-	-	2	_	20	-	40	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent												4.5								
Device Current per input pin:											V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ
1 unit load Δ lcc*												5.5								

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

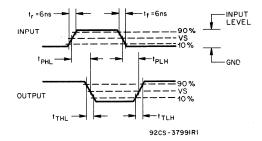
HCT Input Loading Table

Input	Unit Loads*
All	0.6

^{*}Unit Load is $\Delta l_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu{\rm A}$ max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, input $t_{\rm f}$ $t_{\rm f}$ = 6 ns)

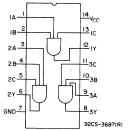
CHARACTERISTIC	SYMBOL	TYP	CAL	UNITS	
CHARACTERISTIC	STMBUL	HC	HCT	UNITS	
Propagation Delay, Data Input to Output Y (Fig. 1)	t _{PLH}	8	9	ns	
(C _L =15 pF)	t _{PHL}	ļ			
Power Dissipation Capacitance*	C _{PD}	24	28	pF	


 $^{{}^{\}star}\text{C}_{\text{PD}}$ is used to determine the dynamic power consumption, per gate.

PD=V_{CC}² fi (C_{PD} + C_L) where f_i=input frequency

 C_L =output load capacitance V_{cc} =supply voltage

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, input t_n , $t_f = 6 \text{ ns}$)


				25	°C		-4	0°C t	o +85°	,C	-5				
CHARACTERISTIC SYMBO	SYMBOL	VCC	Н	iC	H	CT	74	HC	74F	ICT	54	HC	541	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		100				125		_		150		I	
Input to Output	tpHL	4.5		20		24		25		30		30		36	ns
(Fig. 1)		6		17		_		21				26		 	
T		2		75		_		95		_		110		_	
Transition Times	t _{TLH}	4.5		15		15		19		19		22		22	ns
(Fig. 1)	t _{THL}	6		13		_		16		_		19			
Input Capacitance	Cı			10		10		10		10		10		10	pF

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

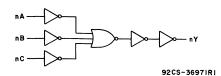
Fig. 1 - Transition times and propagation delay times.

High-Speed CMOS Logic

Triple 3-Input AND Gate

Type Features:

- Buffered inputs
- Typical propagation delay = 8 ns @ V_{CC} = 5 V, C_L = 15 pF, T_{c} = 25° C


FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT

The RCA-CD54/74HC11 and CD54/74HCT11 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC11 and CD54HCT11 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC11 and CD74HCT11 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout [Over Temperature Range]: Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
 Significant Power Poduction Compared to J. S.T.I.
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Phillips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL}=30%, N_{IH}=30% of V_{CC} @ V_{CC}=5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL}=0.8 V Max., V_{IH}=2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

LOGIC DIAGRAM

TRUTH TABLE

	INPUTS	OUTPUTS	
nA	nB	nC	nY
L	L	L	L
L	L	н	L ·
L	Н	L	L
L	Н	н	L
Н	L	L	L
Н	L	Ι	L
Н	Н	L	L
Н	Н	н	Н

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_1 < -0.5V$ or $V_i > V_{cc} + 0.5V$)	
DC OUTPUT CURRENT, I_{OK} (FOR $V_o < -0.5 V$ OR $V_o > V_{cc} + 0.5 V$)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR $-0.5V < V_o < V_{cc} + 0.5V$)	
DC V _{CC} OR GROUND CURRENT, (I _{CC}):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to+85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

01404075010710	LIMI	TS	UNITS	
CHARACTERISTIC		MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*				
CD54/74HC Types		2	6	V
CD54/74HCT Types	- '	4.5	5.5	V
DC Input or Output Voltage V _{in} , V _{out}		0	Vcc	V
Operating Temperature T _A :			1	7.
CD74 Types		-40	+85	°C
CD54 Types		-55	+125	°C
Input Rise and Fall Times t _r , t _f				
at 2 V		0	1000	ns
at 4.5 V		0	500	ns
at 6 V		0 "	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

				CD74	HC11	CD5	HC1	1					C	D74H	CT11	/CD54	нст				
CHARACTERIST	ric.	1	TEST IDITIONS		1	HC/54		ı	HC PES	ı	HC PES	TEST CONDITIO		74HCT/54HCT			ı	ICT PES		ICT PES	UNITS
CHANACTERIS		V, V	l _o mA	V _{cc}		+25° C	;		0/ 5° C	ı	5/ 5°C	V,	V _{cc}		+25° C		-40/ +85° C			5°C	UNITS
			""	ľ	Min	Тур	Max	Min	Max	Min	Max			Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	-		1.5		1.5	_		4.5								
Input Voltage	V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	-	-	2	-	2	-	v
				6	4.2	-	-	4.2	_	4.2	-		5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	$V_{\text{\tiny IL}}$			4.5	_	_	1.35	_	1.35	_	1.35	_	to	-	-	0.8	_	0.8	-	0.8	v
				6	_	_	1.8	_	1.8	_	1.8		5.5			-					
High-Level		VıL		2	1.9	_	-	1.9	_	1.9	_	V _{IL}									
Output Voltage	V _{OH}	or	-0.02	4.5	4.4	_	-	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads		V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
		V _{IL}										V _{IL}									
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v
		V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level		V _{IL}		2	_	_	0.1	_	0.1	_	0.1	V _{IL}			Ì						
Output Voltage	Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	_	0.1	v
CMOS Loads		V _{iH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
		V _{IL}										V _{IL}		-							-
TTL Loads		or	4	4.5	-	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
		V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage		V _{cc}										Any Voltage									·
Current	I,	or		6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
		Gnd										& Gnd									
Quiescent		V _{cc}										V _{cc}									
Device		or	0	6	-	-	2	-	20	-	40	or	5.5	-	-	2	_	20	-	40	μΑ
Current	Icc	Gnd	L	<u> </u>	<u> </u>		<u> </u>	<u> </u>	L			& Gnd		<u> </u>							
Additional Quiescent Device Current												V _{cc} -2.1	4.5 to		100	360	_	450	_	490	μΑ
per input pin:	lcc*											*cc 2.1	5.5					133			μΑ

^{*}For dual-supply systems theoretical worst case (V_{i} = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
ALL	0.50

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu{\rm A}$ max. @ 25° C.

SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r, t_i = 6 ns)

				25	°C		-4	lo°C to	o +85°	,C	-5	°C			
CHARACTERISTIC	SYMBOL	Vcc	V _{cc} H		C HC		74	74HC		74HCT		HC	54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay,	t _{PLH}		1				7.1			1					
Input to Output		2	-	100	l —	_	_	125	_	_	_	150	-	-	
(Fig. 1)	t _{PHL}	4.5	-	20	_	28	_	25	_	35	_	30	_	42	ns
		6	_	17.		_	l —	21	 _	_	_	26	_	_	
Transition Times	t _{TLH}	2	_	75	_	_	_	95	_	_	_	110	_	T	
(Fig. 1)	t _{THL}	4.5	_	15	_	15	 	19	_	19	_	22	_	22	ns
		6	_	13	_		l —	16		_	_	19	-	_	
										-			T		
Input Capacitance	Cı		-	10	-	10	-	10	-	10	-	10	-	10	pF
						ĺ	-			-					

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, ti = 6 ns)

OUADA OTEDIOTIO	0,44501	Ту	pical	Units		
CHARACTERISTIC	SYMBOL	HC	HCT	Units		
Propagation Delay, Data Input to Output Y (Fig. 1) (C _L = 15 pF)	t _{PLH} t _{PHL}	8	1.1	ns		
Power Dissipation Capacitance*	C _{PD}	26	28	pF		

^{*}C_{PD} is used to determine the dynamic power consumption, per gate.

 $PD = {V_{CC}}^2 f_i \; (C_{PD} + C_L) \; where \; f_i = input \; frequency \;$

c_L = output load capacitance

 $V_{cc} = \text{supply voltage} \\$

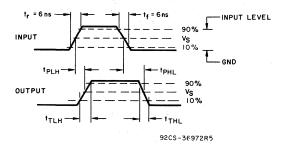
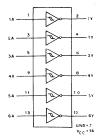



Fig. 1 — Transition times and propagation delay times.

	54/74HC	54/74HCT
INPUT LEVEL	V _{cc}	3V
V _s	50% V _{CC}	1.3V

High-Speed CMOS Logic

Hex Inverting Schmitt Trigger

Type Features:

- Unlimited input rise and fall times
- Exceptionally high noise immunity

FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT

The RCA-CD54/74HC14 and CD54/74HCT14 each contain 6 inverting Schmitt Triggers in one package.

The CD54HC14 and CD54HCT14 are supplied in 14-lead ceramic dual-in-line packages (F suffix). The CD74HC14 and CD74HCT14 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both devices are also available in chip form (H suffix).

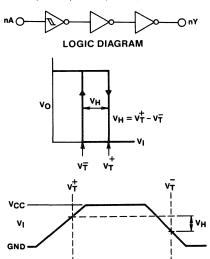


Fig. 1 - Hysteresis definition, characteristic, and test setup.

92CS-39828

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 37%, N_{IH} = 51% of V_{CC}; @ V_{CC} = 5V
- N_{IL} = 37%, N_{IH} = 51% of V_{CC}; @ V_{CC} = 5V

 CD54HCT/CD74HCT Types:
 4.5 to 5.5 V Operation
 Direct LSTTL Input Logic Compatibility
 N_{IL} = 18%, N_{IH} = 67% of V_{CC} @ V_{CC} = 4.5V
 CMOS Input Compatibility
 I₁ ≤ 1 µA @ V_{OL}, V_{OH}

TRUTH TABLE

INPUT	OUTPUT
Α	Υ
L,	Н
Н	L

H = High Level L = Low Level

VCC

VO GND

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE. (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OUADACTEDIOTIO	LII	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	Unlimited	ns
at 4.5 V	0	Unlimited	ns
at 6 V	0	Unlimited	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		W1207 H11 Trime		CD74H	C14/CD	54HC1	4					CD74H	CT14/C	D54HC	T14			
CHARACTERISTIC	TEST CONDITIONS		1	/54HC PES	1	HC 'PE	1	HC PE	TES		1	/54HCT PES	l	ICT PE	1	ICT PE	UNITS	
OTANACTERISTIC	V, V	I _o	V _{cc}	+2!	5°C	1	10/ 5°C	i .	55/ 5° C	V,	V _{cc}	+25	s°C		10/ 5° C		55/ 5° C	UNITS
	•	""	•	Min	Max	Min	Max	Min	Max	'		Min	Max	Min	Max	Min	Max	
Input Switch			2	0.7	1.5	0.7	1.5	0.7	1.5			_	_	_	_	_	_	
Points V ₁ +			4.5	1.7	3.15	1.7	3.15	1.7	3.15		4.5	1.2	1.9	1.2	1.9	1.2	1.9	v
			6	2.1	4.2	2.1	4.2	2.1	4.2		5.5	1.4	2.1	1.4	2.1	1.4	2.1	1
			2	0.3	1	0.3	1	0.3	1			_	_	_	-	-		
V ₇ -			4.5	0.9	2.2	0.9	2.2	0.9	2.2		4.5	0.5	1.2	0.5	1.2	0.5	1.2	V
			6	1.2	3	1.2	3	1.2	3]	5.5	0.6	1.4	0.6	1.4	0.6	1.4	1
			2	0.2	1	0.2	1	0.2	1			_		_	_	_	_	
V _H			4.5	0.4	1.4	0.4	1.4	0.4	1.4		4.5	0.4	1.4	0.4	1.4	0.4	1.4	V
			6	0.6	1.6	0.6	1.6	0.6	1.6		5.5	0.4	1.5	0.4	1.5	0.4	1.5]
High-Level Output	V _T -		2	1.9	_	1.9	_	1.9	_	V ₁ -		-			-	-	-	
Voltage V _{OH}	or	-0.02	4.5	4.4	_	4.4	_	4.4	-	or	4.5	4.4	_	4.4	_	4.4	_] v
CMOS Loads	V _T +		6	5.9	_	5.9	-	5.9	_	V ₇ +		_	-	_	-	_	_]
-	V ₇ -		_		_	_		_	-	V ₇ -		-	_	_	_	_	_	
TTL Loads	or	-4	4.5	3.98		3.84	_	3.7	-	or	4.5	3.98	_	3.84	_	3.7		V
	V ₇ +	-5.2	6	5.48	_	5.34	_	5.2	_	V _T +			_	_		_	_]
Low-Level Output	V ₇ -		2	_	0.1	_	0.1	_	0.1	V _T -		_	·	_	_	_	_	
Voltage V _{cs.}	or	0.02	4.5	_	0.1	-	0.1	_	0.1	or	4.5	_	0.1	_	0.1	_	0.1] v
CMOS Loads	V _T +		6	_	0.1	_	0.1		0.1	. V _T +		_		_	_	_	-].
	V _T -			_	-	_	_		_	V ₇ -		_	-	_	_	_	_	
TTL Loads	or	4	4.5	_	0.26		0.33	_	0.4	or	4.5		0.26	1	0.33	_	0.4	V
	V _T +	5.2	6		0.26		0.33		0.4	V ₇ +		_	_	_	_	-		
Input Leakage Current I,	V _{cc} or Gnd		6	_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5		±0.1	_	±1	-	±1	μΑ
Quiescent	V _{cc}									V _{cc}								
Device	or	0	6	_	2	_	20	_	40	or	5.5		2		20	_	40	μA
Current I _{cc}	Gnd									Gnd								
Additional Quiescent		L		L	L	L		l	L		4.5	Min Ty	р Мах					
Device Current per input pin:										V _{cc} -2.1	to 5.5	- 10	360	_	450		490	μΑ
1 unit load ∆lcc*	L						5.5.0			L								L

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS*
nA [.]	0.6

^{*}Unit load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r, t_t = 6 ns)

	CHARACTERISTIC	CL (pF)	TYP HC	ICAL HCT	UNITS	
Propagation Delay, A to Y		t _{PHL} ,t _{PLH}	15	11	16	ns
Power Dissipation Capaci	tance*	C_{PD}		20	20	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per inverter. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where: f_i = input frequency C_L = output load capacitance V_{CC} = supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r , t_f = 6 ns)

					25	°C		-4	l0° C te	o +85°	C	-5																														
CHARACTERISTIC																														HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.																											
Propagation Delay,	1	t _{PLH}	2	_	135	T =		_	170	_			205		_																											
A to Y		t _{PHL}	4.5	_	27		38		34		48		41		57	ns																										
			6	_	23	_			29	_	_		35	-																												
Output		t _{TLH}	2	-	75	_			95	_		_	110																													
Transition Time		t_{THL}	4.5	_	15		15		19	_	19	_	22	-	22	ns																										
			6	_	13		_	_	16				19		_																											
Input Capacitance		C ₁	_	_	10	_	10	-	10		10	_	10	_	10	pF																										

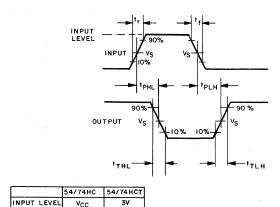
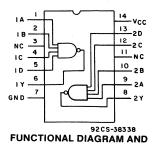


Fig. 2 - Transition times and propagation delay times.

92CS-36948RI


1.3 V

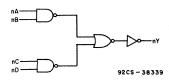
50% VCC

File Number 1601

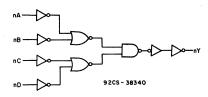
CD54/74HC20 CD54/74HCT20

High-Speed CMOS Logic

TERMINAL ASSIGNMENT


Dual 4-Input NAND Gate

Type Features:


- Buffered inputs (HCT types)
- Typical propogation delay=8 ns @ V_{CC}=5V, C_L=15 pF, T_A=25°C (HC types)

The RCA-CD54/74HC20 and CD54/74HCT20 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC20 and CD54HCT20 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC20 and CD74HCT20 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

HC LOGIC DIAGRAM (1 GATE)

HCT LOGIC DIAGRAM (1 GATE)

Family Features

- Fanout (over temperature range): Standard outputs — 10 LSTTL loads Bus driver outputs — 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V min. CMOS input compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

TRUTH TABLE

				Y
	INP	UTS		OUTPUTS
nA	nB	nC	nD	nY
L	х	х	х	н
Х	L	Х	X	. н
Х	х	L	х	Н
Х	х	Х	L	Н
Н	Н	н	н	L

X = Don't Care

L = Low Voltage Level H = High Voltage Level

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} + 0.5 \text{ V}$)	± 20 mA
DC OUTPUT CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} + 0.5$ V)	± 20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Voc +0.5 V)	± 25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	± 50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125° C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (T.)	•
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/1/6 in., 1.59 mm) with solder contacting	
• • • • • • • • • • • • • • • • • • • •	S , ,

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	MITS	
CHARACTERISTIC	2 6 4.5 5.5 0 V _{cc} -40 +85 -55 +12	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	V ,
DC Input or Output Voltage V _I , V _o	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	00
CD54 Types	-55	+125	°C
Input Rise and Fall Times, tr, tr			
at 2V	0	1000	
at 4.5 V	0	500	ns
at 6V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

				CI	D74H0	C20/C	D54F	IC20				1		CD	74HC	Γ20/C	D54F	1CT20)		1 . N
CHARACTERISTIC		CON		74HC/54HC TYPE			74HC 54HC TYPE TYPE		-	TEST CONDITIONS		74HCT/54HCT TYPE			74HCT TYPE		1	ICT PE			
		V ₁ I ₀		V _{cc}		+25°C	;	-4 +8!	0/ 5°C	1 -	5/ 5°C	۷.	V _{cc}	+25°C		;	-40/ +85°C				UNITS
· · · · · · · · · · · · · · · · · · ·		. v	mA	v	Min	Тур	Max	Min	Max	Min	Max	v	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_		1.5		1.5	_		4.5							-	
Input Voltage	ViH			4.5	3.15		_	3.15	_	3.15		-	to	2	-	-	2	-	2	_	٧
				6	4.2		_	4.2	_	4.2	_		5.5								
Low-Level				2	_		0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_		1.35		1.35	_	1.35	_	to	_	-	0.8		0.8	-	0.8	V
				6		<u> </u>	1.8	_	1.8		1.8		5.5								
High-Level		VIL		2	1.9		_	1.9		1.9	_	VIL									
Output Voltage	Vон	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	٧
CMOS Loads		ViH		6	5.9	_	_	5.9	_	5.9	-	ViH									
		VIL	-									VIL									
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7		or	4.5	3.98	-	-	3.84	-	3.7	-	v
		V _{IH}	-5.2	6	5.48			5.34		5.2	_	V _{IH}									
Low-Level		VIL		2	_	_	0.1		0.1		0.1	VıL									
Output Voltage	Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	_	0.1	_	0.1	· v
CMOS Loads		ViH		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
		VIL				-						VıL									
TTL Loads		or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	_	0.26	_	0.33	-	0.4	V
		ViH	5.2	6	_	_	0.26	_	0.33	L_	0.4	ViH		<u> </u>							
Input Leakage		Vcc										Any Voltage									
Current	lı	or		6	-	_	±0.1	-	±1	-	±1	Between V _{CC}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
		Gnd										& Gnd							L	<u> </u>	
Quiescent		Vcc										Vcc									
Device		or	0	6	-	-	2	-	20	-	40	or	5.5	-	-	2	-	20	-	40	μΑ
Current	Icc	Gnd										Gnd								L	
Additional Quiescent Device Current per input pin: 1 unit load Δlcc*				-								V _{cc} -2.1	4.5 to 5.5	-	100	360	_	450	_	490	μΑ

 $^{^{\}circ}$ For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

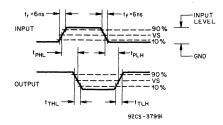
HCT Input Loading Table

Input	Unit Loads*
All	0.15

^{*}Unit load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input to ti = 6 ns)

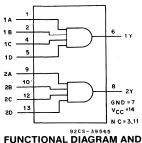
OHADAOTEDIOTIC	0,44501	TYP	ICAL	
CHARACTERISTIC	SYMBOL	НС	HCT	UNITS
Propagation Delay, Data Input to Output Y (Fig. 1) $(C_L = 15 \text{ pF})$	t _{PLH} t _{PHL}	8	11	ns
Power Dissipation Capacitance*	C _{PD}	26	38	pF


^{*}C_{PD} is used to determine the dynamic power consumption, per gate.

 $PD = V_{CC}^{2} \; fi \; (C_{PD} + C_{L}) \; where \; f_{i} = input \; frequency \;$

 $C_L =$ output load capacitance. $V_{CC} =$ supply voltage.

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t1 = 6 ns)


			25°C					0°C to	o +85	°C	-5	5°C to	+125°C		
CHARACTERISTIC	SYMBOL	Vcc	Н	С	H	CT	74	нС	74F	ICT	54	НС	54H	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		100	_	_		125	_	_	_	150	_		
Input to Output	tpHL	4.5		20	—	28	_	25	-	35	—	30		42	ns
(Fig. 1)		6	_	17				21	_		_	26			
Transition Times	tTLH	2	_	75	_	_	_	95	_	_	l –	110		_	
(Fig. 1)	t _{THL}	4.5	_	15		15		19	—	19		22	-	22	ns
		6		13	-	-	-	16		_	-	19		_	
Input Capacitance	Cı	_	_	10	_	10	_	10	_	10	_	10		10	pF

	54/74HC	54/74HCT
Input Level	Vcc	3V
Switching Voltage, V _s	50% V _{cc}	1.3V

Fig. 1 — Transition times and propagation delay times.

High-Speed CMOS Logic

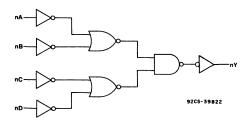
TERMINAL ASSIGNMENT

Dual 4-Input AND Gate

Type Features:

- Buffered inputs
- Typical propagation delay = 9ns
 - @ $V_{CC} = 5V$, $C_L = 15 pF$, $T_A = 25^{\circ}C$ (HC types)

The RCA-CD54/74HC21 and CD54/74HCT21 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.


The CD54HC21 and CD54HCT21 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC21 and CD74HCT21 are supplied in 14-lead dualin-line plastic packages (E suffix) and in 14-lead dual-inline surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:

 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5V$

■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility $V_{IL} = 0.8 \text{ V max.}, V_{IH} = 2 \text{ V Min.}$ **CMOS Input Compatibility** $I_1 \leq 1 \,\mu A \otimes V_{OL}, \, V_{OH}$

LOGIC DIAGRAM

TRUTH TABLE

	INP	OUTPUTS		
nA	nB	nC	nD	nY
L	Х	Х	Х	L
Х	L	Х	Х	L
Х	Х	L	Х	L
X	Х	Х	L	L
Н	Н	Н	Н	Н

X = Don't Care

L = Low Level Voltage

H = High Level Voltage

MAXIMUM RATINGS, Absolute-Maximum Values:

For T _A = -40 to +60° C (PACKAGE TYPE E)	DC SUPPLY-VOLTAGE, (V_{cc}):	
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC} + 0.5V$) ± 20 mA DC DRAIN CURRENT, PER OUTPUT (I_o) (FOR -0.5 V $< V_o < V_{CC} + 0.5V$) ± 25 mA DC V_{CC} OR GROUND CURRENT (I_{CC}) ± 50 mA POWER DISSIPATION PER PACKAGE (P_o): For $T_A = -40$ to $+60^\circ$ C (PACKAGE TYPE E) ± 500 mW For $T_A = +60$ to $+85^\circ$ C (PACKAGE TYPE F, H) ± 000 mW For $T_A = -40$ to $+100^\circ$ C (PACKAGE TYPE F, H) ± 000 mW For $T_A = -40$ to $+100^\circ$ C (PACKAGE TYPE F, H) ± 000 mW For $T_A = -40$ to $+70^\circ$ C (PACKAGE TYPE M) ± 000 mW For $T_A = -40$ to $+70^\circ$ C (PACKAGE TYPE M) ± 000 mW For $T_A = -40$ to $+70^\circ$ C (PACKAGE TYPE M) ± 000 mW For $T_A = -40$ to $+125^\circ$ C (PACKAGE TYPE M) ± 000 mW Por $T_A = -70$ to $+125^\circ$ C (PACKAGE TYPE M) ± 000 mW OPERATING-TEMPERATURE RANGE (T_A): PACKAGE TYPE F, H ± 000 mW		
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V) ± 25 mA DC V _{CC} OR GROUND CURRENT (I _{cc}) ± 50 mA POWER DISSIPATION PER PACKAGE (P _D): For T _A = -40 to +60° C (PACKAGE TYPE E) ± 500 mW For T _A = +60 to +85° C (PACKAGE TYPE F, H) ± 500 mW For T _A = -55 to +100° C (PACKAGE TYPE F, H) ± 500 mW For T _A = +5100 to +125° C (PACKAGE TYPE F, H) ± 500 mW For T _A = -40 to +70° C (PACKAGE TYPE F, H) ± 500 mW For T _A = -40 to +70° C (PACKAGE TYPE M) ± 500 mW For T _A = +70 to +125° C (PACKAGE TYPE M) ± 500 mW For T _A = +70 to +125° C (PACKAGE TYPE M) ± 500 mW For T _A = +70 to +125° C (PACKAGE TYPE M) ± 500 mW OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H ± 500 mW	DC INPUT DIODE CURRENT, I_{ik} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	<u>±</u> 20mA
DC V_{CC} OR GROUND CURRENT (I_{CC}) ± 50 mA POWER DISSIPATION PER PACKAGE (P_D): For $T_A = -40$ to $+60^\circ$ C (PACKAGE TYPE E)	DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5V)	±20mA
POWER DISSIPATION PER PACKAGE (P _D): For T _A = -40 to +60° C (PACKAGE TYPE E)	DC DRAIN CURRENT, PER OUTPUT (I $_{o}$) (FOR -0.5 V < V $_{o}$ < V $_{cc}$ + 0.5V)	±25mA
For T _A = -40 to +60° C (PACKAGE TYPE E)	DC V _{cc} OR GROUND CURRENT (I _{cc})	±50mA
For T _A = +60 to +85°C (PACKAGE TYPE E) For T _A = -55 to +100°C (PACKAGE TYPE F, H) For T _A = -55 to +100°C (PACKAGE TYPE F, H) For T _A = +100 to +125°C (PACKAGE TYPE F, H) For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = -40 to +70°C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H -55 to +125°C PACKAGE TYPE F, H -55 to +125°C STORAGE TYPE F, M -40 to +85°C STORAGE TEMPERATURE (T _{sto}) -65 to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max. +265°C	POWER DISSIPATION PER PACKAGE (P _D):	
For T _A = +60 to +85°C (PACKAGE TYPE E) For T _A = -55 to +100°C (PACKAGE TYPE F, H) For T _A = -55 to +100°C (PACKAGE TYPE F, H) For T _A = +100 to +125°C (PACKAGE TYPE F, H) For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = -40 to +70°C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H -55 to +125°C PACKAGE TYPE F, H -55 to +125°C STORAGE TYPE F, M -40 to +85°C STORAGE TEMPERATURE (T _{sto}) -65 to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max. +265°C	For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H) For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = +70 to +125° C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H PACKAGE TYPE F, M -40 to +85° C STORAGE TEMPERATURE (T _{stg}) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max. -40 to 3 max. -265° C	For T _A = +60 to +85°C (PACKAGE TYPE E)	at 8 mW/°C to 300 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H) For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = +70 to +125° C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H PACKAGE TYPE F, M -40 to +85° C STORAGE TEMPERATURE (T _{stg}) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max. -40 to 3 max. -265° C	For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)		
For T _A = +70 to +125° C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H -55 to +125° C PACKAGE TYPE E, M -40 to +85° C STORAGE TEMPERATURE (T _{stg}) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max. -25 to +125° C	For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
PACKAGE TYPE F, H -55 to +125° C PACKAGE TYPE E, M -40 to +85° C STORAGE TEMPERATURE (Tstg) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING): -65 to +150° C At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max. +265° C	For T _A = +70 to +125°C (PACKAGE TYPE M) Derate Linearly	at 6 mW/°C to 70 mW
PACKAGE TYPE E, M40 to +85° C STORAGE TEMPERATURE ($T_{\rm Sto}$)65 to +150° C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. +265° C	OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE E, M40 to +85° C STORAGE TEMPERATURE ($T_{\rm Sto}$)65 to +150° C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. +265° C	PACKAGE TYPE F, H	55 to +125°C
$ STORAGE TEMPERATURE (T_{Stg}) \\ LEAD TEMPERATURE (DURING SOLDERING): \\ At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. +265^{\circ} C $	PACKAGE TYPE E, M	40 to +85° C
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max		
	LEAD TEMPERATURE (DURING SOLDERING):	
	At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only +300° C	with solder contacting lead tips only	+300° C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTEI	RISTIC	LIN	MITS	LINUTO	
CHARACTE	MIN.	MAX.	UNITS		
Supply-Voltage Range (For T _A = Full Pack			1		
CD54/74HC Types		2	6		
CD54/74HCT Types	<u> </u>	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O		0	V _{cc}	V	
Operating Temperature T _A :					
CD74 Types		-40	+85	°C	
CD54 Types		-55	+125		
Input Rise and Fall Times t _r , t _f					
at 2 V		0	1000	1	
at 4.5 V		0	500	ns	
at 6 V		0	400		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

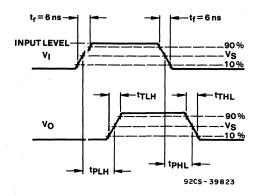
			CD74	HC21	/CD5	4HC2	1					С	D74H	CT21	/CD54	4HCT	21			
CHARACTERISTIC	coi	TEST CONDITIONS			74HC/54HC 74HC TYPES TYPE				54HC TYPE		TEST CONDITIONS			CT/54		74HCT TYPE			ICT PE	UNITS
CHARACTERISTIC	V,	I _o	V _{cc}		+25° (;	1	0/ 5° C	-5 +12	5/ 5°C	V,	V _{cc}		+25° C	;	-40/ +85° C		-55/ +125°C		Oillis
			"	Min	Тур	Max	Min	Max	Min	Max	`	•	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	-		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	-	-	2	-	2	-	V
			6	4.2	-		4.2	_	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	-	_	1.35	-	1.35	-	1.35	_	to	_		0.8	-	0.8	'	0.8	V
			6	_	_	1.8	_	1.8	_	1.8	1	5.5						-		
High-Level	V _{IL}		2	1.9	-	_	1.9	_	1.9	_	V _{rL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	-	-	4.4	_	4.4	_	or	4.5	4.4	_	-	4.4	_	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
	V _{IL}					1:-					V _{IL}					-				
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	_	3.7	-	V
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	V _{IL}		2	_	_	0.1	-	0.1	_	0.1	V _{IL}									
Output Voltage V _{oL}	or	0.02	4.5	_	-	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	_	0.1	V
CMOS Loads	V _{IH}		6	_	-	0.1	_	0.1		0.1	V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	4	4.5	-	_	0.26	_	0.33	_	0.4	or	4.5	-		0.26	_	0.33	-	0.4	v
	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any Voltage									
Current I ₁	or		6	-	_	±0.1	-	±1	_	±1	Between	5.5	-	-	±0.1	_	±1	_	±1	μΑ
	Gnd										V _{cc} & Grid									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	-	-	2	_	20	_	40	or	5.5	-	-	2	_	20	_	40	μΑ
Current I _{cc}	Gnd										Gnd									
Additional							·		L			4.5								
Quiescent Device Current											V _{cc} -2.1	to	_	100	360	_	450	_	490	μΑ
per input pin: 1 unit load Δl _{cc} *												5.5								

^{*}For dual-supply systems theoretical worst case (V_i = 2.4 V, $V_{\rm CC}$ = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS*
ALL	1

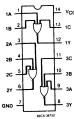
^{*}Unit load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.


SWITCHING CHARACTERISTICS (Vcc = 5 V, T_A = 25°C, Input t_r, t_r = 6 ns)

CHARACTERISTIC		CL	TYP	ICAL	UNITS
CHARACTERISTIC		(pF)	HC	HCT	ONITS
Propagation Delay, Data Input to Output Y (Fig. 1)	t _{PHL} , t _{PLH}	15	9	11	ns
Power Dissipation Capacitance*	Cen		36	42	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per gate. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where: f_i = input frequency C_L = output load capacitance V_{CC} = supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, Injout t_r, t_f = 6 ns)


			25	°C		-4	l0°C te	o +85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC	V _{cc}	IH.	IC	H	СТ	74	нс	74F	ICT	54	нс	54F	ICT	UNITS
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH} 2	-	110	_	_	T —	140	-	_	_	165		_	
Input to Output	t _{PHL} 4.5	_	22	_	27	_	28		34	-	33		41	ns
(Fig. 1)	6		19	l —_	'		24	<u> </u>	<u> </u>	_	28		_	
Transition Times	t _{TLH} 2	1-	75	_	T-	-	95	_	-	_	110	_		
(Fig. 1)	t _{THL} 4.5	-	15		15	-	19		19	-	22	_	22	ns
	6	_	13	_	_	_	16			l —	19	-		
Input Capacitance	C ₁	_	10	-	10	_	10	_	10	-	10	_	10	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, Vs	50% V _{CC}	1.3 V

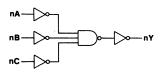
Fig. 1 — Transition times and propagation delay times.

High-Speed CMOS Logic

Triple 3-Input NOR Gate

Type Features:

- Buffered Inputs
- Typical CD54/74HC27 Propagation Delay = 7ns @ V_{CC} = 5v, C_L= 15pF, T_A = 25° C


FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT

The RCA-CD54/74HC27 and CD54/74HCT27 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The CD54/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC27 and CD54HCT27 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC27 and CD74HCT27 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Farnout (Over Temperature Range): Strandard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wilde Operating Temperature Range: CI:774HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- Cli)54HC/CD74HC Types:
 2 1:o 6 V Operation
 High Noise Immunity: N_{IL} = 30%, N_{IH} = 30%
 of V_{CC}, @ V_{CC} = 5 V
- C(354HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. C_IMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

92CS-38425

LOGIC DIAGRAM

T	TRUTH TABLE							
nA	nB	nC	nY					
L	L	L	Н					
L	L	Н	L					
L	Н	L	L					
Н	L	L	L					
Н	H	L	L					
L	Н	Н	L					
H	L	Н	L					
Н	Н	Н	L					
		9205	-38425					

L = Low Level H = High Level

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	-0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{ik} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	+20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5V)	+20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (Pp):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	-55 to +125°C
PACKAGE TYPE E, M	-40 to +85° C
STORAGE TEMPERATURE (Tsig)	-65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LI	MITS	LIMITO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD74	HC27	CD54	HC2	,					C	D74H	CT27	/CD54	нст	27			
CHARACTERISTIC		TEST		1	IC/54 YPE		741 TY		541 TY	HC PE	TEST		1	74HCT/54HCT TYPES		1	ICT PE	54H TY	ICT PE	UNITS
	V ,	l _o	V _{cc}		+25° C	:	-4 +85	0/ 5° C	-5 +12		V,	V _{cc}		+25° C			10/ 5° C	-55/ +125°C		
	•			Min	Тур	Max	Min	Max	Min	Max	·	ľ	Min	Тур	Max	Min	Max	Min	Max	
High-Level		2.4	2	1.5	-	-	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	V /
			6	4.2	_	_	4.2	_	4.2	L		5.5								
Low-Level			2	_	_	0.5		0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	-	to	-	-	0.8	-	0.8	-	0.8	V
			6	_	_	1.8	_	1.8		1.8		5.5					<u> </u>		<u> </u>	
High-Level	VIL		2	1.9	_	_	1.9	_	1.9	_	V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4		or	4.5	4.4	-	-	4.4	-	4.4	-	٧
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	<u> </u>	V _{IH}	ļ	<u> </u>			<u> </u>	ļ	<u> </u>		
	VIL		ļ								V _{IL}						١.			
TTL Loads	or	-4	4.5	3.98		_	3.84	_	3.7		or	4.5	3.98	-	-	3.84	-	3.7		V
	ViH	-5.2	6	5.48	_	-	5.34	_	5.2	_	V _{IH}	ļ	 	ļ	 	ļ		-	<u> </u>	ļ
Low-Level	V _{IL}		2	_	_	0.1		0.1	-	0.1	VıL									
Output Voltage Vol	or	0.02	4.5	_	_	0.1	<u> </u>	0.1	_	0.1	or	4.5	_	_	0.1	-	0.1	-	0.1	V
CMOS Loads	V _{IH}		6		_	0.1	_	0.1	_	0.1	ViH		-	-	-	 	 	-		ļ
TTL Loads	V _{ال}	4	4.5	-		0.26	_	0.33		0.4	V _{IL} or	4.5	_		0.26	_	0.33		0.4	v
TTE Edads	V _{IH}	5.2	6	-	_	0.26	-	0.33		0.4	V _{IH}	4.5			0.20		0.55		0.4	•
Input Leakage	V _{cc}	-	Ť				 	-	<u> </u>		Any	<u> </u>	 		 	<u> </u>	 	-	<u> </u>	†
Current I	or		6		_	±0.1	_	±1	_	±1	Voltage Between	5.5	_	_	±0.1	_	±1	-	±1	μА
Í	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}				\vdash						Vcc									
Device	or	0	6	_		2	_	20	_	40	or	5.5	-	_	2	_	20	_	40	μА
Current I _{cc}	Gnd										Gnd									
Additional		·										4.5								
Quiescent Device Current											V _{cc} -2.1	to	-	100	360	-	450	_	490	μA
per input pin: 1 unit load \(\Delta \lambda												5.5								İ

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
All	1.5

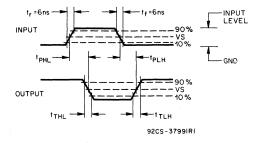
^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t, = 6 ns)

CHARACTERISTIC	CL	SYMBOL	TYP	CAL	UNITS
CHARACTERISTIC	(pF)	STINDOL	HC	HCT	ONTO
Propagation Delay, Data Input to Output Y (Fig. 1)	15	t _{PLH} t _{PHL}	7	9	ns
Power Dissipation Capacitance*	_	C _{PD}	26	28	pF

^{*}CPD is used to determine the dynamic power consumption, per gate.

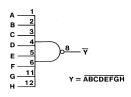
 $PD = V_{CC}^2 f_i (C_{PD} + C_L)$


f_i = input frequency

C_L = output load capacitance

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t = 6 ns)


				25	°C		-4	0°C to	o +85°	C	-5				
CHARACTERISTIC	SYMBOL	Vcc	Н	C	Н	CT	74	нС	74F	ICT	54	НС	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	<u> </u>
Propagation Delay,	t _{PLH}	2	}	95		_		120		-		145		-	
Input to Output	t _{PHL}	4.5	l	19		23		24	l	29		29		35	ns
(Fig. 1)		6		16		_	ļ	20				25		<u> </u>	
Transition Times	t _{TLH}	2		75		_		95		_		110			
(Fig. 1)	t _{THL}	4.5		15		15		19		19		22		22	ns
		6		13	}	_		16		_		19			
Input Capacitance	Cı		_	10		10		10		10		10		10	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _S	50% V _{CC}	1.3 V

Fig. 1 - Transition times and propagation delay times.

High-Speed CMOS Logic

8-Input NAND Gate

Type Features:

- Buffered inputs and outputs
- Typical propagation delay = 10 ns @ V_{CC}= 5V, C_L = 15 pF, T_A = 25°C

92CS-38426

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC30 and CD54/74HCT30 each contain an eight-input NAND gate in one package. They provide the system designer with the direct implementation of the positive logic 8-input NAND function.

The CD54HC/HCT30 are supplied in 14-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT30 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

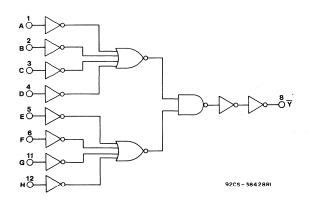
Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation

High Noise Immunity:

 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5~V$

■ CD54HCT/CD74HCT Types:


4.5 to 5.5 V Operation

Direct LSTTL Input Logic Compatibility

 $V_{\rm IL} = 0.8 \text{ V Max.}, V_{\rm IH} = 2 \text{ V Min.}$

CMOS Input Compatibility

 $I_1 \leq 1 \,\mu A \, @ \, V_{\text{OL}}, \, V_{\text{OH}}$

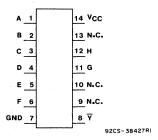
LOGIC DIAGRAM

	TRUTH TABLE														
		OUTPUT													
Α	В	С	Н	Ÿ											
L	Х	Х	Х	Х	Х	Х	Х	Н							
Х	L	Х	Х	Х	Х	X	Х	н							
Х	Х	L	X	Х	Х	Х	Х	н							
Х	х	Х	L	Х	Х	Х	Х	Н							
Х	Х	Х	Х	L	Х	Х	Х	Н							
Х	Х	Х	Х	Х	L	Х	Х	Н							
X	Х	Х	Х	Х	Х	L	Х	н							
X	Х	Х	Х	Х	Х	Х	L	н							
Н	н	Н	Н	Н	Н	Н	Н	L							

H = HIGH voltage level L = LOW voltage level

X = Don't care

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	. Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	
PACKAGE TYPE E. M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIM	IITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	\ \ \
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	oc °c
CD54 Types	-55	+125	3.0
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	1

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

		(CD74	HC30	CD54	HC30)					С	D74H	CT30	/CD54	нст	30				
CHARACTERISTIC		TEST IDITIONS		!	IC/54			HC PE	54I TY		TEST CONDITIO			CT/54 TYPE		74F TY		1	ICT PE	UNITS	
CHARACTERISTIC	V, V	I _o	V _{cc}	-	+25° C	;	-4 +85		-5 +12	5/ 5°C	V,	V _{cc}		+25° C	;	-40/ +85° C		-55/ +125°C		Julius	
	•	IIIA		Min	Тур	Max	Min	Max	Min	Max	ľ	•	Min	Тур	Max	Min	Max	Min	Max		
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5									
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_		to	2	-	-	2	-	2		v	
			6	4.2	<u>-</u>	_	4.2	_	4.2			5.5									
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5									
Input Voltage V _{II.}			4.5	_	_	1.35	_	1.35	_	1.35] -	to	-		0.8	-	0.8	-	0.8	V	
			6		_	1.8	_	1.8	_	1.8		5.5									
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	VıL	ļ									
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	1-	4.4	-	4.4	-	, v	
CMOS Loads	V _{IH}		6	5.9	_	l –	5.9	-	. 5.9	- :	V _{IH}										
	VIL										VIL										
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7		or.	4.5	3.98	-	-	3.84	-	3.7	-	V	
	VIH	-5.2	6	5.48	_	_	5.34	_	5.2		V _{IH}		<u> </u>		<u> </u>			<u></u>	ļ		
Low-Level	VIL		2	_	_	0.1	_	0.1	_	0.1	V _{IL}							-			
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V	
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}		<u> </u>		<u> </u>						
	V _{IL}										V _{IL}										
TTL Loads	or	4	4.5	_		0.26	_	0.33	_	0.4	or	4.5		-	0.26	-	0.33	-	0.4	, v	
	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}	_					<u> </u>		L		
Input Leakage	V _{cc}										Any Voltage										
Current I,	or		6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5		-	±0.1	-	±1	-	±1 .	μΑ	
	Gnd					<u></u>					& Gnd										
Quiescent	V _{cc}										V _{cc}			ĺ							
Device	or	0	6	-	-	2	-	20	-	40	or Gnd	5.5	-	-	2	-	20	-	40	μΑ	
Current I _{cc}	Gnd			<u> </u>	<u> </u>				<u> </u>		Gila		<u> </u>		<u> </u>			_			
Additional Quiescent Device Current per input pin: 1 unit load											V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ	

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
All	0.6

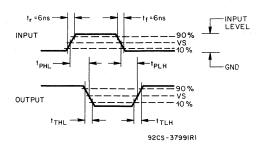
^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, input t, tr = 6 ns)

CHARACTERISTIC	CL	SYMBOL	TYP	ICAL	UNITS	
- TANA TENOTIO		STINDOL	HC	HCT	0.4113	
Propagation Delay, Data Input to Output \overline{Y} (Fig. 1)	15	t _{PLH} t _{PHL}	10	11	ns	
Power Dissipation Capacitance*	-	C _{PD}	25	26	pF	

 $^{{}^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per gate.

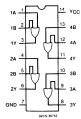
 $PD = V_{CC}^2 f_i (C_{PD} + C_L)$


f, = input frequency

C_L = output load capacitance

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, input t, t, = 6 ns)


				25	°C		-4	10°C t	o +85°	,C	-55°C to +125°C				4.5
CHARACTERISTIC	SYMBOL	Vcc	Н	С	HCT		T 74HC		74HCT		54HC		54HCT		UNITS
	l		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay,	t _{PLH}	2		130		_	11	165				195		_	
Input to Output	t _{PHL}	4.5		26		28		33		35		39		42	ns
(Fig. 1)		6		22	ŀ			28		-	197	33		l -	
Transition Times	t _{TLH}	2		.75		_		95		_		110		_	
(Fig. 1)	t _{THL}	4.5		15		15		19		19		22		22	ns
		6		13				16		<u> </u>		19			
Input Capacitance	Cı		_	10		10		10		10		10		10	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _S	50% V _{CC}	1.3 V

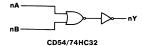
Fig. 1 - Transition times and propagation delay times.

High-Speed CMOS Logic

Quad 2-Input OR Gate

Type Features:

Typical propagation delay = 7 ns @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C (HC32)


FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT

The RCA-CD54/74HC32 and CD54/74HCT32 contain four 2-input OR gates in one package.

The CD54HC/HCT32 are supplied in 14-lead hermetic dualin-line ceramic packages (F suffix). The CD74HC/HCT32 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range):
 Standard Outputs 10 LSTTL Loads
 Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 μA @ V_{OL}, V_{OH}

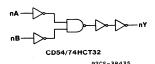


Fig. 1 - Logic diagrams.

TRUTH TABLE

INF	INPUTS						
nA	nB	nY					
L	L	L					
, ·L	Н	н					
н	L	н					
н	н	н					

H = HIGH voltage level. L = LOW voltage level.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E. M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

QUADAGTERIOTIO	Lii	LIMITS				
CHARACTERISTIC	MIN.	MAX.	UNITS			
Supply Voltage Range (For T _A = Full Package Temperature Range) V _{CC} :*		<u> </u>				
CD54/74HC Types	2	6	V			
CD54/74HCT Types	4.5	5.5	V			
DC Input or Output Voltage V _I , V _o	0	Vcc	V			
Operating Temperature T _A :						
CD74 Types	-40	+85	°C			
CD54 Types	-55	+125	°C			
Input Rise and Fall Times, t _r , t _t						
at 2 V	0	1000	ns			
at 4.5 V	0	500	ns			
at 6 V	0	400	ns			

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

				CD	74HC	32/C	D54H	C32					CD	74HC	T32/C	D54F	ICT3	2			
			TEST IDITIOI	NS.	1	IC/54 TYPE		74F	-	54H		TEST	ONS	74HCT/54HCT TYPE			74HCT TYPE		54HCT TYPE		
CHARACTERISTI	CS	V.	lo	Vcc	,	25° C	:	-46 +85		-5: +12:		Vı	V _{cc}		+25°C		-40/ +85° C				UNITS
		v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max	•
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage	VIH			4.5	3.15	_		3.15	_	3.15	_	_	to	2		_	2	-	2	-	٧
				6	4.2	_		4.2	_	4.2	_		5.5								
Low-Level				2			0.5	_	0.5		0.5		4.5								
Input Voltage	V_{IL}	1	•	4.5	<u> </u>		1.35		1.35	_	1.35	_	to	-	_	0.8	-	0.8	-	0.8	٧
				6			1.8		1.8	_	1.8		5.5					<u> </u>			
High-Level		VIL		2	1.9			1.9	_	1.9	_	· V _{IL}									
Output Voltage	VoH	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	-	4.4	-	V
CMOS Loads		ViH		6	5.9	_	_	5.9	_	5.9	_	ViH									
		VIL				1						VIL									2.5
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	-	3.7	-	V , ,
		VIH	-5.2	6	5.48	_	_	5.34	_	5.2	_	ViH							-		
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	VıL									
Output Voltage	Vol	or	0.02	4.5	_		0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	-	0.1	_	0.1	٧
CMOS Loads		ViH		6	_		0.1	_	0.1	_	0.1	ViH									
		VIL		Ť			Ī					Vil									
TTL Loads		or	4	4.5	1_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26		0.33	_	0.4	v
TTE Education		VIH	5.2	6	<u> </u>	_	0.26	_	0.33	_	0.4	ViH		1							
Input Leakage Current	l _i	V _{cc} or Gnd	0.2	6	_	-	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	_	_	±0.1	_	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{cc}										Vcc						60		40	ه ن
		or Gnd	0	6	-	-	2	-	20	-	40	or Gnd	5.5	_		2	-	20	_	40	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load	Δlcc*			<u></u>	•							V _{cc} -2.1	4.5 to 5.5	-	100	360	_	450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
All Inputs	1.5

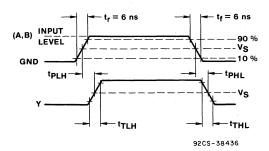
^{*} Unit load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ} \text{ C}, \text{ Input } t_n, t_i = 6 \text{ ns}$)

CHARACTERISTIC		0744001	TYPICA	TYPICAL VALUES			
CHARACTERISTIC	C∟ pF	SYMBOL	54/74HC	54/74HCT	UNITS		
Propagation Delay	4.5	t _{PLH}	_				
A, B to Y	15	t _{PHL}	/	9	ns		
Power Dissipation Capacitance	_	C _{PD} *	22	22	pF		

^{*} C_{PD} is used to determine the dynamic power consumption, per gate.

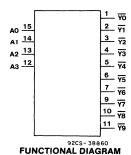
 $P_D = f_i V_{CC}^2 (C_{PD} + C_L)$ where:


 f_i = input frequency.

C_L = output load capacitance.

V_{cc} = supply voltage.

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t, = 6 ns)


		100	25°C				-40° C to +85° C				-55°C to +125°C				
CHARACTERISTIC	SYMBOL	Vcc	нс		нст		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2		90		_		115		-		135		_	
A, B to Y	t _{PHL}	4.5	l.	18		24		23	-	30		27		36	ns
Figure 2		6		15]		20		_		23			
Transition Times	t _{TLH}	2		75		_		95		_		110		_	
	t _{THL}	4.5	-	15		15		19		19		22	-	22	ns
Figure 2	-	6		13		-		16		-		19		l –	
Input Capacitance	Cı	-	_	10	_	10	_	10	-	10	_	10	_	10	рF

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _s	50% V _{cc}	1.3 V

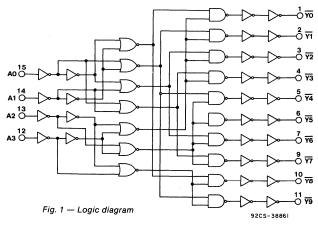
Fig. 2 - Transition times and propagation delay times.

High-Speed CMOS Logic

BCD to Decimal Decoder (1-of-10)

Type Features:

- Buffered inputs and outputs
- Typical propagation delay = 12 ns @ V_{CC} = 5V, C_L = 15 pF T_A = 25° C (HC42)


The RCA-CD54/74HC42 and CD54/74HCT42 BCD-to-Decimal Decoders utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL decoders with the low power consumption of standard CMOS integrated circuits. These devices have the capability of driving 10 LSTTL loads and are compatible with the standard 54LS /74LS logic family. One of ten outputs (low on select) is selected in accordance with the BCD input. Non-valid BCD inputs result in none of the outputs being selected (all outputs are high).

The CD54HC42 and CD54HCT42 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC42 and CD74HCT42 are supplied in 16-lead dual-in-line plastic packages (E suffix), and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range):
 Standard Outputs 10 LSTTL Loads
 Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:
- N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V ■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation

Direct LSTTL Input Logic Compatibility $V_{\rm IL} = 0.8 \ V$ Max., $V_{\rm IH} = 2 \ V$ Min. CMOS Input Compatibility $I_{\rm I} \le 1 \ \mu A \ @ \ V_{\rm OL}, \ V_{\rm OH}$

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} + 0.5 \text{V}$)	±20mA
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vcc $+$ 0.5V)	
DC V _{CC} OR GROUND CURRENT (I _{CC})	
POWER DISSIPATION PER PACKAGE (Pp):	
For $T_A = -40$ to $+60$ °C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H PACKAGE TYPE E, M	55 to +125° C
PACKAGE TYPE E, M	-40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to -150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	

RECOMMENDED OPERATING CONDITIONS:
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	UNITS			
CHARACTERISTIC	MIN.	MAX.	UNITS		
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{CC} :*					
CD54/74HC Types	2	6	V		
CD54/74HCT Types	4.5	5.5			
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V		
Operating Temperature T _A :					
CD74 Types	-40	+85	°C		
CD54 Types	-55	+125			
Input Rise and Fall Times t _r , t _f					
at 2 V	0	1000			
at 4.5 V	0	500	ns		
at 6 V	0	400			

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TRUTH TABLE

	lnp	uts						Outp	outs				
A3	A2	A1	A0	YO	<u>Y1</u>	¥2	<u>Y3</u>	<u>Y4</u>	Y5	Y6	¥7	<u>Y8</u>	Y9
L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L.	н	н	L	Н	H	Н	н	Н	Н	Н	н
L	L	H	L	н	Н	L.	Н	Н	Н	Η.	Н	Н	н
L	L	н	н	н	Н	н	L	Н	H	Н	Н	Н	н
L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	н	н
L	Н	L	Н	Η	Н	Н	Н	Н	L	Н	Н	Н	Н
L	Н	Н	L	Н	. "H	Н	Н	Н	Н	L	Н	Н	Н
L	H	Н	н	Н	Н	H	Н	Н	Н	Н	L	Н	н
Н	L	L	L	н	Н	H	Н	Н	Н	Н	Н	L	н
Н	L	L	Н	H	H	H	Н	Н	H	Н	Н	н	L
Н	L	Н	L	Τ	Н	Н	Н	Н	Н	Н	Н	Н	Н
н	L	Н	н	Н	Н	Н	Н	н	Н	Н	Н	Н	Н
н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Η٠	Н	H
н	Н	L	н	н	Н	Н	Н	Н	Н	н	Н	н	н
Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
Н	Н.	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

L = Low Voltage Level H = High Voltage Level

STATIC ELECTRICAL CHARACTERISTICS

			CD74	HC42	/CD54	HC42	2					c	D74H	CT42	CD54	нст	42			
		TEST CONDITIONS				HC S	741 TYI		54I TYF		TEST CONDITION			CT/54 YPES	-	74HCT TYPES		ı	ICT PES	UNITS
CHARACTERISTIC	V,	l _o	V _{cc}		+25° C		-40/ +85° C		-5 +12		V, V	V _{cc}	+25° C		:	1	-40/ +85° C		5/ 5°C	
	٧	mA	V	Min	Тур	Max	Min	Max	Min	Max	ľ	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	-	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	-	_	3.15		3.15		_	to	2	_	_	2	-	2	_	v
			6	4.2	_	_	4.2		4.2			5.5								
Low-Level			2	_	-	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	_	to	-	-	0.8	_	0.8	_	0.8	V
			6		_	1.8	_	1.8	_	1.8		5.5								
High-Level	VIL		2	1.9	_	_	1.9	_	1.9	_	VıL									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	-	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	V
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
	V _{IL}										V _{IL} .						7			
TTL Loads	or	-4	4.5	3.98		_	3.84		3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	V
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	V _{IL}		2		-	0.1	_	0.1	_	0.1	V _{IL}				ř.					
Output Voltage V _{OL}	or	0.02	4.5		_	0.1	_	0.1	_	0.1	or	4.5	-		0.1	-	0.1	-	0.1	V
CMOS Loads	V _{IH}		6	-	_	0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	4	4.5	-	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
	VIII	5.2	6	-	_	0.26	_	0.33	-	0.4	V _{IH}									
Input Leakage.	V _{cc}										Any									
Current I,	or		6	-	-	±0.1	-	±1	-	±1	Voltage Between	5.5	-	-	±0.1	_	±1	-	±1	μΑ
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}										V _{cc}									}
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	. 8	-	80	-	160	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current per input pin: 1 unit load \(\Delta \) Icc*											V _{cc} -2.1	4.5 to 5.5		100	360	-	450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
ALL	1

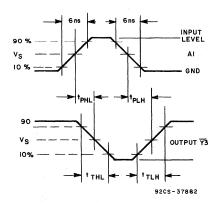
^{*}Unit Load is $\Delta l_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns)

CHARACTERISTIC	CL	SYMBOL	TYPI	UNITS	
ONANAOTENISTIC	(pF)	STWIBUL	54/74HC	54/74HCT	011110
Any Input to Y	15	t _{PHL} , t _{PLH}	12	14	ns
Power Dissipation Capacitance*	-	CPD	65	70	pF

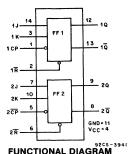
^{*}C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where:


f_i = input frequency.

C_L = output load capacitance.

V_{cc} = supply voltage.


SWITCHING CHARACTERISTICS (C $_L$ = 50 pF, input $t_{\rm r},\,t_{\rm f}$ = 6 ns)

				25	°C		-4	0°C to	o +85°	C	-5				
CHARACTERISTIC	SYMBOL	Vcc	V _{cc} H		С НС		74	НС	74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.]
Propagation Delay,	t _{PLH}	2	T-	150	_		_	190	-	T-	_	225	_	_	
Any Input to Y	t _{PHL}	4.5	-	30	_	35		38	-	44	_	45	-	53	ns
		6		26	_	_	-	33	_		_	38			İ
Output	t _{THL}	2		75		 	_	95	_	_	_	110	_		
Transition Time	-t _{TLH}	4.5	-	15		15	_	19	<u> </u>	19	-	22	_	22	ns
		. 6	-	13	_	_	_	16	_	_	_	19	_	_	
Input			_	T-	_	T —		_			_	T -	_		
Capacitance	Cı		_	10	_	10	_	10	_	10		10	-	10	pF
•			_	-	_	-		_	_	-		-	_	-	1

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _s	50% V _{CC}	1.3 V

Transition times and propagation delay times.

Dual J-K Flip-Flop with Reset Negative-Edge Trigger

Type Features:

- Hysteresis on clock inputs for improved noise immunity and increased input Rise and Fall times.
- Asvnchronous Reset
- Complementary Outputs
- Buffered Inputs
- Typical $f_{\text{max}} = 60 \text{MHz}$ @ $V_{\text{cc}} = 5 \text{V}$, $C_{\text{L}} = 15 \text{pF}$, $T_{\text{A}} = 25 ^{\circ} \text{C}$

The RCA-CD54/74HC73 and CD54/74HC773 utilize silicon-gate CMOS technology to achieve operating speeds equivalent to LSTTL parts. They exhibit the low power consumption of standard CMOS integrated circuits, together with the ability to drive 10 LSTTL loads.

These flip-flops have independent J, K, Reset and Clock inputs and Q and $\overline{\mathbf{Q}}$ outputs. They change state on the negative-going transition of the clock pulse. Reset is accomplished asynchronously by a low-level input. This device is functionally identical to the HC/HCT 107 but differs in terminal assignment and in some parametric limits.

The 54HCT/74HCT logic family is functionally as well as pin-compatible with the standard 54LS/74LS logic family.

The CD54HC73 and CD54HCT73 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC73 and CD74HCT73 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- © CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}, © V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁≤ 1 μA @ Vo_L, V_{OH}

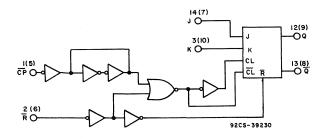
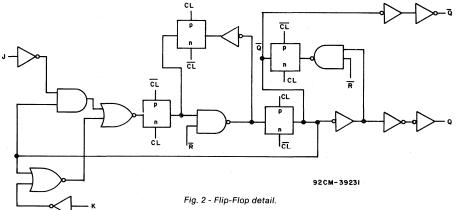


Fig. 1 - Logic diagram.

TRUTH TABLE (EACH FLIP-FLOP)

	INPL	OUT	PUTS		
R	CP	J	K	Q	ā
L	X	Х	Х	L	н
Н	$\overline{}$	L	L	No ch	ange
Н		Н	L	H	L
Н	~	L	Н	L	H
Н		Н	Н	Toggl	e
Н	Н	Χ	X	No ch	ange


H = High Level (Steady State) L = Low Level (Steady State)

X = Irrelevant

─ High-to-Low transition

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_I <-0.5 V OR V_I > V_{CC} + 0.5	
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V or $V_O > V_{CC}$ +	0.5 V)±20mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5V $<$ Vo $<$ Vo $<$ +	0.5 V)
DC Vcc OR GROUND CURRENT (Icc)	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
	Derate Linearly at 8 mW/°C to 300 mW
For $T_A = -55$ to $+100$ °C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
	40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s ma	x
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C
CL	N N -

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :* CD54/74HC Types CD54/74HCT Types	2 4.5	6 5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A : CD74 Types CD54 Types	-40 -55	+85 +125	°C
Input Rise and Fall Times tr, tr† at 2 V at 4.5 V at 6 V	0 0 0	1000 500 400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

†Applicable for all inputs except clock.

STATIC ELECTRICAL CHARACTERISTICS

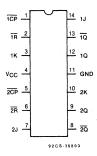
				CE	74HC	73, C	D541	1C73						CD7	4HC	Г73, C	D54F	1CT7	3		
			TEST IDITION:	1	74HC/54HC TYPES			HC PES	54I TYF		TEST CONDITIONS		I	CT/54 YPE		l	ICT PES	l l	ICT PES		
CHARACTERISTIC		V,	l _o	Vcc	-	+25°C	;	-4 +85		-5 +12	5/ 5°C	. V ₁	V _{cc}		+25°C	:	1	10/ 5°C	l	5/ 5°C	UNITS
		V	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5		_	1.5	_	1.5			4.5								
Input Voltage	VIH		:	4.5	3.15			3.15	_	3.15	_	_	to	2	_	-	2	-	2	-	٧
				6	4.2	_	_	4.2	_	4.2	_		5.5						<u> </u>		
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	· 		1.35		1.35	_	1.35	_	to	-	_	0.8	-	0.8	-	0.8	. v
				6	-	_	1.8		1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_		1.9	_	1.9		Vii.									
Output Voltage	V _{он}	or	-0.02	4.5	4.4	_		4.4	_	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	-	V
CMOS Loads		ViH		6	5.9		_	5.9	_	5.9	_	ViH									
		VIL										VIL									
TTL Loads		or	-4	4.5	3.98	_	_	3.84		3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	-	v
		VIH	-5.2	6	5.48		_	5.34	_	5.2	_	V _{IH}									
Low-Level		VIL		2	_	_	0.1	_	0.1	-	0.1	VIL				-					
Output Voltage	Vol	or	0.02	4.5	-	_	0.1		0.1		0.1	or	4.5	-	_	0.1	-	0.1	–	0.1	٧
CMOS Loads		VIH		6	_	_	0.1	_	0.1	_	0.1	V _{IH}						·			
		VIL										VıL									
TTL Loads		or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	_	0.26	-	0.33	-	0.4	v
		V _{IH}	5.2	6	_		0.26	_	0.33	_	0.4	VIH									
Input Leakage		Vcc										Any Voltage									
Current	h	or		6	-	-	±0.1	-	±1	_	±1	Between Vcc	5.5	-	_	±0.1	-	±1		±1	μΑ
		Gnd										& Gnd									
Quiescent		Vcc										Vcc									
Device		or	0	6	_	-	4	-	40	_	80	or	5.5	-	_	4	-	40	-	80	μΑ
Current	Icc	Gnd									 	Gnd				<u> </u>					
Additional Quiescent Device Current per input pin: 1 unit load	71cc*								÷			V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ

 $^{^{\}star}$ For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
All	0.3

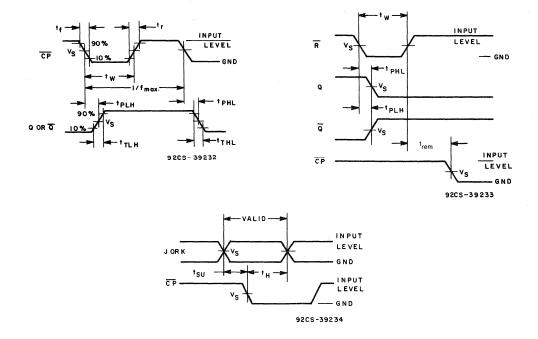
^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu \rm A$ max. @ 25°C.


SWITCHING CHARACTERISTICS (Vcc=5 V, T_A=25°C, Input t, t_f=6 ns)

			CL	TYP	ICAL	
CHARACTERISTIC		 SYMBOL	(pF)	нс	нст	UNITS
Propagation Delay CP to Q		t _{PLH} t _{PHL}	15	13	16	ns
CP to Q				13	15	ns
R to Q, Q ⊂				12	14	ns
CP Frequency		f _{max}	15	60	60	MHz
Power Dissipation Capac	itance*	C _{PD}	_	28	28	pF

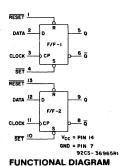
^{*} C_{PD} is used to determine the dynamic power consumption, per flip-flop. $P_D = C_{PD} \ V_{CC}^2 f i + \Sigma \ C_L V_{CC}^2 f o$ where f i = input frequency, f o = output frequency, $C_L = o$ utput load capacitance, $V_{CC} = s$ upply voltage.

PRE-REQUISITE FOR SWITCHING FUNCTION


			LIMITS												
		TEST		25	°C		-4	0°C te	+85	°C	-5	5°C to	+125	°C	
CHARACTERISTIC		CONDITION V _{CC}	Н	С	н)T	741	нС	74F	СТ	54	нс	54F	ICT	UNITS
		v	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Pulse Width	tw	2	80	_	_	_	100	_		_	120	_	_	_	
CP		4.5	16	-	16	_	20	-	20	-	24	-	24	_	ns
		6	14				17				20				
_		2	80	_	—	_	100		-	_	120	-		_	
R		4.5	16		18		20	_	23	-	24		27	_	ns
		6	14				17				20	_			
Set-up Time	tsu	2	80	-	_	_	100	-	—	—	120	_	_	-	
J, K to CP		4.5	16		16		20	_	20	-	24	_	24	-	ns
		6	14				17				20				
Hold Time_	tн	2	3		_		3	_	_		3	_	_	_	
J, K to CP		4.5	3	-	3		3	-	3	_	3	-	3	-	ns
		6	3				3			_	3				
Removal Time	TREM	2	80	_	-	_	100		—	_	120	-	_		
		4.5	16	_	12	_	20	_	15	-	24	-	18	-	ns
		6	14				17				20	_		_	
CP Frequency	f_{MAX}	2	6	-	-		5		_	_	4			_	
		4.5	30		30		25	_	25	-	20		20		MHz
		6	35				29				23	_			

TERMINAL ASSIGNMENT

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_f = 6 \text{ ns}$)


	<u> </u>	LIMITS												
	TEST		25	°C		-4	0°C to	o +85	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	CONDITION	н	нс		СТ	74	нС	74F	ICT	54	нс	54H	ICT	UNITS
	V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	2	_	160	_	_	_	200	_	_	_	240	_	_	-
t _{PLH} , t _{PHL}	4.5	_	32		38		40	-	48	-	48	_	57	ns
CP to Q	6		28				34				41			
	2	_	160	_	-	_	200		_	_	240			
CP to Q	4.5	_	32	_	36		40		45		48	-	54	ns
	6		28				34				41			
	2	_	145	-	_		180		_		220	-	_	
R to Q, Q	4.5	_	29	_	34		36	-	43	-	44	_	51	ns
	6	_	25	_			31	_			38		<u>L</u>	
Output Transition	2	_	75	_	_	_	95	_	_	_	110	_	_	
Time t _{TLH} , t _{THL}	4.5		15	-	15	l —	19		19		22	_	22	ns
	6	_	13	_			16	-	_		19	_	<u> </u>	
Input Capacitance C _I		_	10	l –	10	_	10	_	10	_	10	_	10	рF

	54/74HC	54/74HCT
Input Level	Vcc	3V
Switching Voltage, V _s	50% V _{cc}	1.3 V

Fig. 3 - Transition times, propagation delay times, and setup and hold times.

High-Speed CMOS Logic

Dual D Flip-Flop with Set and Reset Positive-Edge Trigger

Type Features:

- Hysteresis on clock inputs for improved noise immunity and increased input Rise and Fall times.
- Asynchronous Set and Reset
- **■** Complementary Outputs
- Buffered Inputs
- Typical $f_{\text{max}} = 50 \text{ MHz}$ @ $V_{\text{CC}} = 5V$, $C_{\text{L}} = 15 \text{ pF}$, $T_{\text{A}} = 25^{\circ}\text{C}$

The RCA-CD54/74HC74 and CD54/74HC774 utilize silicongate CMOS technology to achieve operating speeds equivalent to LSTTL parts. They exhibit the low power consumption of standard CMOS integrated circuits, together with the ability to drive 10 LSTTL Loads.

This flip-flop has independent DATA, SET, RESET and CLOCK inputs and Q and Q outputs. The logic level present at the data input is transferred to the output during the positive-going transition of the clock pulse. SET and RESET are independent of the clock and are accomplished by a low level at the appropriate input.

The 54HCT/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC74 and CD54HCT74 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC74 and CD74HCT74 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

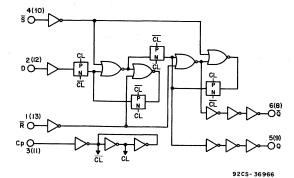


Fig. 1 - Logic Diagram

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to + 85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:

2 to 6 V Operation

High Noise Immunity:

NIL = 30%, NIH= 30% of Vcc; @ Vcc= 5 V

■ CD54HCT/CD74HCT Types:

4.5 to 5.5 V Operation

Direct LSTTL Input Logic Compatibility

 $V_{\rm IL}$ = 0.8 V Max., $V_{\rm IH}$ = 2 V Min.

CMOS Input Compatibility

 $I_1 \leq 1 \,\mu A \otimes V_{OL} V_{OH}$

TRUTH TABLE

	INPL	OUTPUTS					
SET	RESET	СР	D	Q	a		
L	Н	Х	Х	Н	L		
H	L ·	X	X	L	Н		
L	L	X	X	Н*	H*		
H	н		н	н	L		
Н	Н	~	L	L	Н		
Н	Н	L	Х	Q0	<u> </u>		

H = High Level (Steady State)

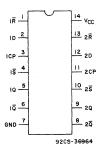
L = Low Level (Steady State)

X = Don't Care

NOTES: QO = the level of Q before the indicated input conditions were established.

*This configuration is nonstable, that is, it will not persist when set and reset inputs return to their inactive (high) level.

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc): (Voltages referenced to ground) -0.5 to + 7 V DC DRAIN CURRENT, PER OUTPUT (I_o) (FOR -0.5 V < V_o < V_{cc} + 0.5V) ±25mA DC V_{cc} OR GROUND CURRENT (I_{cc}) ±50mA POWER DISSIPATION PER PACKAGE (PD): OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE E, M-40 to +85°C STORAGE TEMPERATURE (T_{sto}) -65 to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max. +265°C Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead tips only +300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OUADA OTEDIATIO	LIN	IITS	LINUTO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{in} , V _{out}	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f ●			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

Applicable for all inputs except clock.

STATIC ELECTRICAL CHARACTERISTICS

		- 11-	CD74	HC74	/CD54	4HC74	4					С	D74H	CT74	CD5	4HCT	74			
CHARACTERISTIC	co	TEST NDITIONS		1	IC/54	-		HC PES	ı	HC PES	TEST CONDITION		1	CT/54		74F TYI	ICT PES	1	ICT PES	UNITS
OTANAO TENISTIO	V,	I _o	V _{cc}		+25° C	;		0/ 5°C		5/ 5° C	V,	V _{cc}		+25° C	;		0/ 6°C		5°C	UNITS
		mA.		Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	_	1.5	_	1.5	-		4.5							<u> </u>	
Input Voltage V _{II}			4.5	3.15	_	_	3.15	_	3.15	_		to	2	-	-	2	_	2	-	v
			6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level			2		_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{II}			4.5	_	_	1.35	_	1.35	-	1.35	-	to	-	1_	0.8	-	0.8	_	0.8	1 .
			6	_	-	1.8	_	1.8	_	1.8		5.5								
High-Level	ViL		2	1.9		-	1.9	_	1.9	_	V _I ,						-			
Output Voltage Von	or	-0.02	4.5	4.4		_	4.4	_	4.4	-	or	4.5	4.4	_	_	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	-	5.9	_	5.9	_	V _{IH}					-				
	V _{IL}										V _{IL}									
TTL Loads	or	-4	4.5	3.98		_	3.84	_	37		or	4.5	3.98	_	_	3.84	_	3.7	-	v
	V _{IH}	-5.2	6	5.48	_	-	5.34	_	5.2	_	V _{IH}									
Low-Level	V _{IL}		2		_	0.1	_	0.1		0.1	V_{ik}									
Output Voltage Vol	or	0.02	4.5	-	_	0.1	_	0.1	_	0.1	or	4.5		-	0.1	-	0.1	-	0.1	v
CMOS Loads	V _{IH}		6			0.1	_	0.1		0.1	V _{IH}									
	V _{IL}								-		V _{IL}									
TTL Loads	or	4	4.5	-	_	0.26	-	0.33	_	0,4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
	V _{IH}	5.2	6		_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	, V _{cc}										Any Voltage									
Current I	or		6	-	-	±0.1	_	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd										& Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	-	-	4	-	40		80	or	5.5	-	_	4	-	40	-	80	μΑ
Current I _{cc}	Gnd						-				Gnd							<u></u>		
Additional Quiescent Device Current per input pin:	in and the second of the secon	, 4									V _{cc} -2.1	4.5 to	_	100	360	-	450	_	490	μΑ
1 unit load △ lcc*										ĺ		5.5							1	

^{*}For dual-supply systems theoretical worst case (V $_{\rm I}$ = 2.4 V, V $_{\rm CC}$ = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
D	0.5
R	0.5
СР	0.7
উ	0.75

^{*}Unit Load is $\Delta l_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu{\rm A}$ max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, input t_r, t_f = 6 ns)

CHARACTERICTIC	CYMPOL	CL	TYP	ICAL	UNITS
CHARACTERISTIC	SYMBOL	(pF)	HC	нст	UNIIS
Propagation Delay	tры				
	t _{PHL}			1	
CP to Q, Q (Fig. 2)	1		14	14	
R to Q, Q (Fig. 3)		15	17	17	ns
S to Q, Q (Fig. 3)			17	17	1
CP Frequency	f _{MAX}	15	50	50	MHz
Power Dissipation Capacitance*	CPD	_	25	30	pF

 $^{^{\}star}\text{C}_{\text{PD}}$ is used to determine the dynamic power consumption, per flip-flop.

PD = $C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where: f_i = input frequency

fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage

PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM	ITS						
		TEST		25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	-
CHARACTERI	STIC	CONDITIONS	HC		H	CT ·	741	HC	741	ICT	54	НС	54F	1CT	UNITS
		V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Data to CP	tsu	2	60	_	Γ-	_	75	_	-	—	90	_	_	T -	
Set-up Time		4.5	12		12	-	15	-	.15	 -	18	_	18	- ·	İ
(Fig. 4)		6	10	l —	_	-	13	_	-	—	15		l —	-	l
Hold Time	tн	2	3	_	_	_	3	-	_	_	3	_	_	_	1
		4.5	3		3] —	3	_	3	_	3	_	3	-	
(Fig. 4)		6	3	_	—	-	3		_	—	3	-	_	-	
Removal Time	t _{REM}	2	30	_	_	_	40	_	_		45	_	-	_	ns
R, S to CP		4.5	6	-	6	_	8	_	8	—	9	_	9	-	1
(Fig. 3)		6	5	-	—	_	7	_	_	—	8	_	-	-	Ì
Pulse Width	tw	2	80	_	_	_	100	_	_	_	120		_	-	
R, S		4.5	16	_	16	_	20	—	20	—	24		24	-	
(Figs. 2, 3)		6	14	-	-	_	17			l —	20	_		-	
Pulse Width	tw	2	80	_	_	_	100	_	_	I —	120	I —	_	-	
CP		4.5	16	-	18	_	20	-	23	_	24	_	27	-	
(Figs. 2, 3)		6	14	_	-	_	17	_		-	20		 	_	
CP Frequency	f _{MAX}	2	6	T -	_	_	5	_	_	_	4	_	_	_	
		4.5	30	-	25	_	25	_	20	-	20	-	16	-	MHz
		6	35	-	-	_	29	_		_	23	_	-	-	

SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r,t_f = 6 ns)

			LIMITS												
CHARACTERISTIC		Voc		25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	UNITS
CHARACTERIS	, , ,	VCC	Н	C	н	CT	74	НС	74F	ICT	54	HC	54 +	ICT	פוואט
		(V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	_	175	T	I –	_	220	_	_	_	265	_	_	
CP to Q, Q	t _{PHL}	4.5	_	35	_	35		44	-	44	-	53		53	
(Fig. 2)		6	<u> </u>	30	_			37				45			
R, S to Q, Q	t _{PHL}	2	_	200	-	I -	_	250	-	-		300	_	-	ns
	t _{PLH}	4.5	-	40	l –	40	_	50	_	50	-	60	— ,	60	
(Fig. 3)		6	_	34		l —_		43				51			
Transition Times	t _{TLH}	2	T-	75		I -	T —	95	_		_	110	_	_	
1	t _{THL}	4.5	_	15	_	15	_	19		19	-	22	_	22	
(Fig. 5)		6		13_	_			16				19	_		
Input Capacitance	Cı			10	_	10	_	10	_	10		10	_	10	pF

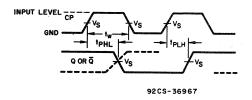


Fig. 2 — Clock pre-requisite and propagation delays.

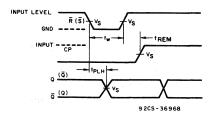


Fig. 3 — Reset or Set pre-requisite and propagation delays

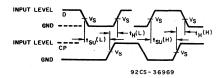


Fig. 4 — Data pre-requisite times.

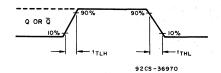
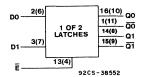



Fig. 5 — Output transition times.

	54/74HC	54/74HCT
INPUT LEVEL	v _{cc}	3V
v _s	50% V _{CC}	1.3V

Dual 2-Bit Bistable Transparent Latch

Type Features:

- True and Complementary Outputs
- Buffered Inputs and Outputs

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC75 and CD54/74HCT75 are dual 2-bit bistable transparent latches. Each one of the 2-bit latches is controlled by separate Enable inputs (1E and 2E) which are active LOW. When the Enable input is HIGH data enters the latch and appears at the Q output. When the Enable input (1E and 2E) is LOW the output is not affected.

The CD54HC/HCT75 are supplied in 16-lead hermetic dualin-line packages (F suffix). The CD74HC/HCT75 are supplied in 16-lead dual-in-line plastic package (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

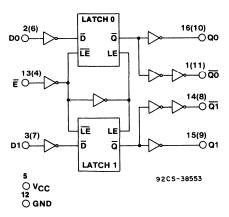


Fig. 1 - Logic Diagram

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/: -40 to + 85°C
- Balanced Propagation delay and Transition Times
- s Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noice Immunity: NiL = 30%, NiH = 30% of Vcc; @ Vcc = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility VIL = 0.8 V Max., VIH = 2 V Min. CMOS Input Compatibility II ≤ 1 µA @ VOL VOH

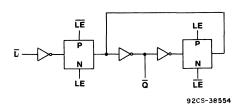
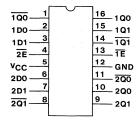


Fig. 2 - Latch Detail

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, lik (FOR VI < -0.5 V OR VI > Vcc +0.5V)	+ 20 mA
DC OUTPUT DIODE CURRENT, lok (FOR Vo < -0.5 OR Vo > Vcc +0.5 V)	+ 20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	+ 25 mA
DC Vcc OR GROUND CURRENT (Icc):	+ 50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING -TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	-40 to +85° C
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATUARE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	en en en en en en en en en en en en en e
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	MITS	UNITS
OTATAOTETIOTIO	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) Vcc.* CD54/74HC Types CD54/74HCT Types	2 4.5	6 5.5	V
DC Input or Output Voltage V ₁ V ₀	0	Vcc	V
Operating Temperature T _A : CD74 Types CD54 Types	-40 -55	+85 +125	°C
input Rise and Fall Times t _r , t _r at 2 V at 4.5 V at 6 V	0 0 0	1000 500 400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

TRUTH TABLE

Inp	uts	Out	puts
D	E	Q	Q
L	Н	L	Н
н	Н	т Н	L
X	L	Q0	Q0

H = High Level

L = Low Level

X = Don't Care

Q0 = The level of Q before the transition of \overline{E} .

STATIC ELECTRICAL CHARACTERISTICS

	CD74HC75/CD54HC75 CD74HCT75/CD54HCT75												-							
		TEST NDITIONS			IC/54			74HC TYPES		HC PES	TEST CONDITIONS		74HCT/54HCT S TYPES				ICT PES		ICT PES	
CHARACTERISTIC	V ₁	lo	+ 25° C			-40/ + 85° C			i5/ 25° C	V ₁	Vcc	+	+ 25° C			10/ 5°C		5/ !5° C	UNITS	
:	٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5		_	1.5	1	1.5	_		4.5								
Input Voltage VIH		'	4.5	3.15	-	-	3.15	-	3.15	_		to	2	_	-	2	-	2	_	
			6	4.2	_	-	4.2	-	4.2	-	_	5.5								٧
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage VIL			4.5	-	_	1.35	-	1.35	_	1.35		to	-	_	0.8		0.8	-	0.8	v
			6	_	_	1.8	_	1.8	-	1.8		5.5								
High-Level	ViL		2	1.9	-	_	1.9	_	1.9	_	Vil									
Output Voltage Vон	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	-	or	4.5	4.4	- '	-	4.4	-	4.4	_	· v
CMOS Loads	ViH		6	5.9	-	_	5.9	_	5.9	_	Vıн									
	VIL										VIL						Г			
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	-	or	4.5	3.98	_	_	3.84	_	3.7	. —	v
•	VIH	-5.2	6	5.48	_	_	5.34	_	5.2	_	ViH									
Low-Level	VIL		2	Ī-	_	0.1	_	0.1	_	0.1	VIL									
Output Voltage Vol.	or	0.02	4.5	_	_	0.1	-	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	· v
CMOS Loads	Vıн		6	_	_	0.1	<u> </u>	0.1	_	0.1	ViH									
	VIL										VIL									
TTL Loads	or	4	4.5	_		0.26	_	0.33	_	0.4	or	4.5	-	_	0.26	_	0.33	-	0.4	V
	Vıн	5.2	6	_	_	0.26	_	0.33	_	0.4	ViH									-
Input Leakage	Vcc										Any Voltage									. *
Current II	or		6	_	-	±0.1	-	<u>+</u> 1	_	<u>±</u> 1	Between Vcc	5.5	_	_	±0.1	_	±1	-	±1	
,	Gnd										& Gnd									Aιι
Quiescent	Vcc										Vcc									
Device	or	0	6	_	_	4	_	40	_	80	or	5.5	_	_	4	_	40	_	80	Au
Current Icc	Gnd										Gnd									
Additional guiescent				L								4.5								
Device Current per input pin: 1 unit load \(\Delta \text{Lcc}^* \)											Vcc-2.1	to 5.5	-	100	360	-	450	-	490	Ац

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
DO, D1	0.8
1E, 2E	1.2

^{*}Unit load is $\Delta l_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, T_A = 25°C, Input t_r, t_f = 6ns)

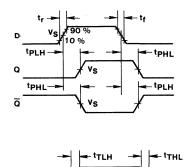
CHARACTER	ISTIC	C _L	SYMBOL	ТҮРІ	CAL	UNITS	
OTANAOTEN		(pF)	O'IMBOL	HC75	HCT75	0.4110	
Propagation Delay	D to Q	15	t PLH	9	11	ns	
est of the second	D to Q	15		10	11	ns	
	Enable to Q	15	t _{PHL}	10	11	ns	
	Enable to Q	15		11	12	ns	
Power Dissipation Capa	acitance*		Сро	46	46	pF	

^{*}C_{PD} is used to determine the dynamic power consumption per latch.

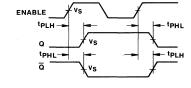
 $PD = V_{CC}^2 fi (C_{PD} + C_L)$

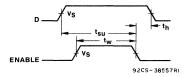
fi = Input Frequency

CL = Load Capacitance

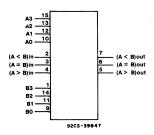

Vcc = Supply Voltage

PREREQUISITE FOR SWITCHING FUNCTION


		TEST						LIR	MITS						
		CONDITION	25°C				-4	0°C to	+ 85	°C	-55°C to + 125° C				
CHARACTERISTIC		V _{cc} V	НС		нст		74HC		74HCT		54	HC	54HCT		
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	UNITS
Pulse Width	tw	2	80		_		100		_		120				
Enable Input		4.5	16		16	1	20		20		24		24		ns
		6	14		_		17				20		_		
Setup Time	t su	2	60				75		_		90		_		
D to Enable		4.5	12		12		15		15	İ	18		18		ns
		6	10		_	l	13		_		15				
Hold Time	th	2	3		_		- 3		-		3		_		
Enable to D		4.5	3		3		3		3		3		3		ns
		6	3				3			1	3				-


SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_s, t_f = 6 ns)

	<i>P</i>			25	°C		-4	0°C te	o + 85	°C	-5				
			1	IC	н	нст		74HC		74HCT		нс	54НСТ		2.34
CHARACTERISTIC	SYMBOL	Vcc	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	UNITS
Propagation Delay	t PLH	2	_	110	_	_		140	_		_	165	_	_	
Data to Q	t _{PHL}	4.5	_	22		28	—	28	_	35	-	33	_	42	ns
		6	—	19	—	_	_	24	-	-	—	28		_	
Propagation Delay	t PLH	2	_	130	_	_	_	165		_	_	195			100
Data to Q	t _{PHL}	4.5		26	—	28	_	33		35	_	39	-	42	ns
		6	_	22	_	-		28	—		_	33	-	<u> </u>	
Propagation Delay	tplH	2	_	130		_	_	165	_	_	_	195	_		
Enable to Q	t _{PHL}	4.5		26	_	28	_	33	—	35	-	39		42	ns
	LPHL	6	_	22		_	_	28	l —	_		33		_	İ
Propagation Delay	t _{PLH}	2	_	130	_	_	_	165	_	_	_	195	_	_	
Enable to Q	t _{PHI}	4.5	_	26	—	30	_	33		38	_	39	-	45	ns
		6		22	—	_		28	<u> </u>	-	 -	33	_	-	
Output Transition	t TLH	2	1 -	75	1=	_	I —	95	Ī —	T -	_	110	_	_	
Time	t _{THL}	4.5	_	15	-	15	<u> </u>	19	-	19	.—	22	-	22	ns
		6	_	13	l —		l —	16	l –	—	_	19			
Input Capacitance	Cı			10	-	10	_	10	_	10	_	10	_	10	pF


92CS-38558

	54/74HC	54/74HCT
input Level	Vcc	3 V
Switching Voltage, V _S	50% VCC	1.3 V

High-Speed CMOS Logic

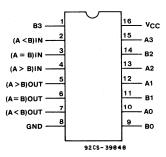
4-Bit Magnitude Comparator

Type Features:

- Buffered inputs and outputs
- Typical propagation delay = 13 ns (Data to Output) @ V_{CC} = 5V, C_L =15 pF, T_A = 25°C
- Serial or Parallel expansion without external gating.

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC/HCT85 are high-speed magnitude comparators that use silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.


These 4-bit devices compare two binary, BCD, or other monotonic codes and present the three possible magnitude results at the outputs (A > B, A < B, and A = B). The 4-bit input words are weighted (A0 to A3 and B0 to B3), where A3 and B3 are the most significant bits.

The HC/HCT85 are expandable without external gating, in both serial and parallel fashion. The upper part of the truth table indicates operation using a single device or devices in a serially-expanded application. The parallel expansion scheme is described by the last three entries in the truth table. Circuits for serial and parallel comparison of 12 bits are shown in figures 3 and 4, respectively.

The CD54HC/HCT85 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT85 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/HCU: -40 to +85°C
- Balanced Propagation Delay and Transition Times
 Significant Power Poduction Compared to LSTIL
- Significant Power Reduction Compared to LSTTL Logic ICs
 - Alternate Source is Philips/Signetics
 - CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V
 - CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility $V_{\rm IL}=0.8$ V Max., $V_{\rm IH}=2$ V Min. CMOS Input Compatibility $I_{\rm II}\le 1~\mu{\rm A}$ @ $V_{\rm OL}$, $V_{\rm OH}$

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE, (Vcc): (Voltages referenced to ground) -0.5 to +7 V DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ < V $_0$ POWER DISSIPATION PER PACKAGE (PD): OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE E, M-40 to +85°C STORAGE TEMPERATURE (Tstg).....-65 to +150°C LEAD TEMPERATURE (DURING SOLDERING): Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) B2 Bī BO ΑO В1 ÃЗ вз 92CL-39835RI Ã2 Fig. 1 - Logic diagram

TRUTH TABLE

	Compari	ng Inputs		Case	cading li	nputs		Outputs	3	
A3, B3	A2, B2	A1, B1	A0, B0	A>B	A < B	$\mathbf{A} = \mathbf{B}$	A>B	A < B	A = B	
A3 > B3	X	Х	Х	Х	Х	Х	Н	L	L	
A3 < B3	X	X	×	X	. X	X	L	Н	L	
A3 = B3	A2 > B2	X	X	Х	X	Х	Н	L	- L	1
A3 = B3	A2 < B2	X	l x	X	Х	X	L	Н	L	1
A3 = B3	A2 = B2	A1 > B1	X	х	Х	X	Н	· L	L	single device
A3 = B3	A2 = B2	A1 < B1	l x	X	X	Χ	L	Н	L	or
A3 = B3	A2 = B2	A1 = B1	A0 > B0	X	X	X	Н	E PL	L	series cascading
A3 = B3	A2 = B2	A1 = B1	A0 < B0	l x	Х	X	L	н	L	1
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L.	Н	L	L	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	Ĺ	L	Н	L	<i> </i>
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	н	L	L	Н	/
A3 = B3	A2 = B2	A1 = B1	A0 = B0	X	X	н	L	L	H	,
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	Н	L	L	L	L	parallel cascading
	A2 = B2		A0 = B0	ΙĹ	L	L	Н	Н	· L	[<i>)</i>

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIM	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :* CD54/74HC Types CD54/74HCT Types	2 4.5	6 5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	٧
Operating Temperature T₄: CD74 Types CD54 Types	-40 -55	+85 +125	°C
Input Rise and Fall Times t _r , t _r at 2 V at 4.5 V at 6 V	0 0 0	1000 500 400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		CD74HC85/CD54HC85											CD7	74HC	T85/C	D54F	ICT8	5		
	1	TEST IDITION:	s	1	IC/54		741 TYI		54I TYF		TEST CONDITIO		1	CT/54		74F TYI	ICT PES	1	ICT PES	UMITE
CHARACTERISTIC	V _I	lo	V _{cc}	-	+25°C	;	-4 +8		-5 +12		V,	V _{cc}	-	+25°C	;	ł	10/ 5°C	1	55/ 25°C	UNITS
	V	mA	Ľ	Min	Тур	Max	Min	Max	Min	Max	V	Ľ	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15		3.15	_	-	to	2	-	_	2	_	2	-	٧
			6	4.2	_		4.2	_	4.2	_		5.5								
Low-Level			2	_		0.5	_	0.5		0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35		1.35	_	1.35	_	to	-	-	8.0	-	0.8	-	8.0	٧
			6	_		1.8		1.8	_	1.8		5.5						L		
High-Level	VIL		2	1.9		_	1.9	_	1.9	_	VIL									
Output Voltage VoH	or	-0.02	4.5	4.4			4.4	L_	4.4	_	or	4.5	4.4	-	-	4.4	- 1	4.4	-	٧
CMOS Loads	ViH		6	5.9	<u> </u>		5.9	_	5.9	-	V _{IH}									
	VIL						-				Vil		-							
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	-	3.7	-	٧
	V _{IH}	-5.2	6	5.48		_	5.34	_	5.2		V _{IH}									
Low-Level	VIL		2			0.1	_	0.1	_	0.1	VIL									
Output Voltage Vol	or	0.02	4.5	_		0.1		0.1		0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	v
CMOS Loads	V _{IH}		6	-	_	0.1	_	0.1	_	0.1	Vін									
	VIL										VıL									
TTL Loads	or	4	4.5	_		0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	- .	0.4	· v
	V _{IH}	5.2	6		L_	0.26	_	0.33	_	0.4	ViH									
Input Leakage	Vcc										Any Voltage						1			
Current I _I	or		6	-	_	±0.1	-	±1	_	±1	Between V _{cc}	5.5	-	-	±0.1	_	±1	-	±1	μΑ
	Gnd										and Gnd									
Quiescent Device Current Icc	Vcc										Vcc									
Dovice Ourient Icc	or	0	6	-	<u> </u>	8		80	-	160	or	5.5	-	_	8	_	80	-	160	μΑ
	Gnd										Gnd		L_							
Additional Quiescent Device Current per input pin: 1 unit load Δlcc*											V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ

 $^{^{\}star}$ For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

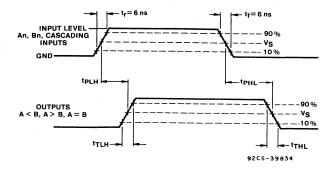
HCT Input Loading Table

Input	Unit Loads*
A0-A3, B0-B3 and (A=B) in	1.5
(A>B) in, (A <b) in<="" td=""><td>1</td></b)>	1

 $[^]t$ Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25 $^\circ C.$

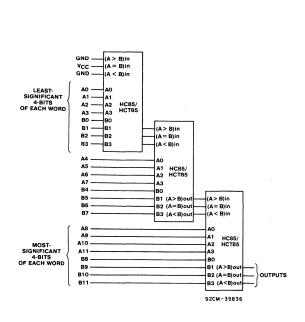
SWITCHING CHARACTERISTICS ($V_{cc} = 5 \text{ V}$, T_A 25°C, input t_r , $t_f = 6 \text{ ns}$)

			TYP	ICAL		
CHARACTERISTIC	SYMBOL	C∟ (pF)	54/74HC	54/74HCT	UNITS	
Propagation Delay An, Bn to (A>B)out, (A <b)out< td=""><td></td><td>15</td><td>16</td><td>15</td><td>ns</td></b)out<>		15	16	15	ns	
An, Bn to (A=B) out	t _{PLH}		14	17	ns	
(A>B)in, $(A,in (A=B)in to (A>B)out,(Aout$	t _{PHL}		11	12	ns	
(A=B) in to (A=B)out			9	13	ns	
Power Dissipation Capacitance*	СРО		24	26	pF	


 $^{^{\}bullet}C_{PD}$ is used to determine the dynamic power consumption, per package. $P_D=V_{CC}^2$ fi $(C_{PD}+C_L)$ where: fi=input frequency

C_L=output load capacitance

V_{cc}=supply voltage


SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_f = 6 \text{ ns}$)

,	TEST						LIM	ITS				LIMITS										
	CONDITION	25°C -40°C to +89							+85°C -55°C to +125°C													
CHARACTERISTIC	V _{cc}	Н	C	HCT		74HC		74HCT		54HC		54HCT		UNITS								
	v	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max									
Propagation Delay tplh	2	_	195	_	_	_	245	_	_	_	295	_	_									
An, Bn to (A>B)out, t _{PHL}	4.5	—	39	—	37		47	—	46		59	<u> </u>	56	ns								
(A <b)out< td=""><td>6</td><td>-</td><td>33</td><td>L</td><td>_</td><td>_</td><td>42</td><td><u> </u></td><td>_</td><td>_</td><td>50</td><td>_</td><td></td><td></td></b)out<>	6	-	33	L	_	_	42	<u> </u>	_	_	50	_										
	2	-	175	_	_	_	240	_	_	_	265	_	_									
An, Bn to	4.5	<u> </u>	35		40		44	_	50	_	53	_	60	ns								
(A=B)out	6	_	30	_	_	_	37	_	_	_	45	_										
(A>B)in, (A <b)in,< td=""><td>2</td><td>_</td><td>140</td><td>_</td><td></td><td>_</td><td>175</td><td>_</td><td></td><td></td><td>210</td><td>_</td><td>_</td><td></td></b)in,<>	2	_	140	_		_	175	_			210	_	_									
(A=B)in to	4.5		28	—	30		35	 	38	_	42	_	45	ns								
(A>B)out, (A <b)out< td=""><td>6</td><td></td><td>24</td><td></td><td>_</td><td>_</td><td>30</td><td></td><td>_</td><td>_</td><td>36</td><td>_</td><td></td><td></td></b)out<>	6		24		_	_	30		_	_	36	_										
	2	_	120	_	-	_	150	_	_	_	180	_	_									
(A=B)in to (A=B)out	4.5	—	24	_	31	_	30	l —	39	_	36	_	47	ns								
	6		20		_	_	26	_	_	_	31	_	_									
Output t _{TLH}	2	_	75	_	_		95	_	_		110		_									
Transition t _{THL}	4.5		15		15	_	19		19		22	_	22	ns								
Time	6	_	13	_	_	_	16	_	l –	_	19	_	—									
Input C _I																						
Capacitance		_	10	<u> </u>	10	_	10		10	_	10		10	pF								

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, V _s	50% V _{CC}	1.3 V

Fig. 2 - Transition times, propagation delay times

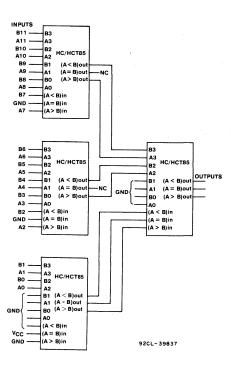
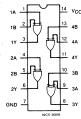



Fig. 3 - Series cascading --- comparing 12-bit words.

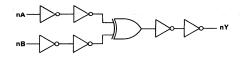
Fig. 4 - Parallel cascading --- comparing 12-bit words.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT

Quad 2 - Input EXCLUSIVE - OR Gate

Type Features:


- Four independent EXCLUSIVE OR gates
- Buffered inputs and outputs

Applications:

- Logical comparators
- Parity generators and checkers
- Adders/Subtracters

The RCA CD54/74HC86 and CD54/74HC786 contain four independent EXCLUSIVE-OR gates in one package. They provide the system designer with a means for implementation of the EXCLUSIVE-OR function.

The CD54HC/HCT86 are supplied in 14-lead cermetic dual-in-line packages (F suffix). The CD74HC/HCT86 are supplied in 14-lead plastic dual-in-line packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

92CS-38429

Fig. 1 - Logic diagram each gate.

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

TRUTH TABLE

INP	OUTPUT					
nA	nA nB					
L	L	L				
L	Н	н				
н	L	н				
н	Н	L				

H = HIGH voltage level.

L = LOW voltage level.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, IIK (FOR VI < -0.5 V OR VI > VCC +0.5 V)	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} + 0.5$ V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	±25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC}):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIR			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*				
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V	
Operating Temperature T _A :				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times, t _r , t _f				
at 2 V	0	1000	ns	
at 4.5 V	0	500	ns	
at 6 V	0	400	ns	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD74	HC8	S/CD	54HC	36					CD	74HCT86/CD54HCT86							
) 14 	co	TEST NDITIO	NS	1	IC/54 TYPE		741 TY		54F		TEST)NS	1	74HCT/54HCT TYPE		74HCT TYPE				
CHARACTERISTICS	Vı	lo	Vcc		+25° C	;	1 -	0/ 5°C	-5: +12!	5/ 5°C	٧	Vcc		+25°C		-40/ +85°				UNITS
	V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	V	Min	Тур.	Max	Min	Max	Min	Max	-
High-Level			2	1.5	_	<u> </u>	1.5	_	1.5	_		4.5								
Input Voltage V _{II}	, .		4.5	3.15	_	Ī_	3.15	_	3.15	_		to	2	_	_	2	_	2		, * · V
			6	4.2	_	Ī_	4.2	_	4.2	_		5.5								-
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage Vi	.		4.5	_	_	1.35	_	1.35	_	1.35	<u></u>	to	_	_	0.8	_	0.8	_	0.8	V
			6	_	_	1.8		1.8	_	1.8		5.5				١.				
High-Level	VıL		2	1.9	_		1.9	_	1.9	_	VıL									
Output Voltage Vo	or	-0.02	4.5	4.4	_	_	4.4		4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	v
CMOS Loads	VIH		6	5.9	_	_	5.9	_	5.9	_	ViH					:				
	Vil										V _{IL}						T			
TTL Loads	or	-4	4.5	3.98	_	_	3.84		3.7	_	or	4.5	3.98	_	_	3.84	_	3.7	_	v
	VIH	-5.2	6	5.48			5.34	_	5.2	_	ViH							ļ - · ·		
Low-Level	VIL		2	_	_	0.1	_	0.1	_	0.1	ViL		†		Ì		T	T -	-	
Output Voltage Vo	- 1	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads	VIH	0.02	6	_	_	0.1	_	0.1		0.1	ViH						•			
5.11.00 10100	VIL	1	۲					0.1		Ŭ.,	ViL					\vdash	1	\vdash	 	
TTL Loads	or	4	4.5	_		0.26		0.33		0.4	or	4.5	_		0.26	_	0.33	_	0.4	v
	VIH	5.2	6			0.26	<u> </u>	0:33		0.4	ViH	4.0			0.20		0.00		•	
Input Leakage Current li	V _{cc} or Gnd	0.2	6	_	_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	-		±0.1	_	±1		±1	μΑ
Quiescent Device Current Ico											V _{CC}									
	or Gnd	0	6	-	- -	2	-	20	_	40	or Gnd	5.5	-	-	2	-	20	-	40	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load ΔIc	·										V _{cc} -2.1	4.5 to 5.5	-	100	360		450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
All Inputs	1

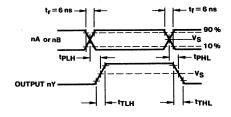
^{*} Unit load is ΔI_{cc} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ Input } t_i, t_i = 6 \text{ ns}$)

			TYPICAL	UNITS		
CHARACTERISTIC	C _L pF	SYMBOL	54/74HC	54/74HCT	OHITS	
Propagation Delay, Any Input	15	t _{PLH}	9	13	ns	
Power Dissipation Capacitance*	_	СРД	22	27	pF	

^{*} CPD is used to determine the dynamic power consumption, per gate.

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where:

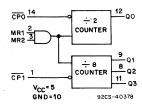

f_i = input frequency.

C_L = output load capacitance.

V_{cc} = supply voltage.

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, input t_n , $t_i = 6 \text{ ns}$)

				25	°C	7	-4	0°C to	o +85°	C	-5	5°C to			
CHARACTERISTIC	SYMBOL	Vcc	Vcc HC		нст		CT 74F		74F	74HCT		нс	54HCT		UNITS
·			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		120		-		150		_		180		_	
nA, nB to nY	t _{PHL}	4.5		24		32		30		40		36		48	ns
		6		20	Ì	_	-	26		_		31		_	
Output Transition	t _{TLH}	2		75		_		95		I –		110		_	
Time	t _{THL}	4.5		15		15	į .	19	-	19		22		22	ns
		6		13			-	16				19		_	
Input Capacitance	Cı			10	_	10	_	10		10		10	_	10	pF



92CS-3843OR2

	54/74HC	54/74HCT
Input Level	Vcc ,	3 V
Switching Voltage, V _s	50% V _{CC}	1.3 V

Fig. 2 - Transition times and propagation delay times.

High-Speed CMOS Logic

4-Bit Binary Ripple Counter

Type Features:

- Can be configured to divide by 2, 8, and 16
- Asynchronous Master Reset

FUNCTIONAL DIAGRAM

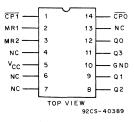
The RCA-CD54/74HC93 and the CD54/74HC793 are high-speed silicon-gate CMOS devices and are pin-compatible with low power Schottky TTL (LSTTL). These 4-bit binary ripple counters consist of four master-slave filip-flops internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate clock input (CP0 and CP1) to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Qn outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

A gated AND asynchronous master reset (MR1 and MR2) is provided which overrides both clocks and resets (clears) all flip-flops.

Because the output from the divide-by-two section is not internally connected to the succeeding stages, the device may be operated in various counting modes.

In a 4-bit ripple counter the output Q0 must be connected externally to input $\overline{CP1}$. The input count pulses are applied to clock input $\overline{CP0}$. Simultaneous frequency divisions of 2, 4, 8, and 16 are performed at the Q0, Q1, Q2, and Q3 outputs as shown in the function table. As a 3-bit ripple counter the input count pulses are applied to input $\overline{CP1}$.

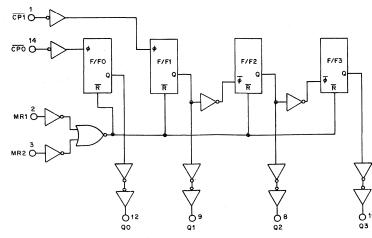
Simultaneous frequency divisions of 2, 4, and 8 are available at the Q1, Q2, and Q3 outputs. Independent use of the first flip-flop is available if the reset function coincides with the reset of the 3-bit ripple-through counter.


The CD54HC93 and CD54HCT93 are supplied in 14-lead hermetic dual-in-line frit-seal ceramic packages (F suffix). The CD74HC93 and CD74HCT93 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity:

N_{IL}=30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V


NIL—30% NIH—30% Of Vcc, @ Vcc—3 V CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I_I≤1 µA @ Vo_L, Vo_H

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

	DC SUPPLY-VOLTAGE, (Vcc):
0.5 to +7 V	(Voltages referenced to ground)
±20 mA	DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5\ V$ OR $V_i > V_{CC} + 0.5\ V)$.
V) ±20 mA	DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5
′)	DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V
±50 mA	DC Vcc OR GROUND CURRENT (Icc)
	POWER DISSIPATION PER PACKAGE (PD):
500 mW	For T _A = -40 to +60°C (PACKAGE TYPE E)
Derate Linearly at 8 mW/° C to 300 mW	For T _A = +60 to +85° C (PACKAGE TYPE E)
500 mW	For T _A = -55 to +100° C (PACKAGE TYPE F,H)
Derate Linearly at 8 mW/° C to 300 mW	For T _A = +100 to +125°C (PACKAGE TYPE F,H)
	For T _A = -40 to +70° C (PACKAGE TYPE M)
Derate Linearly at 6 mW/°C to 70 mW	For T _A = +70 to +125° C (PACKAGE TYPE M)
	OPERATING-TEMPERATURE RANGE (T _A):
55 to +125° C	PACKAGE TYPE F,H
40 to +85° C	PACKAGE TYPE E,M
65 to +150°C	STORAGE TEMPERATURE (Tstg)
	LEAD TEMPERATURE (DURING SOLDERING):
+265° C	At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.
	Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)
+300° C	with solder contacting lead tips only

FUNCTION TABLE (Q0 connected to CP1)

COUNT		OUT	PUTS	
COUNT	Q0	Q1	Q2	Q3
0	L	L	L	L
1	н	L	L	L
2	L	н	L	L
3	н	н	L	L
4	L	L	н	L
5	н	L	н	L
6	L	н	н	L
7	H	н	н	L
8	L	L	L	н
9	н	L	L	н
10	L	н	L	н
11	н	н	L	н
12	L	L '	н	н
13	н .	L	н	н
14	L	н	н	н
15	н	н	н	н

92CM-40368

MODE SELECTION

QO

OUTPUTS

count

Fig. 1 - HC/HCT93 logic diagram.

FF2&FF3

H = HIGH voltage level

L = LOW voltage level

RESET INPUTS

MR2

L

MR1

Fig. 2 - Flip-flop (0-3) logic detail.

STATIC ELECTRICAL CHARACTERISTICS

	CD74HC93/CD54HC93											CD74HCT93/CD54HCT93									
		1	TEST IDITION	48	1	IC/54 YPE		C 74HC 54HC TYPES TYPES			TEST CONDITIONS								ICT PES	UNITS	
CHARACTERIS	TIC	V _i	lo	Vcc	4	•25° C	;	-44 +85		1	5/ 5°C	V ₁	+25°C -40/ -55/ +25°C +85°C +125°C		+25°C						UNITS
		v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	v	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5			1.5		1.5			4.5								
Input Voitage	VIH			4.5	3.15	_		3.15	-	3.15	_	_	to	2	-	-	2	-	2	-	٧
				6	4.2	_		4.2	_	4.2	_		5.5	<u> </u>							
Low-Level				2		_	0.5	_	0.5	_	0.5		4.5	1						1	
Input Voltage	VIL			4.5	_	_	1.35		1.35	_	1.35	_	to	-	-	0.8	-	8.0	-	8.0	V
				6	_	_	1.8		1.8		1.8		5.5						L		
High-Level		VIL		2	1.9	_	<u> </u>	1.9		1.9		VIL		1							
Output Voltage	VoH	or	-0.02	4.5	4.4	_	<u> - </u>	4.4	_	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	-	V
CMOS Loads		V _{IH}		6	5.9	_	<u> </u>	5.9	-	5.9	_	V _{iH}	<u></u>	ऻ_				<u> </u>			
		VIL					L					VIL	l				ļ			į i	
TTL Loads		or	-4	4.5	3.98	_	<u> </u>	3.84		3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	V
		V _{IH}	-5.2	6	5.48	_	<u> </u>	5.34		5.2	_	V _{IH}						<u> </u>			
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	VIL		1				1			
Output Voltage	V_{OL}	or	0.02	4.5	_	_	0.1		0.1		0.1	or	4.5	-	_	0.1	_	0.1	-	0.1	· V
CMOS Loads		V _{IH}	ļ	6		_	0.1	_	0.1		0.1	ViH						<u> </u>		<u> </u>	
		VIL					ļ					VIL		1							
TTL Loads		or	4	4.5		_	0.26		0.33		0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
		V _{IH}	5.2	6	<u> </u>	_	0.26		0.33	_	0.4	V _{IH}							_		
Input Leakage		Vcc					1					Any								-	
Current	li j	or	1	6	_	_	±0.1	_	±1	_	±1	Voltage	5.5	1_	_	±0.1		±1	-	±1	μΑ
		Gnd										Between									
		 		-		<u> </u>	-					Vcc & Gnd	<u> </u>	-			-	<u> </u>		-	-
Quiescent		Vcc			1							Vcc		1	1						
Device Current	lcc	or Gnd	0	6	_	-	8	-	80	-	160	or Gnd	5.5	-	-	8	-	80	-	160	μΑ
Additional		Gild	L	L	L		L	L	L	L	L	Gild	 	 	-	-	 	 	<u> </u>		
Quiescent Device													4.5					l			
Current per input												V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ
pin: 1 unit load	Δlcc*												5.5	l		ļ			l	1	

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS*
CP0, CP1	0.6
MR1, MR2	0.4

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristics Chart, e.g. 360 μ A max. @ 25° C.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OLIADA OTERIOTIO	LIF	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)		1	
Vcc:*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times, tr,tr:			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input tr,tr=6 ns)

			TYPICAL	. VALUES	
CHARACTERISTIC		C _L (pF)	HC	HCT	UNITS
Propagation Delay: CP0 to Q0 Output	t _{PLH} t _{PHL}		10	14	
CP1 to Q3		15	21	24	ns
MRn to Qn Output			13	13	
Power Dissipation Capacitance*	СРД		25	25	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per counter.

 $P_D = C_{PD} V_{CC}^2 fi + \sum C_L V_{CC}^2 f_o$ where $f_i = input frequency$

fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage.

PRE-REQUISITE FOR SWITCHING FUNCTION

								LIMITS								
		TEST	25°C -40°C to +85°C -55°C to +125°C										°C]		
CHARACTERISTI	С	CONDITIONS	Н	С	H	CT	74	74HC		ICT	54HC		54HCT		UNITS	
		V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
Maximum Clock	f _{MAX}	2	6	_		_	5	_	_	_	4	_	_	_		
Frequency		4.5	30	_	30		24	 	24		20	-	20	_	MHz	
		6	35	_	-	 -	28	_	_		24	—	_	_		
Clock Pulse Width	tw	2	80	_	_	_	100	_	_	_	120	_	_	_		
CP0, CP1		4.5	16	_	16	-	20	—	20	-	24	-	24	-	1	
		6	14	-	-	_	17		_	-	20	-	_	_		
Reset Pulse Width	tw	2	80		_		100	_	_	_	120	_	_	_	1	
		4.5	16	_	16	_	20	_	20	-	24	_	24		ns	
		6	14	_		_	17	_	_	_	20	_	_	_		
Reset Removal Time	t _{REM}	2	50	_	_	_	65	Ī —	_	_	75	1-	_		1	
		4.5	10	-	10		13	_	13	-	15	_	15	_		
		6	9	_		_	11	-	_	_	13	-		_		

92CS-38371R2

CD54/74HC93 CD54/74HCT93

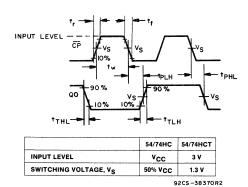


Fig. 3 - Pre-requisite, propagation-delay, and output-transition times

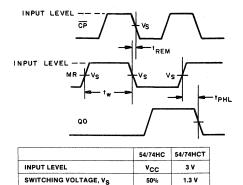
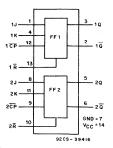



Fig. 4 - Master-Reset pre-requisite and propagation-delay times.

SWITCHING CHARACTERISTICS (CL=50 pF, Input tr,tr=6 ns)

				LIMITS												
						°C		+	10°C te				5°C to			
CHARA	CTERIS	TIC	VCC		C		СТ		НС		1CT		НС	54H		UNITS
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation De	lay	t _{PLH}	2	_	125	_	-	-	155		_	_	190		-	
Time:		t _{PHL}	4.5		25	-	34	-	31	-	43	_	38	l —	51	ļ ,
CP0 to Q0)	-	6		21				26	_			32			ļ ,
			2	T -	135	_	_	_	170	_		T-	205	—	[- I	ļ ,
CP1 to Q1			4.5	-	27	-	34	-	34		43	- <u> </u>	41	I -	51	
			_ 6	_	23	_	_		29			_	35		ىكا	! ,
			2	-	185	_	I —	T =	230	_	I —		280		T - 1	
CP1 to Q2	?		4.5	-	37	-	46	—	46		58	—	56	-	69	!
			6		31		_		39		L	_	48	_		ns
			2	_	245	_		$\Gamma = \Gamma$	305	_	I — I	_	370	I —		'' ^s
CP1 to Q3	1		4.5	-	49	_	58	-	61		73	_	74	1 - 1	87	١,
			6	_	42	L — i	L- I	l —	52	<u> </u>	l — I	_	63	I —	_	ļ ,
			2	_	155	_	_		195			Γ	235	_		
MR1, MR2	to Qn		4.5	-	31		33	I —	39	! —	41		47	I —	50	
			6		26	_			33		<u> </u>	_	40	l —	_	l
Output Transition	on	t _{THL}	2	_	75	_	—	T	95	_	-	_	110	_	<u> </u>	
Time		t _{TLH}	4.5	1 - I	15	۱ – ۱	15	I — ,	19	-	19	۱ — ۱	22	I — ,	22	
			6		13	_	_		16	<u></u> ,	<u> </u>	_	19		L- I	
Input Capacitan	nce	Cı			10		10		10		10		10		10	pF

High-Speed CMOS Logic

Dual J-K Flip-Flop with Reset

Negative-Edge Trigger

Type Features:

- Hysteresis on clock inputs for improved noise immunity and increased input Rise and Fall times.
- Asynchronous Reset
- Complementary Outputs
- Buffered Inputs
- Typical $f_{\text{max}} = 60 \text{ MHz}$ @ $V_{\text{CC}} = 5V$, $C_{\text{L}} = 15 \text{ pF}$, $T_{\text{A}} = 25^{\circ}C$

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC107 and CD54/74HCT107 utilize silicon-gate CMOS technology to achieve operating speeds equivalent to LSTTL parts. They exhibit the low power consumption of standard CMOS integrated circuits, together with the ability to drive 10 LSTTL loads.

These flip-flops have independent J, K, Reset and Clock inputs and Q and \overline{Q} outputs. They change state on the negative-going transition of the clock pulse. Reset is accomplished asynchronously by a low-level input.

This device is functionally identical to the HC/HCT73 but differs in terminal assignment and in some parametric limits.

The 54HCT/74HCT logic family is functionally as well as pin-compatible with the standard 54LS/74LS logic family.

The CD54HC107 and CD54HCT107 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC107 and CD74HC107 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features: Fanout (Over T

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
 - CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:

 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5$ V

■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

TRUTH TABLE (EACH FLIP-FLOP)

	INPL	JTS	OUTPUTS					
R	CP	J	к	Q	ā			
L	Х	Х	Х	L	Н			
н	_	L	L	No C	hange			
н	_	Н	L	н	L			
Н	~	L	Н	L	н			
н	_	Н	н	Toggle				
Н	Н	Х	Х	No Change				

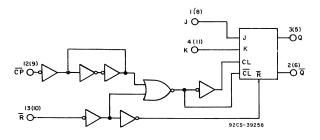
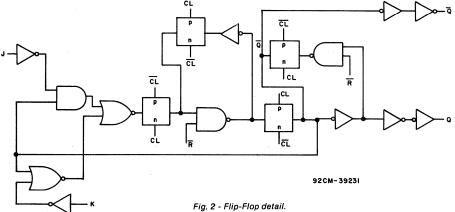



Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_I < -0.5$ V OR $V_I > V_{CC} + 0.5$ V)	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	
DC V _{CC} OR GROUND CURRENT, (I _{CC}):	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	•
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C
61	

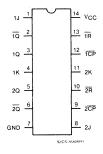
RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIM	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} : *			
CD54/74HC Types	2	6	٧
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r , t _f ●			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

- * Unless otherwise specified, all voltages are referenced to Ground.
- Applicable for all inputs except clock.

STATIC ELECTRICAL CHARACTERISTICS


				CD7	4HC1	07, C	D54H	C107				CD74HCT107, CD54HCT107									
		TEST CONDITIONS		l	74HC/54HC TYPES			74HC 54H TYPES TYPE			TEST CONDITION	NS	1	74HCT/54HCT TYPES		74HCT TYPES		54HCT TYPES			
CHARACTERISTIC		V,	Io Vcc		+25°(5° C		-40/ +85° C		5/ 5° C	V ₁	Vcc	+25° (:	l .	l l		5/ 5° C	UNITS
		v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	v	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5		1.5	_		4.5								
Input Voltage	V_{IH}			4.5	3.15	_		3.15	_	3.15	_		to	2	-	-	2	-	2	-	V
				6	4.2	_	_	4.2	_	4.2			5.5	ļ							
Low-Level				2	<u> </u>	_	0.5		0.5	_	0.5		4.5					-			
Input Voltage	VIL			4.5	_		1.35	_	1.35	_	1.35	_	to	-	-	0.8	_	0.8	-	0.8	V
		ļ		6	<u> </u>	_	1.8	_	1.8		1.8		5.5			ļ		ļ			
High-Level		VIL		2	1.9			1.9	ļ=_	1.9	<u> </u>	V _{IL}									
Output Voltage	V _{OH}	or	-0.02	4.5	4.4	_	<u> </u>	4.4	_	4.4	-	or	4.5	4.4	_	-	4.4	-	4.4	-	V
CMOS Loads		V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}		-			├	 		├	
TT: 1 1		VIL		1.5	0.00		-	3.84	-	3.7	_	VIL	4.5	3.98	_	_	3.84	_	3.7		V
TTL Loads		or	-4 -5.2	6	3.98 5.48	-		5.34	-	5.2		or	4.5	3.98	_	-	3.84	-	3.7	-	V
Low-Level		VIH	-5.2	2	5.46	=	0.1	5.34	0.1	5.2	0.1	V _{IH}	├-	┼		-		1		 	
Output Voltage	Vol	or	0.02	4.5	=	=	0.1	=	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads	VOL	VIH	0.02	6	_	+=-	0.1	=	0.1	=	0.1	V _{IH}	7.5			0.1		0.1		0	·
OWICO LOUGS		VIL		۲	<u> </u>	<u> </u>	0.1	├	10.1		0.1	VIL	 	 	 	 	 	 		-	
TTL Loads		or	4	4.5	_	 	0.26	<u> </u>	0.33	-	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v
		VIH	5.2	6	t_	_	0.26	-	0.33	_	0.4	V _{IH}					l				
Input Leakage		<u> </u>			T	T		T-	<u> </u>			Any	T	1	1	†	†	†		-	
Current	l,	Vcc							l		l	Voltage			İ			١.,		١.,	
		or		6	-	_	±0.1	-	±1	_	±1	Between	5.5	-	-	±0.1	-	±1	-	±1	μΑ
		Gnd										Vcc & Gnd						L			
Quiescent		Vcc										Vcc		1							
Device Current	Icc	or	0	6	-	-	4	-	40	-	80	or	5.5	-	-	4	-	40	-	80	μΑ
		Gnd					<u>L</u>					Gnd	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Additional													4.5								
Quiescent Device												V _{cc} -2.1	to	_	100	360	_	450	_	490	μA
Current per input													5.5		"						,
pin: 1 unit load	Δlcc*												L	<u> </u>	<u></u>	<u> </u>	<u> </u>	L	<u></u>	<u></u>	

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V_1 , V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

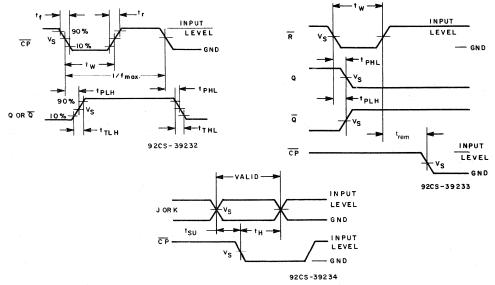
Input	Unit Loads *
All	0.3

^{*} Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

TERMINAL ASSIGNMENT

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input t, t=6 ns)

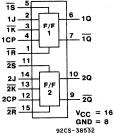
		Cr	TYP	ICAL	
CHARACTERISTIC		(pF)	нс	нст	UNITS
Propagation Delay CP to Q	t _{PLH} t _{PHL}	15	14	18	ns
CP to Q			14	17	ns
R to Q, Q			13	16	ns
CP Frequency	f _{max}	15	60	56	MHz
Power Dissipation Capacitance*	C _{PD}		31	30	ρF


^{*} C_{PD} is used to determine the dynamic power consumption, per flip-flop. $P_D = C_{PD}V_{Cc}^2f_i + \Sigma C_LV_{Cc}^2f_o$ where f_i = input frequency, f_o = output frequency, C_L = output load capacitance, V_{Cc} = supply voltage.

PRE-REQUISITE FOR SWITCHING FUNCTION

- : :	·						LIM	IITS						
CHARACTERISTIC	TEST		25	°C	-	-4	0°C to	o +85°	c	-55°C to +125°C				UNITS
CHARACTERISTIC		нс		нст		74HC		74HCT		54HC		54HCT		ONTO
	V _{cc} V	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Pulse Width tw	2	80	-	_	_	100	_	_	_	120	_		_	
CP	4.5	16	-	18	-	20		23	—	24	-	27	-	ns
	. 6	14				17				20		_	_	
	2	80	-	_	_	100	-	-	—	120	-	_		
R	4.5	16		24	-	20	_	30		24	-	36	-	ns
	6	14		_	_	17	_	_	_	20				
Set-up Time t _{su}	2	100	-	_	-	125	_	_	_	150	-	-	-	
J, K to CP	4.5	20	-	20	-	25	_	25	_	30	_	30	-	ns
	6	17				21			<u> </u>	26		_		
Hold Time t _H	2	3	_	-	_	3	-	-	-	3	-	-	-	
J, K to CP	4.5	3	-	5	-	3	_	5	-	3	-	5		ns
	6	3				3	<u></u>			3		L-		
Removal Time t _{rem}	2	60	-	-	_	75	-	_	-	90	-	_		
	4.5	12	-	12		15	-	15	-	18	-	18	_	ns
	6	10			_	13				15				
CP Frequency f _{max}	2	6	_	_	-	5	_	-	-	4	_	_	-	
	4.5	30	-	28	-	25	_	22	-	20	-	19	-	MHz
	6	35		<u> </u>	<u> </u>	29	<u> </u>			23	<u> </u>	_		

SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r , t_f = 6 ns)


			LIMITS												
		TEST	25° C				-4	0°C to	o +85°	, C	-55° C to +125° C				UNITS
CHARACTERISTIC		CONDITION	нс		нст		74HC		74HCT		54HC		54HCT		UNITS
		V _{cc}	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Propagation	t _{PLH}	2	_	170	_	_	_	215	_	<u> </u>	_	255	_	_	
Delay	t _{PHL}	4.5	-	34	_	43	_	43		54		51		65	ns
CP to Q		6	-	29	-	<u> </u>	_	37		_	_	43	_	_	
		2	_	170	_		-	215	_			255	_	_	
CP to Q		4.5	_	34	-	40	-	43	-	50	-	51	-	60	ns
		6	-	29	-	_	-	37	_			43		_	
		2	_	155	_	_	_	195	_	_	-	235		-	
R to Q, Q		4.5	-	31		38	-	39	-	48	-	47	-	57	ns
		6	-	26			_	33	_		_	40			
Output	t _{TLH}	2	-	75	_		_	95	_	-		110		_	
Transition	t _{THL}	4.5	-	15	-	15	-	19	-	19	_	22	-	22	ns
Time	-	6	_	13	_			16			_	19		_	
Input Capacitance	Сі		_	10	_	10		10	_	10	_	10	_	10	pF

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _s	50% V _{cc}	1.3 V

Fig. 3 - Transition times, propagation delay times, and setup and hold times.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Dual J-K Flip-Flop with Set and Reset

Type Features:

- Positive-Edge triggered
- Asynchronous Set and Reset
- 60 MHz Typical Maximum Clock Frequency
 © V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C
- Typical Propagation Delay = 18 ns @ V_{cc} = 5V, C_L = 15pF, T_A = 25° C
- Schmitt Trigger Clock Inputs

The RCA-CD54/74HC109 and CD54/74HCT109 are dual J- \bar{K} flip-flops with set and reset. The flip-flop changes state with the positive transition of Clock (1CP and 2CP).

The flip-flop is set and reset by active-low \bar{S} and \bar{R} , respectively. A low on both the set and reset inputs simultaneously will force both Q and \bar{Q} outputs high. However, both set and reset going high simultaneously results in an unpredictable output condition.

The CD54HC109 and CD54HCT109 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC109 and CD74HC109 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffx).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads
- Bus Driver Outputs 15 LSTTL Loads Wide Operating Temperature Range: CD74HC/HCT: —40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- Atternate Source 1st Finings, Signetics
 CD54HC/CD74HC Types:
 2 to 6 V Operation
 High Noice Immunity: N_{IL} = 30%, N_{IH} = 30% of Vcc
 @ Vcc = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 uA.@ Vol. VoH

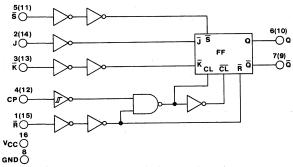
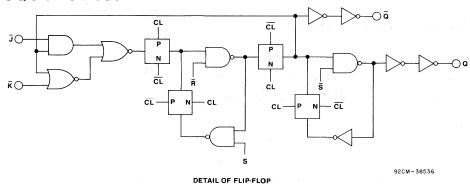



Fig. 1 - Logic diagram

TRUTH TABLE

			Inputs			Outputs
1	Š	Ŕ	СР	J	ĸ	Q Q
	L H H H H H	H	××× 	X X L H L H X	X X L H H	H L L H H* H* L H TOGGLE NO CHANGE H L NO CHANGE

*Unpredictable and unstable condition if both \overline{S} and \overline{R} go high simultaneously.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, IIK (FOR VI < -0.5 V OR VI > Vcc +0.5V)	
DC OUTPUT DIODE CURRENT, lok (FOR Vo < -0.5 OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (I ₀) (FOR -0.5 V < V ₀ < V _{CC} +0.5 V)	
DC Vcc OR GROUND CURRENT (Icc):	
POWER DISSIPATION PER PACKAGE (Pb): For Ta = -40 to +60°C (PACKAGE TYPE E)	State of the control of the state of the sta
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING -TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	65 +150°C
LEAD TEMPERATUARE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC		LIN	IITS	UNITS
CHARACTERISTIC		MIN.	MAX.	UNITS
Supply-Voltage Range (For TA = Full Package-Te	mperature Range) Vcc:*			
CD54/74HC Types		2 .	6	V
CD54/74HCT Types		4.5	5.5	
DC Input or Output Voltage V ₁ V ₀		0	Vcc	V
Operating Temperature T _A :				
CD74 Types		-40	+85	
CD54 Types		-55	+125	°C .
Input rise and Fall Times tr. tr				
All inputs Except CP	at 2 V	0	1000	i
	at 4.5 V	0	500	ns
	at 6 V	0	400	
Input Rise and Fall Times tr, tf				
For CP	at 2 V	0	unlimited	มร
	at 4.5 V	0		
	at 6 V	0		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			D741	1C109	/ (CD54I	HC10	9		CD74HCT109 / CD54HCT109																				
	со	TEST NDITIONS	3	111	HC/5			HC PES	_	HC PES	TEST CONDITIONS		TEST CONDITIONS										74HCT/54HCT				74HCT TYPES		HCT PES	UNITS
CHARACTERISTIC	V _I	lo	Vcc		+ 25°	С		10/ 5°C		55/ 25° C	VI	Vcc	+	25° C	;		5°C		55/ 25° C	UNITS										
	V	mA	\ \ \	Min	Тур	Max	Min	Max	Min	Max	v	V,	Min	Тур	Max	Min	Max	Min	Max	1.										
High-Level			2	1.5	_	T -	1.5	-	1.5	_		4.5																		
Input Voltage VIH			4.5	3,15	-	-	3.15	-	3.15	_	to v	to	2	-	-	2	-	2	-	v										
	-		6	4.2	-	-	4.2	-	4.2	-		5.5																		
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5																		
Input Voltage VIL			4.5	-	_	1.35	-	1.35	-	1.35		to	-	-	0.8	-	0.8	_	0.8	v										
			6	-	-	1.8	-	1.8	-	1.8	1	5.5				1.0														
High-Level	VIL		2	1.9	-	-	1.9	-	1.9	_	VIL																			
Output Voltage Von	or	-0.02	4.5	4.4	_	_	4.4	-	4.4	_	or	4.5	4.4	_	-	4.4	_	4.4	-	v v										
CMOS Loads	ViH		6	5.9	-	_	5.9	-	5.9	_	ViH									,										
	VIL										VIL																			
TTL Loads	or .	-4	4.5	3.96	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84		3.7	-	v										
	VIH	-5.2	6	5.48	<u> </u>	_	5.34	_	5.2	_	ViH			-																
Low-Level	VIL		2	-	_	0.1	_	0.1	_	0.1	VIL																			
Output Voltage Vol	or	0.02	4.5	-	_	0.1	-	0.1		0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v										
CMOS Loads	ViH	ŀ	6	_	_	0.1	_	0.1	_	0.1	Vıн		ļ.					ŧ												
	VIL										VIL																			
TTL Loads	or	4	4.5	-	_	0.26	_	0.33		0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ViH	5.2	6		-	0.26	_	0.33		0.4	ViH																			
Input Leakage	Vcc				-						Any Voltage																			
Current II	or		6		_	±0.1	_	±1	_	<u>±</u> 1	Between Vcc	5.5	-		±0.1	_	±1	_	±1											
4	Gnd										& Gnd									uА										
Quiescent	Vcc					-					V cc																			
Device	or	0	6	-	_	4	_	40	-	80	or	5.5	_	_	4	_	40	_	80	Αц										
Current Icc	Gnd										Gnd																			
Additional quiescent		<u> </u>	-		·							4.5							П											
Device Current Alcc'											Vcc-2.1	to	-	100	360	_	450	_	490	ДА										
1 unit load												5.5	1		1	l	1		1	i										

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
All	0.3

^{*}Unit Load is Alcc limit specified in Static Characteristics Chart, e.g., 360 µA max. @ 25°C

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA, = 25°C, Input tr,tr = 6 ns)

			Тур		
CHARACTERISTIC		CL (pF)	54/74HC	54/74HCT	UNITS
Propagation Delay, CP → Q, Q	t _{PLH}	15	14	17	ns
§ → Q	tецн	15	9	12	ns
S→Q	tрнц	15	13	19	ns
R̄ → Q	tрнц	15	15	19	ns
Ā → Q	tесн	15	14	15	ns
CP Frequency	fmax	15	60	54	MHz
Power Dissipation Capacitance*	C _{PD} *		30	33	pF

^{*}CPD is used to determine the dynamic power consumption, per flip-flop.

PD = $C_{PD} V_{CC}^2 fi + \sum V_{CC}^2 C_L$ fo where:

fi = Input Frequency

C_L = Output Load Capacitance

V_{cc} = Supply Voltage fo = Output Frequency

PREREQUISITE FOR SWITCHING FUNCTION

CHARACTERISTIC		TEST CONDITION Vcc		LIMITS											
			25° C				-40°C to +85°C				-55°C to +125°C				UNITS
			нс		нст		74HC		74HCT		54HC		54HCT		
		Vcc	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	.]
Set-up Time	tsu	2	80		_		100		_		120				1995
J, $ar{K}$ to CP		4.5	16		18		20		23		24		27		ns
		6	14				1.7				20				
Hold Time	th		5		-		5				5				
J, K to CP		4.5	5		3		- 5		3		5		3		ns
		6	5		<u> </u>		5				5				
Removal Time R̄, S̄ to CP	trem	2	80		-		100		-		120		_		ns
		4.5	16		18		20		23		24		27		
		6	14		_		17		_		20		-		
Pulse Width	tw	2	80		_		100		_		120		_		
CP, R̄, S̄		4.5	16		18		20		23		24		27		ns
		6	14		_		17				20	_			
CP Frequency	fмах	2	6		_		5		_		4				
		4.5	30		27		25		22		20		18		MHz
		6	35		-		29				23		_		

SWITCHING CHARACTERISTICS (CL = 50 pF, Input tr, tr = 6 ns)

				25	i°C		-4	0°C to	o + 85	°C	-5				
CHARACTERISTIC		Vcc	Н	IC	H	CT	74	НС	741	HCT	54	нс	54H	1CT	
CHARACTERISTIC		Vcc	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	UNITS
Propagation Delay,	t PHL	2		175		_		220		_		265			
CP → Q, Q	t _{PHL}	4.5		35		40		44		50		53		60	ns
		6		30				37				45			
		2		120		_		150		_		180		_	
Š→Q	t PLH	4.5		24		30		30		38		36		45	ns
		6		20				26				31			
		2		155		_		195		_		235	-	T	•
S̄ → Q̄	t PHL	4.5		31		45		39		56		47		68	ns
		6		26		-		33				40			
		2		185		-		230		_		280			
R → Q	t PHL	4.5		37		45		46		56		56		68	ns
		6		31			н .	39				48			
		2		170				215		_		255		-	
R → Q	t PLH	4.5		34		37	l	43		46		51	2.0	56	ns
		6		29		_		37				43			
	t _{TLH}	2		75		-		95		-	•	110			
Times	THL	4.5		15		15		19	Ì	19		22		22	ns
		6		13		_		16				19			
Input				_				-		-				_	
Capacitance	Cı			10		10		10	1	10		10		10	pF.
						_		_				_		_	

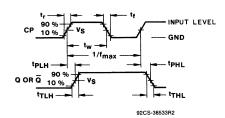


Fig. 2 - Clock to output delays and clock pulse width.

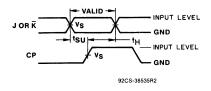


Fig. 4 - Data set-up and hold times.

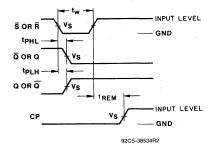
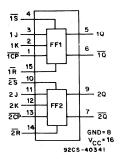



Fig. 3 - Reset or Set prerequisite and propagation delays.

	54/74 HC	54/74 HCT
Input Level	Vcc	3V
Switching Voltage, Vs	50% V cc	1.3V

High-Speed CMOS Logic

Dual J-K Flip-Flop with Set and Reset

Negative-Edge Trigger

Type Features:

- Hysteresis on clock inputs for improved noise immunity and increased input rise and fall times
- Asynchronous set and reset
- Complementary outputs
- Buffered inputs
- Typical $f_{\text{max}} = 60 \text{ MHz}$ @ $V_{\text{CC}} = 5 \text{ V}$, $C_{\text{L}} = 15 \text{ pF}$, $T_{\text{A}} = 25^{\circ} \text{ C}$

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC112 and CD54/74HCT112 utilize silicon-gate CMOS technology to achieve operating speeds equivalent to LSTTL parts. They exhibit the low power consumption of standard CMOS integrated circuits, together with the ability to drive 10 LSTTL loads.

These flip-flops have independent J, K, Set, Reset, and Clock inputs and Q and \overline{Q} outputs. They change state on the negative-going transition of the clock pulse. Set and Reset are accomplished asynchronously by low-level inputs.

The 54HCT/74HCT logic family is functionally as well as pin-compatible with the standard 54LS/74LS logic family.

The CD54HC112 and CD54HCT112 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC112 and CD74HCT112 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

TRUTH TABLE (EACH FLIP-FLOP)

		INPUTS			ОПТ	PUTS
Ŝ	R	CP	J	к	Q	ā
L	Н	Х	Х	Х	Н	L
Н	· L	X	Х	X	L	Н
L	L	×	Х	х	H *	l н*
Н	н	_	L	L	No Cl	nange
Н	Н	~	Н	L	н	L
Н	н	_	L	Н	L	Н
Н	Н	\sim	Н	н	Tog	gle
Н	Н	Н	X ,	×	No Ch	nange

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:

2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} ,

@ $V_{cc} = 5 V$

■ CD54HCT/CD74HCT Types:

4.5 to 5.5 V Operation

Direct LSTTL Input Logic Compatibility $V_{IL} = 0.8 \text{ V Max.}, V_{IH} = 2 \text{ V Min.}$

CMOS Input Compatibility

CMOS Input Compatibility

 $I_1 \leq 1 \ \mu A \ @ V_{OL}, \ V_{OH}$

L = Low steady state.

X = Irrelevant.

= High-to-Low transition.

^{*} Output states unpredictable if \overline{S} and \overline{R} go High simultaneously after both being low at the same time.

H = High steady state.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_0 < -0.5$ V OR $V_0 > V_{CC} + 0.5$ V)	+20 mA
DC DRAIN CURRENT, PER OUTPUT (I ₀) (FOR -0.5 V $<$ V ₀ $<$ V _{cc} +0.5 V)	+25 mA
DC V _{cc} OR GROUND CURRENT, (I _{cc}):	+50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	-40 to +85°C
STORAGE TEMPERATURE (T _{stg})	-65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max	+265°C
Unit inserted into a PC board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

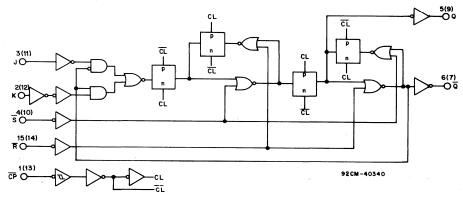


Fig. 1 - Flip-flop logic diagram.

RECOMMENDED OPERATING CONDITIONS:

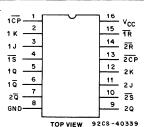
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LI			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Temperature Range) Vcc:*		1		
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O	0	Vcc	V	
Operating Temperature T _A :				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times, t _r , t _f ●				
at 2 V	0	1000	ns	
at 4.5 V	0	500	ns	
at 6 V	0	400	ns	

^{*} Unless otherwise specified, all voltages are referenced to Ground.

Applicable for all inputs except clock.

STATIC ELECTRICAL CHARACTERISTICS


				CD7	4HC1	12, C	D54H	C112					CD7	4нст	112, C	D54F	ICT1	12			
	CHARACTERISTICS		TEST IDITIOI	NS	ŀ	IC/54 TYPE		741 TY		54l	-	TEST		1	CT/54 TYPE			ICT PE		ICT PE	
CHARACTERISTI	cs	V _i	I _o	Vcc	,	•25° C	;	-44 +85		-5 +12		V ı	Vcc		∙25° C	•		0/ 5°C		5/ 5°C	UNITS
		v	mA	v	Min	Тур	Max	Min	Max	Min	Max	v	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage	VIH			4.5	3.15			3.15	_	3.15	_	_	to	2	_	-	2	-	2	-	٧
				6	4.2			4.2	_	4.2	_		5.5								
Low-Level				2			0.5	_	0.5		0.5		4.5								
Input Voltage	V_{IL}		1	4.5			1.35	_	1.35		1.35	· -	to	-	-	0.8		0.8	_	0.8	٧
				6		_	1.8	_	1.8		1.8		5.5	L							
High-Level		VIL		2	1.9		_	1.9		1.9	_	VIL									
Output Voltage	Vон	or	-0.02	4.5	4.4	_	_	4.4		4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	-	٧
CMOS Loads		ViH		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
		VIL										VIL									
TTL Loads		or	-4	4.5	3.98	_	_	3.84		3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	V
		ViH	-5.2	6	5.48			5.34	_	5.2	_	V _{IH}									
Low-Level		VIL		2		_	0.1		0.1	_	0.1	VIL									
Output Voltage	V_{OL}	oŗ	0.02	4.5	_		0.1		0.1	_	0.1	or	4.5	_	_	0.1	-	0.1	-	0.1	v
CMOS Loads		V _{IH}		6	_		0.1	_	0.1	_	0.1	V _{IH}									
		VIL										VIL									
TTL Loads		or	4	4.5	_	_	0.26		0.33	-	0.4	or	4.5	-	-	0.26		0.33	_	0.4	v
		V _{IH}	5.2	6		_	0.26	_	0.33	1	0.4	ViH									
Input Leakage Current	l ₁	V _{cc} or Gnd		6	_	_	±0.1	-	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	_		±0.1	_	±1	_	±1	μΑ
Quiescent Device		l										Vcc									
Current	Icc	V _{cc} or Gnd	0	6	_	_	4	_	40	-	80	or Gnd	5.5	-	-	4	_	40	-	80	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load	Δlcc*		<u> </u>		1	1				:		V _{CC} -2.1	4.5 to 5.5	-	100	360	_	450	-	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
1S, 2S	0.5
1K, 2K	0.6
1R, 2R	0.65
1J, 2J, 1CP, 2CP	1

^{*} Unit Load is ΔI_{cc} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

TERMINAL ASSIGNMENT

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t, = 6 ns)

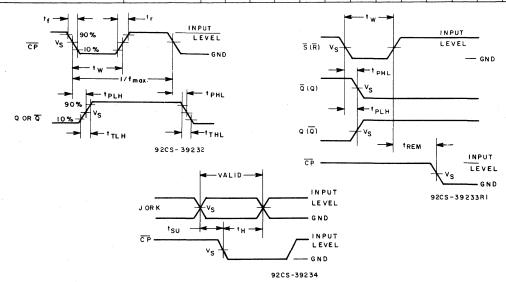
CHARACTERISTIC		TYPICAL	. VALUES	
CHARACTERISTIC	C _L (pF)	нс	нст	UNITS
Propagation Delay				
CP to Q, Q tplh, tphl	15	14	14	ns
\overline{S} to Q, \overline{Q}		13	13	ns
\overline{R} to Q, \overline{Q}] [15	14	ns
CP Frequency f _{max}	15	60	60	MHz
Power Dissipation Capacitance * C _{PD}	_	12	20	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per flip-flop.

 $P_D = C_{PD} V_{CC}^2 f_i + \sum_i C_L V_{CC}^2 f_o$ where: f_i = input frequency

C_L = output load capacitance

fo = output frequency


V_{cc} = supply voltage

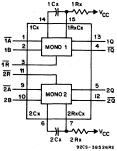
PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM	IITS						
CHARACTERIS	T10	TEST		25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	UNITS
CHARACTERIS	110	CONDITION	Н	С	н	нст		74HC		74HCT		нс	54HCT		UNIIS
and the second second		V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Pulse Width	tw	2	80	_	_	-	100	-	_	_	120	_	_	_	
CP	,	4.5	16		16	_	20	-	20	-	24	-	24	-	ns
		6	14	<u> </u>			17	_	_	_	20	_	_		
		2	80	_	_	_	100	_	_	_	120	_	-	_	
R, S		4.5	16	-	18	-	20	_	23	-	24		27	-	ns
		6	14			_	17	_			20	_			
Set-up Time	tsu	2	80	_	_	_	100	_	_	_	120	_	_	_	
J, K to $\overline{\sf CP}$		4.5	16	_	16	-	20	n - n	20	—	24		24	-	ns
		6	14	_		<u> </u>	17			.—	20	_		<u> </u>	
Hold Time	tн	2	0	-	-	-	0	—			0	-	_	_	
J, K to CP		4.5	0	—	3	-	0	_	3	—	0	_	3	_	ns
P. C.		6	0	_	_		0				0	_		_	
Removal Time	t _{REM}	2	80		- '	-	100		_	_	120	-	-	—	
R to CP		4.5	16	-	20	-	20	-	25	-	24	-	30	-	ns
S to CP		6	14		_		17				20		_		
CP Frequency	f _{max}	2	6	-		-	5	-	_	-	4	-	_	-	
		4.5	30	-	30		25	-	25	- 1	20	_	20	-	MHz
	:	6	35	<u> </u>			29	_	_	_	23	_			

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r, t_f = 6 ns)

			LIMITS														
	_	TEST		25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	UNITS		
CHARACTERIST	iC	CONDITION	Н	C	н	нст		74HC		74HCT		нс	54F	СТ	UNIIS		
		V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.			
Propagation	t _{PLH}	2		175	_			220	_	Ī —		265	_				
Delay	t _{PHL}	4.5	_	35	_	35	-	44	_	44	-	53	_	53	ns		
CP to Q, Q		6		30	_	_	_	37			_	45	_				
		2	_	155	_	-	_	195	-	_	_	235	_	_			
\overline{S} to Q, \overline{Q}		4.5	_	31	-	32	-	39		40	-	47	_	48	ns		
		6	_	26	_	-	-	33			<u> </u>	40	_	_			
		2	I —	180	_	_	_	225	-	_	-	270	_	-			
\overline{R} to Q , \overline{Q}		4.5	_	36	_	37	-	45		46	-	54		56	ns		
		6	-	31	-	-	_	38	_	_	_	46					
Output Transition	t _{TLH}	2	-	75	T-	— ·		95	_	_	_	110	-	_			
Time	t _{THL}	4.5	-	15	-	15	-	19	_	19	-	22	-	22	ns		
		6	-	13	-	-	_	16	-	-	<u> </u>	19	_				
Input Capacitance	Cı		-	10	_	10	-	10		10	_	10		10	pF		

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _s	50% V _{cc}	1.3 V


Fig. 2 - Transition times, propagation delay times, and setup and hold times.

File Number 1708

Advance Information/ Preliminary Data

CD54/74HC123, CD54/74HCT123 CD54/74HC423, CD54/74HCT423

High-Speed CMOS Logic

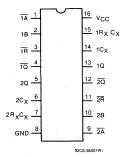
FUNCTIONAL DIAGRAM

Dual Retriggerable Monostable Multivibrators with Resets

Type Features:

- Overriding RESET Terminates Output Pulse
- Triggering From the Leading or Trailing Edge
- Q and Q Buffered Outputs
- Separate Resets
- Wide Range of Output-Pulse Widths
- Schmitt Trigger on both A and B inputs

The RCA-CD54/74HCT123,423 and CD54/74HCT123,423 are dual monostable multivibrators with resets. They are all retriggerable and differ only in that the 123 types can be triggered by a negative-to-positive reset pulse; whereas the 423 types do not have this feature. An external resistor (R_x) and an external capacitor (C_x) control the timing and the accuracy for the circuit. Adjustment of R_x and C_x provides a wide range of output pulse widths from the Q and $\overline{\rm Q}$ terminals. Pulse triggering on the $\overline{\rm A}$ and B inputs occur at a particular voltage level and is not related to the rise and fall times of the trigger pulses.


Once triggered, the output pulse width may be extended by retriggering inputs \overline{A} and B. The output pulse can be terminated by a LOW level on the Reset (R) pin. Trailing-edge triggering $\overline{(A)}$ and leading-edge triggering (B) inputs are provided for triggering from either edge of the input pulse. If either Mono is not used each input on the unused device $\overline{(A, B, and \overline{R})}$ must be terminated high or low.

The minimum value of external resistance, R_x is typically $5k\Omega$. The minimum value external capacitance, C_x, is 0 pF. The calculation for the pulse width is $t_w=0.45~R_xC_x$ at $V_{cc}=5~V$

The CD54HC123,423 and CD54HCT123,423 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC123,423 and CD74HCT123,423 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). All types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation
 Direct LSTTL Input Logic Compatibility
 V_{IL} = 0.8 V Max., V_{IH} = 2 V Min.
 CMOS Input Compatibility
 I₁ ≤ 1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

						4HCT 4HCT															
			TEST NDITIO	NS		IC/54			HC PES	541 TYS	HC PES	TEST CONDITIONS		74HCT/54HCT TYPES			74HCT TYPES		54HCT TYPES		
CHARACTERIS	TIC	V ₁	lo	V cc		+25° C	;		0/ 5° C	-5 +12	5/ 5° C	V ₁	Vcc		+25° C	;		0/ 5° C		5/ 5° C	UNITS
		v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	-	1.5	-		4.5								
Input Voltage	V_{IH}			4.5	3.15	_	_	3.15		3.15	_	_	to	2	–	-	2	-	2	_	, v
				6	4.2	_	_	4.2	_	4.2	_		5.5	<u> </u>							
Low-Level				2	<u> </u>		0.5	_	0.5		0.5		4.5								
Input Voltage	VIL			4.5			1.35	_	1.35		1.35		to	-		0.8	-	0.8		0.8	V
				6			1.8	_	1.8	_	1.8		5.5	ļ	ļ			<u> </u>	<u> </u>		
High-Level		VIL		2	1.9	_	<u> </u>	1.9		1.9	_	V _{IL}							1 1		
Output Voltage	V_{OH}	or	-0.02	4.5	4.4	_	_	4.4	<u> </u>	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	-	V
CMOS Loads		V _{IH}		6	5.9		_	5.9	<u> </u>	5.9		V _{IH}		ļ			ļ				
		V _{IL}		-					ļ			VıL									
TTL Loads		or	-4	4.5	3.98	_	_	3.84		3.7		or	4.5	3.98		-	3.84	-	3.7	_	V
		V _{IH}	-5.2	6	5.48	_	_	5.34	<u> </u>	5.2	_	V _{IH}		ļ							
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	Vill		İ							
Output Voltage	Vol	or	0.02	4.5	_		0.1	_	0.1		0.1	or	4.5	_	<u></u>	0.1	_	0.1	-	0.1	- V
CMOS Loads		V _{IH}		6		-	0.1	_	0.1	_	0.1	V _{IH}			├	-	 	├		-	
TTU		VIL		4.5	├		0.00		0.00		0.4	VIL		1		0.00					V
TTL Loads		or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5		-	0.26	-	0.33	-	0.4	· V
Input Leakage		V _{IH}	5.2	6	-		0.26	 	0.33		0.4	V _{IH} Any			├			-		-	
Current	I,	Vcc										Voltage				1	1	1			
Current	"	or		6	_	-	±0.1	_	±1	-	±1	Between	5.5	_	-	±0.1	-	±1	-	±1	μ A
		Gnd							1			V _{cc} & Gnd									
Quiescent		Vcc		-	+	\vdash	-	\vdash		-	-	V _{CC} & GIId	-		 		-	 	 		
Device Current	Icc	or	0	6		_	8	l _	80	_	160	or	5.5		_	8	_	80	_	160	μΑ
		Gnd	1				_					Gnd									
Additional				I	L	L	L	L	L	L						\vdash					
Quiescent Device													4.5								
Current per input												V _{cc} -2.1	to	-	100	360	_	450	-	490	μΑ
pin: 1 unit load	Δlcc*											*	5.5	1		1					

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
All Inputs	0.35

^{*} Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu{\rm A}$ max. @ 25° C.

HC/HCT123 TRUTH TABLE

Н	C	/H	C	42	23	TR	U.	TH	TA	۱B	L	E

	INPUTS	OUTI	PUTS	
Ā	В	R	Q	la
Н	Х	Н	L	Н
X	L	Н	L	н
L	1 1	н	17.	7.
	Н	н	Л	T
x	х	L	L	Н
L	H		1	

	INPUTS	OUTPUTS				
Ā	В	R	Q	Q		
Н	Х	Н	L	Н		
Х	L ·	Н	L	н		
L		Н		T.		
7 7	Н	Н		T		
X	X	L	L	н		
				<u> </u>		

H = High Level

L = Low Level

= Transition from High to Low

X = Irrelevant

= One Low Level Pulse

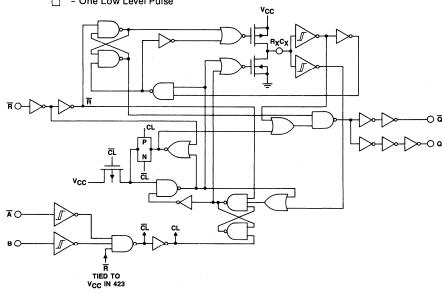


Fig. 1 - Logic diagram for HC/HCT123 and 423.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} +0.5$ V)	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vo $<$ +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT, (Icc):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

		LII	VIITS		
CHARACTERISTIC		MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Te	mperature Range) V _{CC} :*				
	CD54/74HC Types	2	6	V	
	CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O		0	V _{cc}	V	
Operating Temperature T _A :	CD74 Types	-40	+85	°C	
	CD54 Types	-55	+125	°C.	
Input Rise and Fall Times t _r , t _f on Input R	at 2 V	0	1000	ns	
	at 4.5 V	0	500	ns	
	at 6 V	0	400	ns	
Input Rise and Fall Times t_r,t_f on Input B and \overline{A}	at 2 V	0	Unlimited	ns	
	at 4.5	0	Unlimited	ns	
	at 6 V	0	Unlimited	ns	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

PREREQUISITE FOR SWITCHING FUNCTION

	:							LIM	ITS						
CHARACTERISTIC	CHARACTERISTIC			25	°C		-40°C to +85°C				-55° CC to +125° C				UNITS
		V cc	н	C	н	СТ	74	нс	74 F	ICT	54	нс	54H	НСТ	
			Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	
Minimum Input		2	100	T-	_	_	125		_		150		_	_	
Pulse Width	t_wL	4.5	20	-	20	-	25	-	25	-	30		30	_	ns
Ā		6	17	-	_		21	_	_		26		_	_	
		2	100	_	_	_	125	_	_	_	150	T -	_	_	
В	t_{WH}	4.5	20		20	-	25	-	25	-	30	-	30	_	ns
		6	17	l —	_	_	21	_	-		26	_	_	_	
		2	100		_	_	125	_	_	_	150	_	_	-	
R	t_wL	4.5	20		20	_	25		25	-	30		30	-	ns
		- 6	17	-	_		21	_			26				
	-	2	50	I	_	_	65	_	_		75		_		
Ā & B Hold Time	t _H	4.5	10	_	10	-	. 13		13	_	15	_	15	-	ns
		6	9	l –	_		11	_			13	_	_		
		2	50	_	_	_	65	_	_		75		-	_	
Reset Removal Time	t _{REM}	4.5	10		10	_	13		13	-	15	-	15		ns
		6	9				11			_	13		_		
Retrigger Time # $R_x = 10 \text{ K}\Omega$	t r⊤	5	50	Гур.	50	Гур.	63	Гур.	63	Гур.	76	Тур.	76	Гур.	ns
Output Pulse Width Q or \overline{Q} R _x = 10 K Ω , C _x = 10 nF	tw	5	40	50	40	50	38.7	51.3	38.7	51.3	38.2	51.8	38.2	51.8	us

[#]Time to trigger depends on the values of R_x and C_x. The output pulse width can only be extended when the time between the active-going edges of the trigger input pulses meet the minimum retrigger time requirement.

SWITCHING CHARACTERISTICS (Vcc = 5 V, T_A = 25° C, Input t_r, t_f = 6 ns)

			TYPICAL			
CHARACTERISTIC		C _L (pF)	54/74HC	54/74HCT	UNITS	
Propagation Delay						
Ā, B, R to Q	t _{PLH}	15	25	25	ns	
Ã, B, R to Q	t _{PHL}	15	26	27	ns	
Output Pulse Width						
$R_x = 10 \text{ K}\Omega$, $C_x = 10 \text{ nF}$		_	45	45	μs	
Pulse Width Match Between Circuits in the same Package						
$R_x = 10 K\Omega$, $C_x = 10 nF$		-	±2	±2	%	
Power Dissipation Capacitance *	C _{PD}	_	_	_	pF	

^{*} CPD is used to determine the dynamic power consumption, per multivibrator.

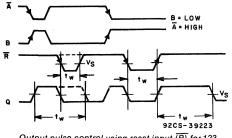
 $P_D = (C_{PD} + C_x) V_{CC}^2 f_i + \sum (C_L V_{CC}^2 f_o) \text{ where:}$

f_i = input frequency.

fo = output frequency.

C_L = output load capacitance.

 C_x = external capacitance.


 V_{CC} = supply voltage.

assuming $f_i \ll \underline{1}$

tw

SWITCHING CHARACTERISTICS ($C_L = 50$ pF, Input t_f , $t_f = 6$ ns, $R_x = 10$ K Ω , $C_x = 0$)

								LIM	IITS						
	SYM-		25° C					-40° C to +85° C				-55° C to +125° C			
CHARACTERISTIC	BOL	V _{cc}	н	С	н	СТ	741	нс	74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Trigger Propagation	tpLH	2	_	300	-	_	_	375	_	_	_	450	_	_	
Delay,		4.5	-	60	_	60	_	75	_	75	_	90	_	90	ns
A, B, R to Q		6	_	51	_	_	_	64	_	_		76	_	_	
		2	_	320	_	_		400	_	_	_	480	_	_	
\overline{A} , B, \overline{R} to \overline{Q}	t _{PHL}	4.5	_	64		68	_	80	_	85	l –	96	_	102	ns
		6	_	54	l –	_	_	68	-	_	_	82	_	_	
Reset Propagation	tpHL	2	_	215	_	_	_	270	_	_	_	325	_	_	
Delay,	tpLH	4.5	_	43	_	48	_	54	_ '	60	_	65	_	72	ns
R to Q or Q		6		37				46	_	-	_	55	_	-	
Output Transition	tTLH	2	_	75	_	_	_	95	I —	1_	_	110	_	_	
Time	t _{THL}	4.5	_	15	_	15	_	19	-	19	-	22	_	22	ns
		6	-	13	_	_	_	16		_	_	19		_	
Input Capacitance	Cı		-	10	_	10	_	10	-	10	_	10	_	10	pF

Output pulse control using reset input $\overline{(R)}$ for 123.

Output pulse control using reset input $\overline{(R)}$ for 423.

Ā	-	
В	→ \	
В		(R=HIGH)
Ā		
Q	v _s	t _r T
	Output pulse control	using retrigger pulse for 123 and 423

Output pulse control using retrigger pulse for 123 and 423. Fig. 2 - Triggering of One Shot by input \overline{A} or input B for a period t_w .

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

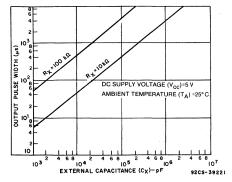


Fig. 3 - Typical output pulse width as a function of C_x for $R_x = 10 \text{ k}\Omega$ and 100 $k\Omega$.

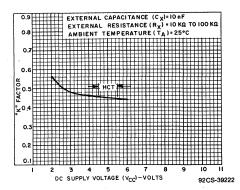
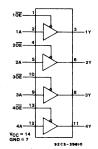



Fig. 4 - Typical "K" Factor as a function of Vcc.

High-Speed CMOS Logic

Quad Buffer; 3-State

Type Features:

- Separate output enable inputs
- 3-state outputs

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC125 and CD54/74HCT125 contain 4 independent 3-state buffers, each having its own output enable input, which when "HIGH" puts the output in the high impedance state.

The CD54HC125 and CD54HCT125 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC125 and CD74HCT125 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide Operating Temperature Range: CD74HC/HCT/HCU: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{cc}, @ V_{cc} = 5 V
- ČD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I, ≤ 1 μA @ V_{OL}, V_{OH}

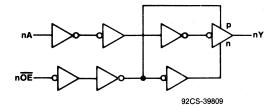


Fig. 1 - Logic diagram.

TRUTH TABLE

Inp	uts	Outputs
nA	nOE	nΥ
Н	L	Н
L	L	L
X	Н	Z

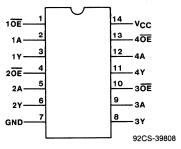
H = High Level

L = Low Level

X = Don't Care

Z = High Impedance, OFF State

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{1K} (FOR $V_1 \!<\! -0.5$ V OR $V_1 \!>\! V_{CC} + 0.5$ V) $\dots \dots$	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_{\text{O}} < -0.5 \text{V}$ OR $V_{\text{O}} > V_{\text{CC}} + 0.5 \text{V})$	±20mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vo $<$ + 0.5 V)	±35mA
DC V _{cc} OR GROUND CURRENT (I _{cc})	±70mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For $T_A = -40$ to $+70$ °C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIM	ITS			
CHARACTERISTIC	MIN.	MAX.	UNITS		
Supply-Voltage Range (For T_A = Full Package Temperature Range) V_{CC} :* CD54/74HC Types CD54/74HCT Types	2 4.5	6 5.5	v		
DC Input or Output Voltage V _{IN} , V _{OUT}	0	V _{cc}	V		
Operating Temperature T _A : CD74 Types CD54 Types	-40 -55	+85 +125	°C		
Input Rise and Fall Times tr, tr at 2 V at 4.5 V at 6 V	0 0 0	1000 500 400	ns		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

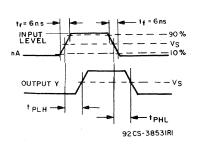
			CD74	HC12	.5/CE)54HC	125					CD	74HC	T125	/CD5	4HCT	125				
GUADAGTERIGTIG	ł	TEST IDITION	s	1	IC/54		1	HC PE	54I TY	HC PE	TEST CONDITIO		74HCT/54HCT		74HCT TYPE_						
CHARACTERISTIC	V ₁	lo mA	V _{cc}	_	+25°0	:	l	10/ 5°C		5/ 5°C	V,	V _{cc}		+25°C		-40/ +85°C		-55/ +125°C		UNITS	
	•	""A	V	Min	Тур	Max	Min	Max	Min	Max	•	•	Min	Тур	Max	Min	Max	Min	Max		
High-Level			2	1.5	_	_	1.5	_	1.5			4.5									
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	-	-	2		2	-	٧	
			6	4.2	_	_	4.2	_	4.2	_		5.5									
Low-Level			2			0.5	_	0.5	<u>_</u>	0.5		4.5		į							
Input Voltage V _{IL}			4.5		_	1.35	-	1.35	_	1.35	_	to	-	-	0.8	-	0.8	-	0.8	٧	
·			6	_	_	1.8	_	1.8	_	1.8		5.5				ļ					
High-Level	VIL		2	1.9	_		1.9	_	1.9		ViL										
Output Voltage V _{OH}	or	0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	٧	
CMOS Loads	V _{IH}		6	5.9		_	5.9	_	5.9		V _{ін}			<u></u>							
	VIL						ļ				VIL										
TTL Loads	or	-6	4.5	3.98		_	3.84		3.7		or	4.5	3.98	-	-	3.84	-	3.7	_	٧	
(Bus Driver)	V _{IH}	-7.8	6	5.48		_	5.34	_	5.2	_	V _{IH}										
Low-Level	VIL		2	_	<u> </u>	0.1		0.1	_	0.1	VIL										
Output Voltage VoL	or	0.02	4.5	_		0.1		0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	V.	
CMOS Loads	ViH		6	_		0.1		0.1	_	0.1	ViH										
	V _{IL}										VIL										
TTL Loads	or	6	4.5	-	_	0.26		0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	٧	
(Bus Driver)	V _{IH}	7.8	6	_		0.26		0.33	-	0.4	ViH									2.5	
Input Leakage	Vcc						·				Any Voltage										
Current I _I	or		6	-	_	±0.1	-	±1	_	±1	Between Vcc	5.5	-	-	±0.1	-	±1	-	±1	μΑ	
	Gnd										and Gnd										
Quiescent Device	Vcc										Vcc										
Current I _{cc}	or	0	6	-	-	8	-	80	_	160	or	5.5	-	-	8	-	80	-	160	μΑ	
	Gnd										Gnd		1								
Additional Quiescent Device Current per Input Pin: 1 Unit Load Δlcc*											V _{cc} -2.1	4.5 to 5.5	_	100	360	-	450	_	490	μΑ	
3-State Leakage Current loz	V _{IL} or V _{IH}	V _o =V _{cc} or Gnd	6	_	_	±0.5	-	±5	_	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	_	±5	_	±10	μΑ	

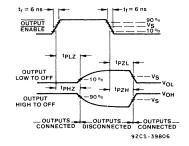
^{*} For dual-supply systems theoretical worst case ($V_1 = 2.4 \text{ V}$, $V_{CC} = 5.5 \text{ V}$) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
nA, nŌE	1

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25°C.


SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input tr, tr=6 ns)


		C _L	TYP	ICAL	
CHARACTERISTIC		pF	нс	нст	UNITS
Propagation Delay Time: (Fig. 2) nA to nY	t _{PHL} t _{PLH}	15	8	10	
Output Enabling Time	t _{PZL} , t _{PZH}	15	10	10	ns
Output Disabling Time	t _{PLZ} , t _{PHZ}	15	10	11	
Power Dissipation Capacitance*	СРР		29	34	pF

 $^{{}^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per channel. $P_D = V_{cc}^2 fi \ (C_{PD} + C_L)$ where: fi=input frequency $C_L = load$ capacitance $V_{cc} = supply$ voltage

SWITCHING CHARACTERISTICS (CL=50 pF, Input tr, tr=6 ns)

, , , , , , , , , , , , , , , , , , ,				25	°C		-4	l0°C to	+85	°C	-5	5°C to	+125	°C	l .
CHARACTERISTIC	SYMBOL	Vcc	HC		Н	СТ	74	нс	74F	ICT	54	нс	54HCT		UNITS
		٧	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	tplH	2	_	100				125	_	_		150	_	_	
Time nA to nY	t _{PHL}	4.5	_	20		25	-	25	-	31		30	_	38	l
(Fig. 2)		6	-	17				21	_		· . -	26	_		
Enable Delay	t _{PZH}	2	_	125	-	_		155	_	_		190		_	
Time	t _{PZL}	4.5	-	25	_	25	-	31	-	31		38	-	38	
(Fig. 2)		6	-	21				26		<u> </u>	_	32			
Disable Delay	t _{PHZ} , t _{PLZ}	2	Ι_	125	_	_	_	155	_	_	_	190	_	_	ns
Time		4.5	-	25	_	28	_	31	_	35		38	_	42	
		6	-	21	_		_	26	_	_	_	32	_	l —	
Output Transition	t _{TLH}	2	Ι	60		_	_	75	_	_	_	90	_	_	
Time	t _{THL}	4.5	-	12	-	12	_	15	_	15	_	18		18	l
		6	-	10				13		_	_	15		_	
Input Capacitance	Cı	_		10		10	_	10	_	10	_	10		10	
3-State Ouput Capacitance	C _o		-	20	-	20	_	20	_	20	_	20		20	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, V _S	50% V _{CC}	1.3 V

Fig. 2 — Transition and propagation delay times.

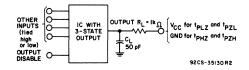
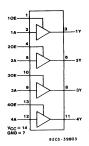



Fig. 3 - Three-state propagation delay test circuit.

High-Speed CMOS Logic

Quad Buffer; 3-State

Type Features:

- Separate output enable inputs
- 3-state outputs

FUNCTIONAL DIAGRAM

The RCA CD54/74HC126 and CD54/74HCT126 contain four independent 3-state buffers, each having its own output enable input, which when "low" puts the output in the high-impedance state.

The CD54HC/HCT126 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT126 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/HCU: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation
 - High Noise Immunity:
- N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V ■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min.

nOEO 92CS-39802

Fig. 1 - Logic Diagram

TRUTH TABLE

CMOS Input Compatibility I_I, \leq 1 μ A @ V_{OL}, V_{OH}

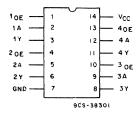
Inp	uts	Outputs
nΑ	nOE	nY
Н	Н	Н
L	Н	L
Х	L	Z

H = High Level L = Low Level

X = Don't Care

Z = High Impedance (Off-State)

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR V_i <-0.5 V OR V_i > V_{CC} + 0.5 V)	±20mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5 V)	±35mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±70mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	MITS			
CHARACTERISTIC	MIN.	MAX.	UNITS		
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :* CD54/74HC Types CD54/74HCT Types	2 4.5	6 5.5	V.		
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V		
Operating Temperature T _A : CD74 Types CD54 Types	-40 -55	+85 +125	°C		
Input Rise and Fall Times tr, tr at 2 V at 4.5 V at 6 V	0 0 0	1000 500 400	ns		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD74HC126/CD54HC126										CD	74HC	T126	CD54	4НСТ	126			
			TEST IDITION:	S		IC/54		741 TY		54HC TYPE CO		TEST CONDITION		i	T/54 YPE		74HCT TYPE		54H TY	ICT PE	
CHARACTERIS	TIC	V,	lo	Vcc	-	+25°C	;	-4 +85		1	5/ 5°C	V ,	Vcc	-	+25°C			10/ 5°C	-55/ +125°C		UNITS
		V	mA	\	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5		1.5			4.5								
Input Voltage	V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	-	-	2	-	2		٧
				6	4.2	_		4.2	_	4.2			5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_	_	1.35	_	1.35	_	1.35	,—	to	-	_	0.8		0.8	_	0.8	. V
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	VIL									
Output Voltage	Vон	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4		_	4.4	<u>-</u> -	4.4	_	V,
CMOS Loads		V _{IH}		6	5.9	_	_	5.9	Ī-	5.9	_	ViH									
		VIL										VIL									
TTL Loads		or	-6	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	_	٧
(Bus Driver)		V _{IH}	-7.8	6	5.48	_	-	5.34	_	5.2	_	. V _{IH}									
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	VIL									
Output Voltage	VoL	or	0.02	4.5	_	_	0.1	_	0.1		0.1	or	4.5	_	-	0.1	-	0.1	_	0.1	V
CMOS Loads		V _{IH}		6	-	_	0.1	_	0.1	_	0.1	V _{IH}									
		Vil										VIL									
TTL Loads		or	6	4.5		_	0.26	_	0.33		0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
(Bus Driver)		V _{IH}	7.8	6	_	_	0.26	_	0.33		0.4	V _{IH}									
Input Leakage		Vcc										Any Voltage									
Current	h	or		6	_	-	±0.1	_	±1	-	±1	Between V _{CC}	5.5	-	-	±0.1	-	±1	_	±1	μΑ
		Gnd										and Gnd		<u> </u>				<u> </u>	<u> </u>		
Quiescent		Vcc										V _{cc}									
Device		or	0	6	_	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Current	lcc	Gnd										Gnd			ļ			<u> </u>			
Additional Quiescent Device Current per input pin: 1 unit load	Δl _{cc} *											V _{cc} -2.1	4.5 to 5.5	_	100	360	-	450	_	490	μΑ
3-State Leakage Current	loz	V _{IL} or V _{IH}	V₀=Vcc or Gnd	6	_	-	±0.5	_	±5	-	±10	V _{IL} or V _{IH}	5.5	-		±0.5	-	±5	-	±10	μΑ

 $^{^{\}star}$ For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

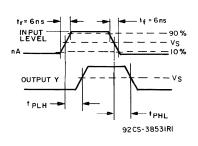
HCT Input Loading Table

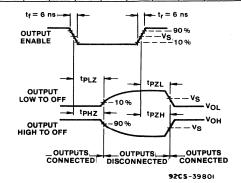
Input	Unit Loads*
nA, nOE	1

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25°C.

SWITCHING CHARACTERISTICS (Vcc=5 V, T_A=25°C, input t_r, t_i=6 ns)

	CL		TYP	ICAL	
CHARACTERISTIC	pF	SYMBOL	нс	нст	UNITS
Propagation Delay					
Data to Outputs	15	t _{РНС} , t _{РСН}	8	9	
Output Enabling Time	15	t _{PZL} , t _{PZH}	10	10	ns
Output Disabling Time	15	t _{PLZ} , t _{PHZ}	10	11	
Power Dissipation Capacitance*	_	C _{PD}	30	36	pF


^{*}C_{PD} is used to determine the dynamic power consumption, per multiplexer.


 $P_D = V_{CC}^2$ fi $(C_{PD} + C_L)$ where: fi=input frequency

C_L=load capacitance V_{cc}=supply voltage

SWITCHING CHARACTERISTICS (C_L=50 pF, Input t_r, t_f=6 ns)

				25	°C		-4	0°C to	o +85	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	СТ	74	нс	74F	ICT	54	нс	541	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	100	_	_	_	125	_	_	_	150			
Data to Outputs	t _{PHL}	4.5	_	20		24	_	25	_	30		30	_	36	
		6	_	17	_		_	21	l —		-	36			
Enable Delay	t _{PZH}	2	_	125			_	155	_			190	_	_	
Times	t _{PZL}	4.5	_	25	_	25		31		31	_	38	l —	38	
		6		21	_			26	_	_		32	_	_	
Disable	t _{PHZ}	2		125	_	_		155	_	_	_	190	_	_	ns
Delay Times	t _{PLZ}	4.5	-	25		28		31	_	35		38		42	
		6	_	21	—	_	_	26	_		_	32	_		
Output Transition	t _{TLH}	2	_	60	_	-	l –	75		_	_	90	_	_	
Time	t _{THL}	4.5	-	12		12	 —	15	_	15		18	_	18	
		6	_	10	_	_		13	_			15			
Input Capacitance	Ci			10		10	_	10		10		10	_	10	
3-State Output Capacitance	Со	_	_	20	_	20	_	20	_	20	_	20		20	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

Fig. 2 — Transition and propagation delay times.

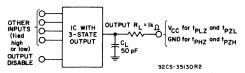
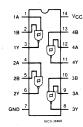
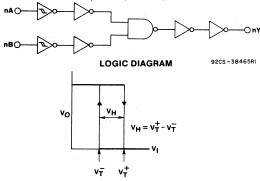
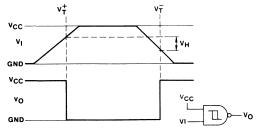



Fig. 3 - Three-state propagation delay test circuit.

High-Speed CMOS Logic

Quad 2-Input NAND Schmitt Trigger


Type Features:


- Unlimited input rise and fall times
- Exceptionally high noise immunity

FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT

The RCA-CD54/74HC132 and CD54/74HCT132 each contain four 2-input NAND Schmitt Triggers in one package.

The CD54HC132 and CD54HCT132 are supplied in 14-lead ceramic dual-in-line packages (F suffix). The CD74HC132 and CD74HCT132 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both devices are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:

 $N_{\rm HL} = 37\%$, $N_{\rm IH} = 51\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5~V$

■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation

Direct LSTTL Input Logic Compatibility

V_{IL} = 0.8 V Max., V_{IH} = 2 V Min.

CMOS Input Compatibility

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

TRUTH TABLE

	INP	UTS	OUTPUTS	
	nA	nB	nY	
	L	L	Н	H = High level
Ì	L	Н	Н	L = Low level
	Н	L	Н	
	Н	H	L	

92CM-38466

Fig. 1 - Hysteresis definition, characteristic, and test setup.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC} + 0.5$ V) .	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V $<$ V _o $<$ V _{cc} $+$ 0.5V)	±25mA
DC V_{cc} OR GROUND CURRENT (Icc)	±50mA
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For $T_A = +60$ to $+85$ °C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F. H)	500 mW
For T _A = +100 to -125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OLIADA OTERIOTIO	LIM	ITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	Unlimited	ns
at 4.5 V	0	Unlimited	ns
at 6 V	0	Unlimited	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			С	D74HC	132/CD	54HC1	32			CD74HCT132/CD54HCT132								
		TEST		74HC	/54HC	74	НС	54	HC	TES	г	74HCT	/54HCT	74F	ICT	54H	СТ	1
	СО	NDITIC	NS	TY	PE	TY	PE	TY	PE	CONDIT	ONS	TY	PE	TY	PE	TY	PE	
CHARACTERISTIC	V _I	I _O	VCC	<u> </u>		-4	0/	-5	5/	V ₁	VCC	-		-4	0/	-5	55/	UNITS
	v	mA	v	+25	5°C	+85	°C	+12	5° C	v	v	+25	5° C	+85	s° C	+12	5° C	
				Min	Max	Min	Max	Min	Max	1		Min	Max	Min	Max	Min	Max	+
Input Switch		<u> </u>	2	0.7	1.5	0.7	1.5	0.7	1.5	 		-	_	_		-		
Points V _T ⁺			4.5	1.7	3.15	1.7	3.15	1.7	3.15	1	4.5	1.2	1.9	1.2	1.9	1.2	1.9	+ v -
			6	2.1	4.2	2.1	4.2	2.1	4.2	1	5.5	1.4	2.1	1.4	2.1	. 1.4	2.1	1
		 	2	0.3	1	0.3	1	0.3	1			-	-		-	-	-	-
v _T -			4.5	0.9	2.2	0.9	2.2	0.9	2.2	1	4.5	0.5	1.2	0.5	1.2	0.5	1.2	- V
• 1			6	1.2	3	1.2	3	1.2	3	1	5.5	0.6	1.4	0.6	1.4	0.6	1.4	1
		 	2	0.2	1	0.2	1	0.2	1	-	-		-		 		-	
v _H			4.5	0.4	1.4	0.4	1.4	0.4	1.4	1	4.5	0.4	1.4	0.4	1.4	0.4	1.4	· v
, u			6	0.6	1.6	0.6	1.6	0.6	1.6	1	5.5	0.4	1.5	0.4	1.5	0.4	1.5	+ .
High-Level Output	V _T -	 	2	1.9		1.9		1.9	=	V _T -	1	-	-	-	-		-	+
Voltage Von	or.	-0.02	4.5	4.4	+	4.4	 	4.4	-	or	4.5	4.4	-	4.4	-	4.4	+	- V
CMOS Loads	V _T +		6	5.9	-	5.9	-	5.9	-	V _T +		+			-	-	-	1
	V _T	 	 - -	-	-	-	_	-		VT-		+	+		+=	+	+	
TTL Loads	or	-4	4.5	3.98	-	3.84		3.7	-	or	4.5	3.98	+	3.84		3.7		V
	V _T +	-5.2	6	5.48	-	5.34	-	5.2	-	V _T +		+-	+	-	-	-	+=-	1
Low-Level Output	V _T -	<u> </u>	2	-	0.1	-	0.1		0.1	V _T -		+	+	-	+=-	-	+	+
Voltage Vol	or	0.02	4.5	-	0.1		0.1	-	0.1	or	4.5	-	0.1	-	0.1	+	0.1	V -
CMOS Loads	V _T +	1	6		0.1	+	0.1	 	0.1	V _T +		+=-	+		+=-	 	+=	1
	V _T -	†	 	_	-	-	-	-	-	V _T -		 	+	-		†	-	+
TTL Loads	or	4	4.5	-	0.26	+=-	0.33	-	0.4	or	4.5	-	0.26	-	0.33	<u> </u>	0.4	1 v
	V _T +.	5.2	6		0.26	-	0.33	 	0.4	V _T +		+	+	-	-	-	+	1
	<u>-</u>	 	 		 		-	 	 	Any		†	+		-	†	 	
Input Leakage	Vcc									Voltage								
Current (or		6	_	±0.1		±1	_ :	±1	Between	5.5	_	±0.1		±1	-	±1	μΑ
·	Gnd	İ				İ	-			V _{CC} and		İ					1	
					ĺ				1	Gnd	1	1		ĺ			1	
Quiescent	V _{CC}	 	 			-	1	 	 	VCC	 	 	 		†	+	<u> </u>	1
Device	or	0	6	_	2	-	20	-	40	or	5.5		2	-	20	-	40	μΑ
Current I _{CC}	Gnd									Gnd					Ì			
Additional Quies-		1	<u> </u>	1	٠			1	-	 		Min T	ур Мах					†
cent Device													+-	1		1		
Current per										1 1	4.5				}			
Input Pin:										V _{CC} -2.1	to	- 10	00 360		450	-	490	μΑ
1 Unit Load ΔI_{CC}^*											5.5							
. 30											1	1 1			1	1	1	1

^{*}For dual-supply systems theoretical worst case (V_{\parallel} = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

	INPUT	UNIT LOADS*
1	nA, nB	0.6

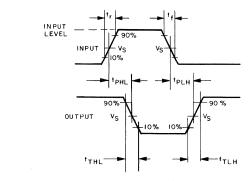
^{*}Unit load is Δl_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input $t_{\rm f}$, $t_{\rm f}$ = 6 ns)

CHARACTERISTIC	C _L	TYP	CAL	UNITS	
CHARACTERISTIC	(pF)	HC	нст	UNITS	
Propagation Delay	t_{PLH}	- 15	10	13	ns
A, B to Y	t _{PHL}	.0	10	10	110
Power Dissipation Capacitance	C _{PD} *	_	30	30	pF

 $^{{}^{\}star}C_{\text{PD}}$ is used to determine the dynamic power consumption, per gate.

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where:

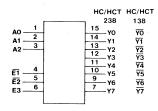

f_i = input frequency

C_L = output load capacitance

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, Input tr,tf = 6 ns)

	TEST	+25° C				-4	0°C to	o +85°	°C	-5					
CHARACTERISTIC		CONDITIONS	Н	С	H	CT	74	НС	74F	ICT	54	НС	54F	ICT	UNITS
		VCC (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay	t _{PLH}	2	_	125	_	_	_	156	_	_	_	188	<u> </u>	_	
A, B to Y	t_{PHL}	4.5	-	25	_	33	_	31		41		38	_	50	ns
		6	-	21	_	_	—	27	_	<u> </u>	_	32			
Output	t _{TLH}	2	_	75	_			95	_		_	110	_	_	
Transition Time	t_{THL}	4.5		15	_	15	-	19	-	19	—	22		22	ns
		6	-	13	—	-	_	16	_	—	-	19		_	
Input Capacitance	Cı		_	10	_	10	_	10	_	10		10	_	10	pF



	54/74HC	54/74 HCT
INPUT LEVEL	Vcc	3V
٧s	50% V _{CC}	1.3 V

92CS-36948RI

Fig. 2 - Transition times and propagation delay times.

High-Speed CMOS Logic

3-to-8 Line Decoder/Demultiplexer Inverting and Non-Inverting

Type Features:

- Select one of eight data output [active LOW for 138, active HIGH for 238]
- I/O port or memory selector
- 3 Enable Inputs to simplify cascading
- Typical propagation delay of 13ns @ V_{cc} = 5 V, C_L = 15 pF, T_A = +25° C

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC138,238 and CD54/74HCT138,238 are high speed silicon gate CMOS decoders well suited to memory address decoding or data routing applications. Both circuits feature low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL logic. Both circuits have 3 binary select inputs (Ao, A1, and A2). If the device is enabled these inputs determine which one of the eight normally high outputs of the HC/HCT138 series will go low or which of the normally low outputs of the HC/HCT238 series will go high.

Two active low and one active high enables $(\overline{E}_1, \overline{E}_2,$ and $E_3)$ are provided to ease the cascading of decoders. The decoder's outputs can drive 10 low power Schottky TTL equivalent loads.

The CD54HC138,238 and CD54HCT138,238 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC138,238 and CD74HCT138,238 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout [Over Temperature Range]: Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT;: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation
 - High Noise Immunity: N_{IL} =30%, N_{IH} =30% of V_{CC} @ V_{CC} =5 V
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - $V_{\rm IL}$ =0.8 V Max., $V_{\rm IH}$ =2 V Min.
 - CMOS Input Compatibility
 - $I_{\rm I} \leq 1~\mu{\rm A} @ V_{\rm OL},~V_{\rm OH}$

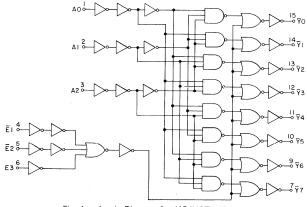


Fig. 1 — Logic Diagram for HC/HCT 138

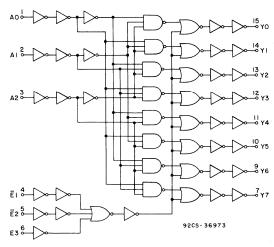


Fig. 2 — Logic Diagram for HC/HCT 238

TRUTH TABLE CD54/74HC138, CD54/74HC138

		INP	UTS						OUT	DITE						
Ε	NABL	E	Αl	DDRES	SS											
E3	E2	E1	A2	A1	A0	ΥO	Υī	<u>72</u>	₹3	¥4	¥5	<u>Y6</u>	¥7			
Х	Х	Н	Χ	Х	Χ	Н	Н	Н	Н	Н	Н	Н	Н			
L	X	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н			
X	Н	X	X	X	X	Н	Н	Н	н	Н	Н	Н	Н			
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н			
Н	L	L	L	L	Н	н	L	Н	Н	Н	Н	Н	Н			
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н			
Н	L	L	L	Н	H	Н	H	Н	L	Н	Н	Н	Н			
H	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	H			
H	L	L	Н	L	Н	н	Н	Н	н	Н	L	Н	Н			
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н			
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L			

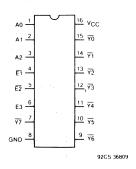
H = High level, L = low level, X = don't care

TRUTH TABLE CD54/74HC238, CD54/74HCT238

		INP	UTS						OUT	LITE				
E	NABL	E	ADDRESS				OUTPUTS							
E3	E2	E1	A2	A1	Α0	YO	Y1	Y2	Y3	Y4	Y5	Υ6	Υ7	
X	X	Н	X	Χ	Χ	L	L	L	L	L	L	L	L	
L	X	X	X	Х	×	L	L	L	L	L	L	L	L	
X	Н	X	X	X	X	L	L	L	L	L	L	L	L	
Н	L	L	L	L	L	Н	L	Ļ	L	L	L	L	L	
Н	L	L	L	L	Н	L	Н	L	L	L	L	L	L	
Н	L	L	L	Н	L	L	L	H	L	L	L	L	L	
Н	L	L	L	Н	Н	L	L	L	Н	L	L	L	L	
H	L	L	Н	L	L	L	L	L	L	Н	L	L	L	
Н	L	L	Н	L	Н	L	L	L	L	L	Н	L	L	
Н	L	L	Н	н	L	L	L	L	L	L	L	Н	L	
Н	L	L	Н	Н	Н	L	L	L	L	L	L	L	Н	

H = High level, L = low level, X = don't care

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	-0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC Vcc OR GROUND CURRENT (Icc)	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F. H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII	UNITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V.
DC Input or Output Voltage V _{in} , V _{out}	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT FOR HC/HCT138 FOR HC/HCT238 ALL Y's ARE Y's

STATIC ELECTRICAL CHARACTERISTICS

	,	CD74	HC13	8/238,	1/238, CD54HC138/238				CD74HCT138/238, CD54HCT138/238											
	TEST CONDITIONS			74HC/54HC 74HC TYPES TYPES		54HC TYPES C		TEST CONDITIONS		74HCT/54HCT TYPES			1	HCT 54HCT YPES TYPES			UNITS			
CHARACTERISTIC	V,	I _o	V _{cc}		+25° C	;		0/ i° C	-5 +12	5/ 5° C	V, V	V _{cc}		+25° C	;	ı	10/ 5° C		5/ 5° C	UNITS
		lina i	ľ	Min	Тур	Max	Min	Max	Min	Max	ľ		Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	-	1.5		1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15		3.15	_	-	to	2	-	-	2	-	2	 	v
			6	4.2	_	_	4.2	-	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35		1.35	_	to	-	_	0.8	-	0.8		0.8	٧
		-	6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9		VIL									
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	-	4.4	_	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4		v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	-	5.9	_	V _{IH}									
	V _{IL}										V _{IL}						1			
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7		or	4.5	3.98	-	-	3.84	-	3.7	-	v
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	V _{IL}		2	_	-	0.1		0.1	_	0.1	VIL									
Output Voltage V _{OL}	or	0.02	4.5	_	_	0.1	-	0.1		0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	٧
CMOS Loads	V _{iH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}		-								Vil									
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	, V _{cc}										Any Voltage									
Current I ₁	or		6	-	-	±0.1		±1		±1	Between V _{cc}	5.5	-	_	±0.1	-	±1	-	±1	μΑ
	Gnd			-							& Gnd									
Quiescent	V _{cc}										V _{cc}			-						
Device	or	0	6	_	-	8	-	80	_	160	or	5.5	-	-	8	-	80	-	160	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent												4.5								
Device Current per input pin:											V _{cc} -2.1	to	-	100	360		450	-	490	μΑ
1 unit load ∆l _{cc} *											Ī	5.5			1	l	1	l		

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{cc} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
A0-A2	1.5
E1, E2	1.25
E3	1

^{*}Unit Load is Δ Icc limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $C_L = 15 \text{ pF}$, Input t_r , $t_r = 6 \text{ ns}$)

	100	2. 14	Typical		
CHARACTERISTIC	SYMBOL	HC	нст	Unit	
Propagation Delay, Address to Output Y (C _L =15 pF)	t _{PLH}				
(Fig. 3)	t _{PHL}	13	14	ns	
Power Dissipation Capacitance*	*C _{PD}	67	67	pF	

*C_{PD} is used to determine the dymanic power consumption, per package.

 $\label{eq:pdef} \text{PD=V}_{\text{CC}}{}^{\text{2}}\,f_{i}\;(C_{\text{PD}}+C_{\text{L}})\;\text{where}\quad f_{i}=\text{input}\;\text{frequency}$

c_L - output load capacitance

V_{cc} - supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, Input tr,tf = 6 ns)

	TEST		+25	°C	°C		0°C t	o +85°	C	-55	5°C to	+125	°C		
CHARACTERISTIC		CONDITIONS	HC		H	HCT		74HC		74HCT		нС	54H	1CT	UNITS
		VCC (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2		150		_		190	_	_	-	225	_	-	
Address to Output	t _{PHL}	4.5	_	30		35		38	_	44	-	45	—	53	ns
(Fig. 3)		6	-	26	—			33	l —	—	<u> </u>	38		-	
Propagation Delay,	t _{PLH}	2	-	150	_		-	190	_	_		225	_	_	
Enable to Output	t _{PHL}	4.5	-	30		35	_	38	·	44		45	<u> </u>	53	ns
(Fig. 3) HC/HCT138		6	<u> </u>	26				33	_	 	<u> </u>	38	_	—	
Propagation Delay	t _{PLH}	2	_	175	_	_	_	220	_	_		265		_	
Enable to Output	t_{PHL}	4.5	-	35	_	40		44		50		53	_	60	ns
(Fig. 4) HC/HCT238		6	_	30	-			37			_	45	_ '	_	
Output	tTLH	2	_	75	_	_	_	95	_	_	_	110	_	T —	:
Transition Times	t _{THL}	4.5	_	15	_	15		19	_	19	_	22	_	22	ns
4	-	6		13		_	_	16	- ,,		_	19	_	-	
Input Capacitance	Cı	- : :::::::::::::::::::::::::::::::::::	- ·	10	_	10	_	10	_	10	-	10	_	10	pF

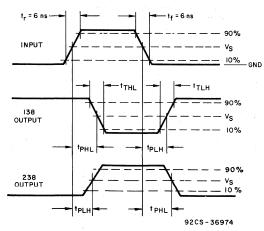


Fig. 3 — Transition times and propagation delay times.

	54/74HC	54/74HCT
INPUT LEVEL	V _{cc}	3V
V _s	50% V _{CC}	1.3V

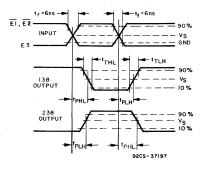
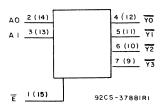



Fig. 4 — Transition times and propagation delay times.

	54/74HC	54/74HCT
INPUT LEVEL	V _{cc}	3V
V _s	50% V _{CC}	1.3V

High-Speed CMOS Logic

Dual 2-to-4 Line Decoder/Demultiplexer

Type Features:

- Multifunction Capability
 Binary to 1-of-4 Decoders or
 1-to-4 Line Demultiplexer
- Active Low Mutually Exclusive Outputs

Applications:

- Memory Decoding
- Data Routing
- Code Conversion

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC139 and CD54/74HCT139 contain two independent binary to one-of-four decoders each with a single active low enable input ($\overline{1E}$, or $\overline{2E}$). Data on the select inputs (1A0 and 1A1 or 2A0 and 2A1) cause one of the four normally high outputs to go low.

If the enable input is high all four outputs remain high. For demultiplexer operation the enable input is the data input. The enable input also functions as a chip select when these devices are cascaded. This device is functionally the same as the CD4556B and is pin compatible with it.

The outputs of these devices can drive 10 low power Schottky TTL equivalent loads. The 54/74HCT logic family is functionally as well as pin equivalent to the 54/74LS logic family.

The CD54HC139 and CD54HCT139 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC139 and CD74HCT139 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

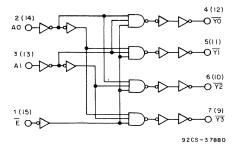


Fig. 1 - Logic diagram for the CD54/74HC/HCT139.

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

TRUTH TABLE

En	Inputs able Sel	ect		Outputs						
E	A1	A0	¥3	Y2	<u> </u>	YO				
0	0	0	1	1	1	0				
0	0	1	1	1	0	1				
0	1 .	0	1	0	1	1				
0	-1	1	0	1	1	1				
1	Х	X	1	1	1	1				

X = Don't Care

Logic 1 = High Logic 0 = Low

MAXIMUM RATINGS, Absolute-Maximum Values:

0.54	. 7 1/
(Voltages referenced to ground)0.5 to	+/ V
DC INPUT DIODE CURRENT, I _{IK} (FOR V _I < -0.5 V OR V _I > V _{CC} +0.5 V)	
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC}$ +0.5 V)	0 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	5 mA
DC V _{cc} OR GROUND CURRENT, (I _{cc}):	0 mA
POWER DISSIPATION PER PACKAGE (P _D):	
For T _A = -40 to +60°C (PACKAGE TYPE E)500) mW
For T _A = +60 to +85° C (PACKAGE TYPE E)) mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)) mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)) mW
For T _A = -40 to +70°C (PACKAGE TYPE M)) mW
For T _A = +70 to +125° C (PACKAGE TYPE M)) mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	25° C
PACKAGE TYPE E, M40 to +	85° C
STORAGE TEMPERATURE (Tstg)	50° C
LEAD TEMPERATURE (DURING SOLDERING)	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	65° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	00°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIF	LINUTO	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r , t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

PROPERTY AND AND AND AND AND AND AND AND AND AND		CD74HC139/CD54HC139									CD74HCT139/CD54HCT139									
0	TEST CONDITIONS				74HC/54HC TYPES			74HC 54HC TYPES TYPES			TEST CONDITIONS		74HCT/54HCT TYPES		74HCT TYPES		54HCT TYPES		UNITS	
CHARACTERISTIC	V,	I _o	V _{cc}		+25°C		-40/ +85° C		-55/ +125°C		V. V	V _{cc}	+25° C		;	-40/ +85° C		-55/ +125°C		UNITS
		ma		Min	Тур	Max	Min	Max	Min	Max	v	•	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{ін}			4.5	3.15	_	_	3.15	-	3.15	_	-	to	2	-	-	2	-	2	-	V
			6	4.2	_		4.2	_	4.2	_		5.5		_						
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	-	to	-	-	0.8	-	0.8	-	0.8	v
			6	_	-	1.8	-	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	1	_	1.9		1.9		V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	-	_	4.4	_	4.4	-	or	4.5	4.4	-	-	4.4	-	4.4	-	٧
CMOS Loads	V _{IH}		6	5.9	-	_	5.9	_	5.9	-	V _{IH}									
•	V _{IL}										VIL									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v
	V _{IH}	-5.2	6	5.48	-	_	5.34		5.2	_	V _{IH}									
Low-Level	V _{IL}		2	_		0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage V _{oL}	or	0.02	4.5	_	_	0.1	_	0.1		0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V
CMOS Loads	V _{IH}		6	_	_	0.1	-	0.1		0.1	V _{IH}									
	V _{IL}										V_{1L}									
TTL Loads	or	4	4.5		_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
	V _{IH}	5.2	6	_	_	0.26	_	0.33	L	0.4	V _{IH}			<u> </u>		L.	<u> </u>	<u> </u>	_	
Input Leakage	V _{cc}										Any Voltage									ŀ
Current I,	or		6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd										& Gnd			<u></u>			<u></u>	<u></u>		
Quiescent	V _{cc}										V _{GG}						l			
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	#A
Current I _{cc}	Gnd										Gnd				<u></u>				<u> </u>	
Additional Quiescent												4.5								
Device Current per input pin: 1 unit load \(\Delta \) lcc*											V _{cc} -2.1	to 5.5	_	100	360	-	450	-	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads *
All	0.7

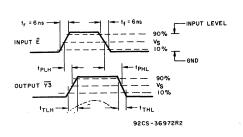
^{*}Unit Load is ΔI_{cc} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

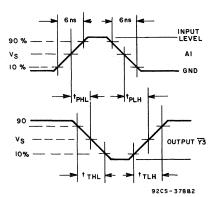
SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns)

011404077010710	CL	0.44501	Туј			
CHARACTERISTIC		SYMBOL	54/74HC	54/74HCT	UNITS	
Propagation Delay Select to Output		t _{PHL}	12	14	ns	
Enable to Output	15		11	14	ns	
Power Dissipation Capacitance*	_	C _{PD}	55	59	pF	

^{*}C_{PD} is used to determine the dynamic power consumption, per decoder/demux.

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t, = 6 ns)

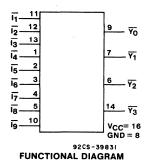

				25	°C		-40°C to +85°C				-55°C to +125°C				
CHARACTERISTIC	SYMBOL	Vcc	н	IC	н	CT	74	нс	74F	ICT	54	нС	541	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	tpLH	2	_	145	_	_	_	180	_	 	_	220	_	_	
A0, A1 to Outputs	t _{PHL}	4.5	-	29	-	34	-	36		43	_	44	_	51	ns
		6		25			_	31				38		<u> </u>	
	t _{PLH}	2	-	135	_	_	_	170	_	l –	l -	205	-	-	ĺ
E to Outputs	tpHL	4.5	-	27	-	34	-	34	_	43	_	41	-	51	ns
		6	<u>l – </u>	23			_	29			_	35		_	
Output Transition	tTLH	2	_	75	_	_	_	95	_	_	—.	110	—	-	
Time	t _{THL}	4.5	-	15	-	15	-	19	_	19	_	22	-	22	ns
		6	_	13		<u> </u>	_	16	_	_	_	19		<u> </u>	
Input Capacitance	Ci		_	10		10		10	_	10		10	_	10	pF


 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where:

 $f_i = input frequency$

C_L = output load capacitance.

V_{cc} = supply voltage.



Transition times and propagation delay times.

	54/74HC	54/74HCT			
Input Level	Vcc	3 V			
Switching Voltage, V₃	50% Vcc	1.3 V			

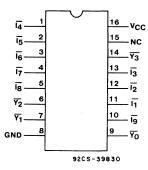
High-Speed CMOS Logic

Type Features:

- Buffered inputs and outputs
- Typical CD54/74HC147 propagation delay = 13ns @ V_{cc}=5 V, C_L=15 pF, T_A=25°C

10-to-4-Line Priority Encoder

The RCA-CD54/74HC147 and CD54/74HCT147 are high-speed silicon-gate CMOS devices and are pin-compatible with low power Schottky TTL (LSTTL).


The CD54/74HC147 and CD54/74HCT147 9-input priority encoders accept data from nine active LOW inputs (\overline{I}_1 to \overline{I}_9) and provide binary representation on the four active LOW outputs (\overline{Y}_0 to \overline{Y}_3). A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line \overline{I}_9 having the highest priority.

These devices provide the 10-line to 4-line priority encoding function by use of the implied decimal "zero". The "zero" is encoded when all nine data inputs are HIGH, forcing all four outputs HIGH.

The CD54HC/HCT147 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT147 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/HCU: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}, @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility $V_{\rm IL}=0.8$ V Max., $V_{\rm IH}=2$ V Min. CMOS Input Compatibility $I_{\rm I}\le 1$ $\mu{\rm A}$ @ $V_{\rm OL}$, $V_{\rm OH}$

TERMINAL ASSIGNMENT

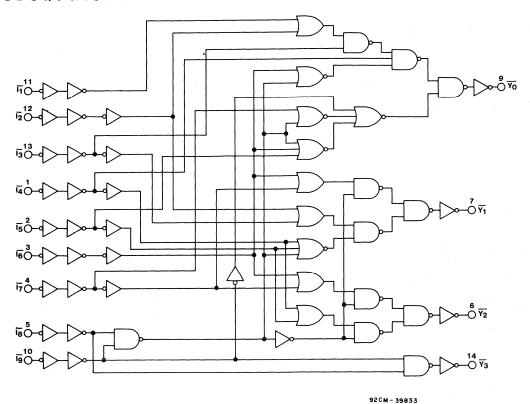


Fig. 1 - Logic Diagram

TRUTH TABLE

1					Inputs	3				Outputs							
	Ī,	T ₂	Тз	T ₄	Ī ₅	T ₆	T ₇	T ₈	T ₉	Y ₃	Y ₂	Y ₁	$\overline{\mathbf{Y}}_{0}$				
Γ	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н				
١	Х	Х	Х	Χ	Х	Х	Χ	X	L	L	Н	Н	L				
1	Χ	Х	Х	Х	Х	Х	Х	L	Н	L	Н	Н	н				
1	Х	X	Х	Х	Х	Х	L	Н	Н	H	L	L	L				
1	Χ	Х	Х	Х	Х	L	Н	Н	Н	H	L	L	Н				
1	Х	Х	Х	Х	L	Н	H	H-	Н	H	L	Н	L				
l	Х	Х	Х	L	Н	Н	Н	Н	Н	H	L	Н	н				
1	Х	Х	L	Н	Н	Н	Н	Н	Н	H	Н	L	L				
1	Х	L	Н	Н	Н	Н	Н	Н	Н	H	Н	L	н				
L	L	Н	Н	Н	<u>H</u>	Н	H	Н	Н	Н	Н	Н	L				

 $H = High \ Logic \ Level, \ L = Low \ Logic \ Level, \ X = Irrelevant.$

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, I_{ik} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{cc} + 0.5 \text{ V}$)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} + 0.5$ V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5V $<$ V _o $<$ V _{cc} + 0.5 V)	± 25mA
DC Vcc OR GROUND CURRENT (Icc)	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING TEMPERATURE DAVIGE (T.)	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :* CD54/74HC Types CD54/74HCT Types	2 4.5	6 5.5	V
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A : CD74 Types CD54 Types	-40 -55	+85 +125	°C
Input Rise and Fall Times t _r , t _f at 2 V at 4.5 V at 6 V	0 0 0	1000 500 400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

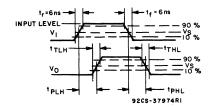
			CD	74HC	147/C	D54F	IC147	,					CD74	нст	147/C	D54F	ICT14	17		
	ĺ	TEST CONDITIONS				ſ		74HC 54HC TYPE TYPE (TEST CONDITION	74H0	CT/54		74HCT TYPE		54HCT TYPE				
CHARACTERISTIC	V _i	lo.	V _{CC}	+25°C		-40/ -55/ +85°C +125°C			Vcc	+25°C			1	10/ 5°C	-55/ +125°C		UNITS			
	V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	, V
			6	4.2			4.2	_	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	-	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35		1.35	_	1.35	_	to	_ '	_	0.8	-	0.8	_	0.8	٧
			6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level	VIL		2	1.9	_	_	1.9	_	1.9		VIL									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4		or	4.5	4.4	_	_	4.4		4.4		٧
CMOS Loads	V _{IH}		6	5.9		_	5.9	_	5.9	_	ViH									
	VIL										VIL									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	-	٧
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	VıL		2	_	_	0.1	_	0.1	-	0.1	VIL									
Output Voltage VoL	or	0.02	4.5	_	-	0.1	_	0.1	-	0.1	or	4.5	-	-	0.1	-	0.1		0.1	٧
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	VIL										VIL									
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	٧
	Vін	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage Current I	V _{cc} or		6	_	_	±0.1	_	±1	_	±1	Any Voltage Between V _{CC}	5.5	_	_	±0.1	_	±1	_	±1	μΑ
	Gnd										and Gnd									
Quiescent Device	Vcc										V _{cc}									
Current Icc	or	0	6	-	_	8	-	80	_	160	or	5.5	-	-	8	-	80	-	160	μΑ
	Gnd						<u> </u>	<u> </u>			Gnd									
Additional Quiescent Device Current per Input Pin: 1 Unit Load ΔI_{cc}^*											V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ

 $^{^{\}star}$ For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{cc} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
$\overline{I}_{1},\overline{I}_{2},\overline{I}_{3},\overline{I}_{6},\overline{I}_{7}$	1.1
T ₄ , T ₅ , T ₈ , T ₉	1.5

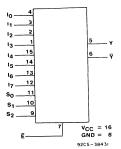
^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25°C.


SWITCHING CHARACTERISTICS ($V_{\text{CC}}=5$ V, $T_{\text{A}}=25^{\circ}\text{C}$, Input t, t=6 ns)

		TYP	CAL	
CHARACTERISTIC	SYMBOL	нс	нст	UNITS
Propagation Delay, Data Input to Output Y (Fig. 1) (C _L =15 pF)	t _{PLH}	13	14	ns
Power Dissipation Capacitance*	C _{PD}	32	42	pF

 $^{^*\}text{C}_{PD}$ is used to determine the dynamic power consumption, per package. PD=Vcc²fi (CpD + CL) where fi= input frequency CL=output load capacitance Vcc=supply voltage

SWITCHING CHARACTERISTICS (CL=50 pF, Input tr, tr=6 ns)


				25	°C		-4	0°C to	+85	°C	-5				
CHARACTERISTIC	SYMBOL	\mathbf{v}_{cc}	Н	C	НСТ		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min,	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	telh	2		160				200				240		_	
Input to Output	tpHL	4.5		32		35		40	i .	44		48		53	ns
(Fig. 1)		6		27	l	-		34		-		41		-	
Transition Times	tTLH	2		75		_		95		_		110			
(Fig. 1)	tTHL	4.5	İ	15		15		19		19		22		22	ns
		6		13		_	1	16		_		19		_	
Input										-					
Capacitance	Cı			10		10		10		10		10		10	pF
an ⁱ n diame										1					

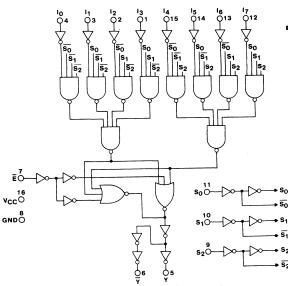
	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

Fig. 1 - Transition times and propagation delay times.

High-Speed CMOS Logic

8-Input Multiplexer

Type Features:


- Complementary data outputs
- Buffered inputs and outputs

92CM-38434RI

FUNCTIONAL DIAGRAM

The RCA CD54/74HC151 and CD54/74HCT151 are single 8-channel digital multiplexers having three binary control inputs, S0, S1 and S2 and an active low enable (E) input. The three binary signals select 1 of 8 channels. Outputs are both inverting (Y) and non-inverting (Y).

The CD54HC/HCT151 devices are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT151 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
 - CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ VoL, VoH

FUNCTION TABLE

,					INP	UTS	* .					оит	PUTS
Ē	S₂	Sı	So	lo	1,	l ₂	l ₃	. 14	1 1 1 ₅	16	l ₇	Y	Υ
Н	X	X	X	×	х	X	X	×	X	X	X	Н	L
L	L	L	L	L	Х	X	X	Х	X	Х	Х	Н	L
L	L	L	L	Н	Х	- X	X	X	X	X	Χ	L	н
L	L	L	н	X	L	Х	X	X	Х	X	Х	Н	L
L	L	L	Н	X	H	Х	X	X	Х	X	X	L	н
L	L	H	Ľ	Х	. X	L	X	X	X	X	Х	Н	L
L	L	H	L	Х	X	Н	X	X	X	X	X	L	Н
L	L	Н	Н	Х	Х	X	L	X	X	X	Х	H	L
L	L	Н	Н	X	. X	X	Н	X	X	X	Х	L	Н
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	Н	L	L	X	Х	X	Х	Н	X	X	Х	L	. н
L	. н	L	. н	X	Х	X	X	X	L	X	Х	H	L
L	Н	L	н	Х	Х	X	Х	X	Н	X	Х	L	н
L	Н	Н	L	Х	X	X	X	X	X	L	X	Н	L
L	Н	Н	L	Х	Х	X	X	X	X	Н	X	L	Н
L	H	H	Н	X	X	X	X	X	X	X	L	H	L
L	Н	Н	Н	X	Х	X	Х	X	Х	Х	Н	L	Н

H = HIGH voltage level. L = LOW voltage level. X = Don't care.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{ik} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{cc} + 0.5 \text{ V})$	±20 mA
DC OUTPUT DIODE CURRENT, lok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT (Icc):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	-55 to +125° C
PACKAGE TYPE E. M.	-40 to +85°C
STORAGE TEMPERATURE (Tstq)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING)	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

STATIC ELECTRICAL CHARACTERISTICS

				CI	D74H	C151.	/CD54	HC1	51				CD7	4HCT	151/C	D54F	ICT1	51			
			TEST CONDITIONS			74HC/54HC TYPE			74HC 54HC TYPE TYPE		1	TEST		T/54		74HCT TYPE		54HCT TYPE			
CHARACTERIST	CS	V	l _o	V _{cc}	,	-25° C	;	-44 +85		-5: +12:	- 1	V,	Vcc	+25°C			i	0/ i°C	l	5/ 5° C	UNITS
		v	mA	V	Min	Тур	Max	Min	Max	Min	Max	٧	V	Min	Тур	Max	Min.	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage	VIH	ļ		4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	_	_	2	_	2	-	٧
				6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_	_	1.35	_	1.35	_	1.35	_	to	_	_	0.8	_	0.8	_	0.8	٧
				6	_	_	1.8	_	1.8	_	1.8		5.5							l	
High-Level		VIL		2	1.9	_	_	1.9	Ī_	1.9	_	VIL									
Output Voltage	Von	or	-0.02	4.5	4.4		_	4.4		4.4	_	or	4.5	4.4	<u>-</u>	_	4.4	_	4.4	_	V
CMOS Loads		ViH		6	5.9	_	1_	5.9	_	5.9	_	ViH									
		VıL										VıL									
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_ 1	3.7	_	V
		ViH	-5.2	6	5.48	_	_	5.34	_	5.2		ViH									
Low-Level		VIL		2	_	_	0.1	_	0.1		0.1	VIL									
Output Voltage	Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	-	0.1	٧
CMOS Loads	- 00	VIH		6	_	_	0.1	_	0.1		0.1	ViH									
ONIOG Educa		VIL		۲	<u> </u>	_	1	<u> </u>	J.,	 	Ü.,	Vil		†			<u> </u>	†			
TTL Loads		or	4	4.5	_	_	0.26		0.33	<u> </u>	0.4	or	4.5		_	0.26	_	0.33		0.4	v
TTE EGGG		ViH	5.2	6	_	_	0.26		0.33		0.4	ViH	4.0			0.20		0.00			
Input Leakage Current	l ₁	V _{cc} or Gnd	5.2	6	_		±0.1	_	±1		±1	Any Voltage Between V _{cc} and Gnd	5.5	_	-	±0.1		±1		±1	μΑ
Quiescent Device												Vcc									
Current	Icc	Vcc	0		_				80	_	160	or	5.5	_		8	_	80	_	160	μА
		or Gnd		6	_	-	8		80	_	100	Gnd	J.J		-			00		100	
Additional Quiescent Device Current per Input Pin: 1 Unit Load	ΔΙςς.											V _{cc} -2.1	4.5 to 5.5	_	100	360		450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
Select	1.5
Data	0.45
Enable	0.3

^{*} Unit load is ΔI_{cc} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

011404077010710	LIF			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			1.	
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O	0	Vcc	V	
Operating Temperature T _A :				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times, t _r , t _r				
at 2 V	0	1000	ns	
at 4.5 V	0	500	ns	
at 6 V	0	400	ns	

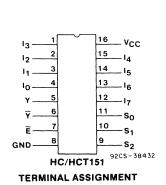
^{*}Unless otherwise specified, all voltages are referenced to Ground.

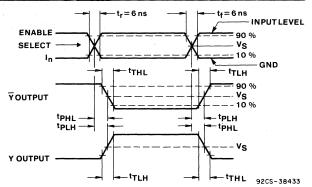
SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ Input } t_i, t_i = 6 \text{ ns}$)

			TYPICAL			
CHARACTERISTIC	C _L pF	SYMBOL	54/74HC	54/74HCT	UNITS	
Propagation Delays		tplH		16	-	
Any data input to Y	15	tpHL	14	16	ns	
Any data input to Y	15	t _{PLH} /t _{PHL}	15	15	ns	
Any select to Y	15	t _{PLH} /t _{PHL}	15	17	ns	
Any select to Y	15	t _{PLH} /t _{PHL}	17	18	ns	
Enable to Y	15	t _{PLH} /t _{PHL}	11	12	ns	
Enable to Y	15	t _{PLH} /t _{PHL}	12	15	ns	
Power Dissipation Capacitance*	_	СРД	59	58	pF	

^{*} C_{PD} is used to determine the dynamic power dissipation per device:

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where:

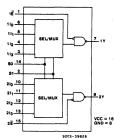

 f_i = input frequency.


C_L = output load capacitance.

 V_{CC} = supply voltage.

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_s, t_f = 6 ns)

				25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	н	СТ	74	нс	74H	ICT	54	нс	54F	ICT	UNIT
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.	
Propagation Delay,	t _{PLH}	2	1	170		-		215		_		255		-	
Any Data Input to Y	t _{PHL}	4.5		34 29		38		43 37		48		51 43		57	ns
		2	-	185		-		230		-		280		_	
Any Data Input to Y	t _{PLH}	4.5		37 31		36		46 39		45		56 48		54 —	ns
		2		185		† —		230		=		280		-	
Any Select to Y	t _{PLH}	4.5		37		41		46		51	- '	56		62	ns
	t _{PHL}	6		31		_		39		_		48		_	
	 	2		205		<u> </u>		255		=		310	†	-	
Any Select to Y	t _{PLH}	4.5		41	1	43		51		54	· ·	62		65	ns
	t _{PHL}	6		35		-		43		_		53		-	
		2		140		-		175		-		210		-	
Enable to Y	t _{PLH}	4.5		28		29		35		36		42		44	ns
	t _{PHL}	6		24		-		30		—		36		-	
10		2		145		-		180		_		220		_	
Enable to Y	t _{PLH}	4.5		29		36		36		45		44		54	ns
	t _{PHL}	6		25	-	_		31		-		38		_	
Output Transition	t _{TLH}	2		75		-		95		_		110		_	
Time	t _{THL}	4.5 6		15 13		15	gr	19 16		19 —		22 19		22 —	ns
Input Capacitance	Cı	_	-	10	-	10	_	10	-	10	-	10	-	10	pF



	CD54/74HC	CD54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, V _s	50% V _{cc}	1.3 V

Fig. 2 - Propagation delays to Y and \overline{Y} outputs.

High-Speed CMOS Logic

Dual 4-Input Multiplexer

Type Features:

- Common select inputs
- Separate enable inputs
- Buffered inputs and outputs

FUNCTIONAL DIAGRAM

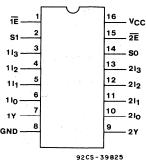
The RCA-CD54/74HC153 and CD54/74HCT153 are dual 4-to-1-line selector/multiplexers which select one of four sources for each section by the common select inputs, S0 and S1. When the enable inputs (1Ē, 2Ē) are HIGH, the outputs are in the LOW state.

The CD54HC/HCT153 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT153 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/HCU: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:

 $N_{\rm IL}$ = 30%, $N_{\rm IH}$ = 30% of $V_{\rm CC}$; @ $V_{\rm CC}$ = 5V


■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ Vo_{IL} V_{OH}

TRUTH TABLE

	Select Inputs		Data	Input	s	Enable	Output		
S ₁	So	lo	lo l1		13	Ē	Y		
Х	Х	X	Х	X	X	Η.	L		
L	L.	L	Х	X	X	L	L		
L	L	Н	Х	X	Х	L	н		
L	Н	X	L	X	Х	L	L		
L	Н	Х	Н	Х	Х	L	Н		
н	L	Х	X	L	X	L	L		
Н	L	Ιx	Х	Н	X	L	Н		
H	н	Х	Х	X	L	L	Ĺ		
н	н	х	х	X	Н	L	н		

Select inputs A and B are common to both sections. H = High Level, L = Low Level, X = Don't Care.

LOGIC DIAGRAM

TERMINAL ASSIGNMENT



Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	
DC V _{CC} OR GROUND CURRENT (I _{CC})	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C
•	

STATIC ELECTRICAL CHARACTERISTICS

		C	D74H	IC153	CD5	4HC1	53					CE	74HC	T153	/CD5	4HCT	153			
CHARACTERISTIC	i .	TEST CONDITIONS			74HC/54HC TYPES			HC PE	1	HC PE	TEST CONDITIONS		74HCT/54HCT TYPES			74H TY	ICT PE		ICT PE	UNITS
CHARACTERISTIC	V,	l _o	V _{cc}		+25° C	;		10/ 5° C		5°C	V,	V _{cc}		+25° C	;		10/ 5° C		5°C	UNITS
		mA	V	Min	Тур	Max	Min	Max	Min	Max	V	Min	Тур	Max	Min	Max	Min	Max		
High-Level			2	1.5	-	-	1.5	_	1.5	-		4.5								
Input Voltage V _{IH}			4.5	3.15	-	_	3.15	_	3.15	_	-	to	2	_	-	2	_	2		v
			6	4.2	-	_	4.2	_	4.2	_]	5.5								
Low-Level			2	-	_	0.5	_	0.5	-	0.5		4.5								
Input Voltage V _{IL}		1	4.5	_	_	1.35	_	1.35	_	1.35	_	to	_	-	0.8	-	0.8	-	0.8	V
			6	-	-	1.8	-	1.8	_	1.8	1	5.5								
High-Level	V _{IL}		2	1.9	-	_	1.9	-	1.9	-	, V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	-	4.4	_	4.4	-	or	4.5	4.4	_	-	4.4	_	4.4	_	V
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	-	V _{IH}								Ì	
	V _{IL}		1								V _{IL}									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	-	3.7	-	or	4.5	3.98	_	_	3.84	_	3.7	_	V
	V _{IH}	-5.2	6	5.48	_	_	5.34	-	5.2	-	V _{IH}									
Low-Level	V _{IL}		2	_	_	0.1	-	0.1	-	0.1	V _{IL}									
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1	-	0.1	or	4.5	_	-	0.1	-	0.1	_	0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1	-	0.1	-	0.1	V _{IH}					-				
	V _{IL}										V _{IL}									
TTL Loads	or	4	4.5	_	_	0.26	-	0.33	-	0.4	or	4.5	_	-	0.26	-	0.33	-	0.4	v
	V _{IH}	5.2	6	_	-	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any									
Current I _i	or		6	-	_	±0.1	_	±1	-	±1	Voltage Between	5.5	-	-	±0.1	_	±1	-	±1	μΑ
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	_	-	8	_	80	-	160	or	5.5		-	8	_	80	-	160	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current											V _{cc} -2.1	4.5 to	_	100	360	_	450	_	490	μΑ
per input pin: 1 unit load \(\Delta \) lcc*												5.5								

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
DATA	0.45
ENABLE	0.6
SELECT	1.35

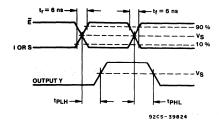
^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu{\rm A}$ max. @ 25° C.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OUADACTERISTIC	LIN	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

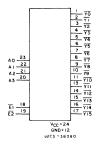
^{*}Unless otherwise specified, all voltages are referenced to Ground.


SWITCHING CHARACTERISTICS (Vcc = 5 V, T_A = 25°C, Input t₅ t_f = 6 ns)

CHARACTERISTIC		CL		ICAL UES	UNITS	
		(pF)	HC	HCT		
Propagation Delay,						
Select to Outputs	t _{PHL} t _{PLH}	15	13	14		
Data to Outputs	t _{PLH}	15	12	9	ns	
	t _{PHL}	15	12	14		
Enable to Outputs	t _{PLH} t _{PHL}	15	9	11		
Power Dissipation Capacitance*	C _{PD}	_	45	45	pF	

^{*} C_{PD} is used to determine the dynamic power consumption, per multiplexer. $P_D = V_{CC}^2$ fi $(C_{PD} + C_L)$ where: fi = input frequency C_L = output load capacitance V_{CC} = supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r, t_f = 6 ns)


CHARACTERISTIC				25	°C		-4	10° C t	o +85°	C	-5				
		V _{cc}	Н	C	HCT		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		160	_		_	200	T —	_	_	240	_	_	
S to Y	t _{PHL}	4.5	-	32	_	34	_	40	-	43	-	48	-	51	
		6	_	27		_	_	34	_	-		41	_	_	
I to Y	t _{PLH}	2	_	145	_	_	_	180	_	T —	_	220	_	_	
		4.5	_	29	_	24	_	36	_	30	-	44		36	
		6	_	25	_	_	-	31	_	_		38	_	_	
I to Y	t _{PHL}	2	T	145	_		_	180	T -	T —	_	220	_	_	ns
		4.5	_	29		34	l -	36	-	43	_	44	_	51	
		6	_	25	_	_	_	31	-		_	38			
Ē to Y	t _{PLH}	2	T-	120	_	_	_	150	_	-	-	180	_	-	
	t_{PHL}	4.5	-	24	—	27	-	30	_	34		36	-	41	
		6		20	_	_	_	26		_		31	_		
Output Transition	t _{TLH}	2	-	75	_	_	_	95		—		110	_	_	
Time	t_{THL}	4.5	_	15	-	15	-	19	-	19	_	22	-	22	
		6	1-	13	_		_	16		_	_	19	_		
Input				10		10		10		10		10		10	pF
Capacitance	C ₁		-	10	-	10	_	10	-	10	_	10	_	10	PF.

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _s	50% V _{CC}	1.3 V

Fig. 2 - Transition and propagation delay times.

High-Speed CMOS Logic

4-to-16 Line Decoder/Demultiplexer

Type Features:

■ Two enable inputs to facilitate demultiplexing and cascading functions Family Features:

Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads

- Bus Driver Outputs 15 LSTTL Loads Wide Operating Temperature Range:
- CD74HC/HCT: -40 to +85° C Balanced Propagation Delay and Transition Times

FUNCTIONAL DIAGRAM

The RCA CD54/74HC154 and CD54/74HCT154 are 4-to-16 line decoders/demultiplexers with two enable inputs, E1 and E2. A High on either enable input forces the output into the High state. The demultiplexing function is performed by using the four input lines, A0 to A3, to select the output lines YO to Y15, and using one enable as the data input while holding the other enable low.

The CD54HC154 and CD54HCT154 are supplied in 24-lead dual-in-line frit-seal ceramic packages (F suffix). The CD74HC154 and CD74HCT154 are supplied in 24-lead dual-in-line, narrow-body plastic packages (EN suffix), in 24-lead dual-in-line, wide-body plastic packages (E suffix), and in 24-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Significant Power Reduction Compared to LSTTL Logic ICs

Alternate Source is Philips/Signetics

CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: NIL = 30%, NIH = 30% of Vcc @ $V_{cc} = 5 V$

CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility $V_{IL} = 0.8 V Max., V_{IH} = 2 V Min.$ CMOS Input Compatibility $I_1 \leq 1 \,\mu A \, @ \, V_{OL}, \, V_{OH}$

TRUTH TABLE

		IN	PUTS										OUT	PUTS							
Ē1	E2	А3	A2	A 1	A0	YO	<u>Y1</u>	<u>72</u>	¥3	¥4	¥5	Y6	¥7	¥8	¥9	Y10	<u>Y11</u>	¥12	¥13	¥14	Y15
L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
L	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Η.	Н	Н	Н	Н	Н	Н	Н	Н	н
L	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
L	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	н
L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	н
L	L	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	н
L	L	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	н	Н	Н	Н	Н	н [
L	L	Н	L	Н	L	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	н
L	L	Н	L	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	н
L	L	Н	Н	L	L	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	H	Н	L	Н	Н	н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	н
L	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	н [
L	L	н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	, н	L
L	Н	X	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	H	н
H	L	X	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
Н	Н	X	Х	Χ	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н

H = High Level, L = Low Level, X = Don't Care.

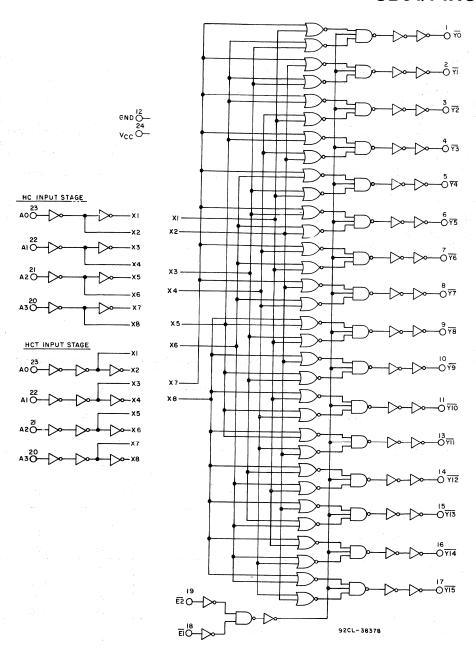


Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

OC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT, PER PIN (Icc):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE DANGE (T.)	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E. M	
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING)	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in 1.59 mm)	
with solder contacting lead tips only	+300°C
with solder contacting lead tips only	

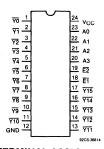
RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	Lil	MITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A :			1
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°c
Input Rise and Fall Times, tr, tr			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS


			CD	74HC	154/0	CD54H	1C154					CD7	4НСТ	154/0	CD54F	ICT1	54				
	со	TEST			74HC/54HC TYPE			74HC 54 TYPE TY		HC PE	TEST CONDITIONS		1	CT/54 TYPE		74F TY	ICT PE	54HCT TYPE			
CHARACTERISTICS	Vı	lo	Vcc	1	•25°C	;	-4 +85	0/ 6°C	-5: +12!	5/ 5° C	V,	V cc		+25° C	;	1	0/ 5°C	1	5/ 5°C	UNITS	
	V	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	v	Min	Тур	Max	Min	Max	Min	Max		
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5									
Input Voltage Vie			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	٧	
			6	4.2	_	<u> </u>	4.2	_	4.2	_		5.5				<u> </u>					
Low-Level			2	_	_	0.5		0.5	_	0.5	-	4.5									
Input Voltage V _{II}	.	1	4.5	_	_	1.35	_	1.35	_	1.35	= -	to	-	-	0.8	-	0.8	-	8.0	V - 2	
			6	_	_	1.8	_	1.8	_	1.8		5.5									
High-Level	VIL		2	1.9	_	<u> </u>	1.9	_	1.9		VIL										
Output Voltage Vo	or	-0.02	4.5	4.4	_	_	4.4	_	4.4		or	4.5	4.4	-	-	4.4	-	4.4	-	V	
CMOS Loads	V _{IH}		6	5.9		_	5.9	_	5.9		V _{IH}										
	VIL										VIL										
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	_	3.7	<u> </u>	· 'v	
	VIH	-5.2	6	5.48	_	_	5.34	_	5.2	_	ViH										
Low-Level	VIL		2	_	_	0.1		0.1	_	0.1	Vil										
Output Voltage Vo	or	0.02	4.5	1_		0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	-	0.1	_	0.1	v	
CMOS Loads	VIH		6	-	_	0.1	_	0.1	_	0.1	ViH				'					٠.	
	VIL										ViL										
TTL Loads	or	4	4.5	Ι_	_	0.26	_	0.33		0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v	
	VIH	5.2	6			0.26	_	0.33	_	0.4	ViH								1	٠.	
Input Leakage Current I	V _{cc} or Gnd		6	_	_	±0.1	_	±1		±1	Any Voltage Between V _{CC} and Gnd	5.5	-		±0.1	_	±1	_	±1	μΑ	
Quiescent Device Current Ico	V _{cc} or Gnd	0	6	-	-	8	_	80		160	V _{cc} or Gnd	5.5	_	_	8		80	_	160	μΑ	
Additional Quiescent Device Current per Input Pin: 1 Unit Load ΔIc	c.								L		V _{cc} -2.1	4.5 to 5.5		100	360	_	450	-	490	μА	

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

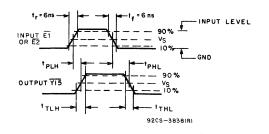
INPUT	UNIT LOADS *
A0 — A3	1.4
E1, E2	1.3

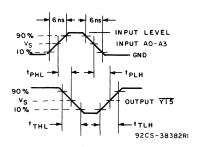
^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, Input t_r , $t_t = 6 \text{ ns}$)

			TYPICAL \		
CHARACTERISTIC	C∟ pF	SYMBOL	54/74HC	54/74HCT	UNITS
Propagation Delay	15	t _{PHL}	14	14	
Address to Output	15	t _{PLH}	14	14	ns
E1 to Output	15	t _{PHL}	14	14	
ET to Output	15	t _{PLH}	14	14	ns
FO to Outside	4.5	t _{PHL}	14	1.4	
E2 to Output	15	t _{PLH}	14	14	ns
Power Dissipation Capacitance*		C _{PD}	88	84	pF

 $^{{}^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per device.

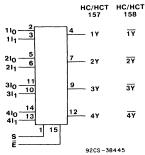

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where: f_i = input frequency.


C_L = output load capacitance.

V_{cc} = supply voltage.

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_f = 6 \text{ ns}$)

				25	°C		-4	0°C to	o +85°	C	-5				
CHARACTERISTIC	SYMBOL	Vcc	нс		нст		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	175	_	_	_	220	_		_	265	_	_	
Address to Outputs	t _{PHL}	4.5	—	35	-	35	-	44	—	44		53	_	53	ns
		6	_	30	_	_	l –	37	_			45	_	_	
	tplH	2	_	175	_	-	_	220	_	_	_	265	_	-	
E1 to Outputs	tenc	4.5	-	35	-	34	-	44	-	43	-	53		51	ns
		6		30		_	_	37				45	<u>L</u> _		
	t _{PLH}	2	—	175	-	-		220		 	-	265	-	-	
E2 to Outputs	t _{PHL}	4.5	-	35		34	-	44		43	_	53	—	51	ns
		6	_	30				37				45		_	
Output Transition	t _{TLH}	2	_	75	_	-	_	95	_	_	_	110	_	-	
Time	t _{THL}	4.5	-	15	_	15	_	19	_	19	_	22	-	22	ns
		6		13		_		16				19			
Input Capacitance	Cı			10	_	10		10		10		10	_	10	pF



·	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _s	50% V _{cc}	1.3 V

Fig. 2 - Propagation delay and transition times.

High-Speed CMOS Logic

Quad 2-Input Multiplexers

HC/HCT157 Non-Inverting HC/HCT158 Inverting

Type Features:

- Buffered inputs
- Typical Propagation Delay (In to Output) = 10 ns (HC157) @ $V_{CC} = 5 V$, $C_L = 15 pF$, $T_A = 25^{\circ} C$

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC157, 158 and CD54/74HCT157, 158 are quad 2-input multiplexers which select four bits of data from two sources under the control of a common Select input (S). The Enable input (\overline{E}) is active LOW. When (\overline{E}) is HIGH, all of the outputs in the 158, the inverting type, (1Y-4Y) are forced HIGH and in the 157, the non-inverting type, all of the outputs ($\overline{1Y}$ - $\overline{4Y}$) are forced LOW, regardless of all other input conditions.

Moving data from two groups of registers to four common output busses is a common use of these devices. The state of the Select input determines the particular register from which the data comes. They can also be used as function generators.

The CD54HC157, 158 and CD54HCT157, 158 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC157, 158 and CD74HCT157, 158 are supplied in 16-lead dual-in-line plastic packages (E suffix). The CD74HC157, 158 and CD74HCT157, 158 are supplied in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

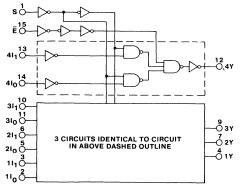
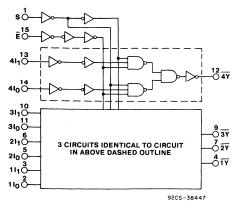


Fig. 1 - Logic Diagram for HC/HCT157. 92CM-38446

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 μA @ V_{OL}, V_{OH}


FUNCTION TABLE

				Output					
Enable	Select Input	Da Inp		157	158				
E	S	I ₀	1,	Y	Y				
Н	х	х	Х	L	н				
L	L	L	х	L	н				
L	L	Н	х	н	L				
L	н	×	L	L	н				
L	н	X	н	н	L				

L = LOW voltage level.

H = HIGH voltage level.

X = Don't care.

* For HC/HCT157 these outputs are 1Y, 2Y, 3Y, 4Y.

TERMINAL ASSIGNMENT

Fig. 2 - Logic Diagram for HC/HCT158.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} + 0.5$ V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vcc +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT (Icc):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	MITS	UNITE
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{in} , V _{out}	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r , t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

*Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD	74HC	:157/	158/C	D54H	C157	/158			CD74HCT157/158/CD54HCT157/158										
			TEST CONDITIONS						łC PE	541 TY		TEST	1	TYPE		74H TY		54HCT TYPE				
CHARACTERISTIC	IANAC IENISTICS		Io	V cc	-	25° C	;	-4: +85		-5 +12		V,	Vcc		+25° C	;	1 .	0/ 5° C	-5 +12		UNITS	
		v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max		
High-Level				2	1.5		_	1.5	_	1.5			4.5									
Input Voltage	V_{IH}			4.5	3.15	_		3.15		3.15	_	_	to	2	_	_	2	-	2	_	V	
				6	4.2	_		4.2	_	4.2	_		5.5									
Low-Level				2		_	0.5		0.5	_	0.5		4.5									
Input Voltage	V_{IL}			4.5			1.35	_	1.35	_	1.35	-	to	-	-	0.8	-	0.8	_	0.8	V	
				6			1.8	_	1.8	_	1.8		5.5									
High-Level		VIL		2	1.9	_	_	1.9		1.9		VIL										
Output Voltage	VoH	or	-0.02	4.5	4.4	_		4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	_	V	
CMOS Loads		V _{IH}		6	5.9			5.9		5.9	_	V _{iH}					ŀ					
		VIL										ViL										
TTL Loads		or	-4	4.5	3.98	_	<u> </u>	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	-	- V	
		VIH	-5.2	6	5.48	_		5.34	_	5.2	_	V _{IH}						<u> </u>				
Low-Level		VIL		2		_	0.1		0.1	_	0.1	VIL										
Output Voltage	V_{OL}	or	0.02	4.5	_	_	0.1		0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	_	0.1	v	
CMOS Loads		V _{IH}		6		_	0.1	_	0.1	_	0.1	V _{IH}		<u></u>								
		VIL										VIL										
TTL Loads		or	4	4.5	_	_	0.26	_	0.33		0.4	or	4.5	-	_	0.26	-	0.33	_	0.4	v	
		ViH	5.2	6	_	_	0.26		0.33	_	0.4	ViH										
Input Leakage Current	l _i	V _{cc} or Gnd		6		_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	_		±0.1	_	±1	_	±1	μΑ	
Quiescent Device Current	Icc	V _{cc} or Gnd	0	6	_	_	8	_	80	_	160	V _{cc} or Gnd	5.5	-	_	8	-	80	_	160	μΑ	
Additional Quiescent Device Current per Input Pin: 1 Unit Load	ΔΙςς.			.								V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	-1 <u>-</u>	490	μΑ	

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

INPUT LOADING TABLE

INPUT	UNIT LOADS *						
INFOT	HCT 157	HCT 158					
I (ALL)	0.95	0.4					
E	0.6	0.6					
S	3	2.8					

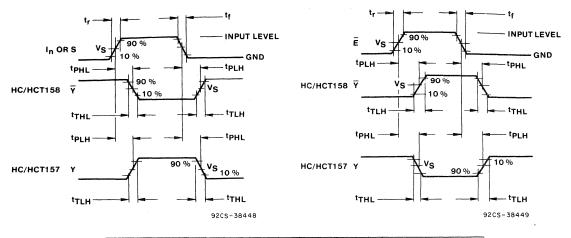
^{*} Unit load is ΔI_{cc} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C, Input t_r , t_f = 6 ns)

011404075010710							
CHARACTERISTIC	C∟ pF	SYMBOL	HC157	HCT157	HC158	HCT158	UNITS
Data to Output	15	t _{PHL}	10	12	11	13	ns
		t _{PLH}					
Enable to Output	15	t _{PHL}	11	12	13	15	ns
		t _{PLH}	''		"		
Select to Output	15	t _{PHL}	12	15	12	14	ns
Select to Gutput	13	t _{PLH}	12	13	12	14	
Power Dissipation Capacitance*		C _{PD}	62	70	35	35	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per multiplexer.

 $P_D = C_{PD} V_{CC}^2 f_i + \sum C_L V_{CC}^2 f_o$ where: $f_i = input$ frequency.


fo = output frequency.

C_L = output load capacitance.

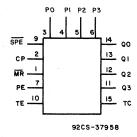
V_{cc} = supply voltage.

SWITCHING CHARACTERISTICS (CL = 50 pF, input tr, tr = 6 ns)

			25°C					0°C t	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	IC	Н	СТ	74	нс	741	ICT	54	нс	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	<u> </u>	125	-	 	<u> </u>	155	=	_	T -	190	-	=	
Data to Output	t _{PHL}	4.5	-	25	_	30		31	_	38	_	38	-	45	ns
(Figure 3) HC/HCT157		6	-	21	_	_	_	26	_	_	_	32	_	_	
Propagation Delay	t _{PLH}	2	-	135	_	-	_	170	_	_	_	205	_		
Enable to Output	t _{PHL}	4.5	_	27	_	30	_	34	_	38	_	41		45	ns
(Figure 4) HC/HCT157		6	_	23				29	_		_	35	_		
Propagation Delay	t _{PLH}	2	_	145	_	_	_	180	_	_	_	220	_	_	
Select to Output	t _{PHL}	4.5	_	29		37	_	36	_	46	-	44		56	ns
(Figure 3) HC/HCT157		6	_	25	_	_	_	31		-		38		-	
Propagation Delay	t _{PLH}	2	_	140	_			175		_	_	210		_	
Data to Output	t _{PHL}	4.5	_	28		32		35	.—	40	_	42	_	48	ns
(Figure 3) HC/HCT158		6		24		_		30		_	_	36		_	
Propagation Delay	t _{PLH}	2	-	160		-		200		=	_	240		_	
Enable to Output	t _{PHL}	4.5	_	32	_	37		40	_	46	_	48		56	ns
(Figure 4) HC/HCT158		6	_	27	_		_	34	_	_	_	41		_	
Propagation Delay	tpLH	2 .	-	150	-	_	_	190	_	_	_	225		_	
Select to Output	t _{PHL}	4.5	_	30		35	_	38	· <u> </u>	44		45	_	53	ns
(Figure 3) HC/HCT158		6	_	26		_	_	33		_	_	38	-	_	
Output Transition	t _{TLH}	2		75	_	_	_	95		_	_	110		_	
Time	t _{THL}	4.5	_	15	_	15		19		19	_	22	_	22	ns
(Figure 3 or 4)		6		13	_	_	_	16	_	_	_	19		_	
Input Capacitance	Cin		_	10		10	_	10		10		10		10	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Vs	50% V _{cc}	1.3 V

Fig. 3 - Inputs or select to output propagation delays and output transition times.


Fig. 4 - Enable to output propagation delays and output transition times.

File Number 1550

CD54/74HC/HCT160, CD54/74HC/HCT161 CD54/74HC/HCT162, CD54/74HC/HCT163

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Presettable Counters

CD54/74HC/HCT160 BCD Decade Counter, Asynchronous Reset CD54/74HC/HCT161 4-Bit Binary Counter, Asynchronous Reset CD54/74HC/HCT162 BCD Decade Counter, Synchronous Reset CD54/74HC/HCT163 4-Bit Binary Counter, Synchronous Reset

Type Features:

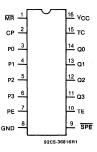
- Synchronous Counting and Loading
- Two Count Enable Inputs for n-Bit Cascading
- Asynchronous Reset (CD54/74HC/HCT160, 161)
- Synchronous Reset (CD54/74HC/HCT162, 163)
- Look-Ahead Carry for High-Speed Counting

The RCA-CD54/74HC/HCT160, 161, 162, and 163 devices are presettable synchronous counters that feature look-ahead carry logic for use in high-speed counting applications. The CD54/74HC/HCT160 and 161 are asynchronous reset decade and binary counters, respectively; the CD54/74HC/HCT162 and 163 devices are decade and binary counters, respectively and are reset synchronously with the clock. Counting and parallel presetting are both accomplished synchronously with the negative-to-positive transition of the clock.

A low level on the synchronous parallel enable input, \overline{SPE} , disables the counting operation and allows data at the P0 to P3 inputs to be loaded into the counter (provided that the setup and hold requirements for \overline{SPE} are met).

All counters are reset with a low level on the Master Reset input, $\overline{\text{MR}}$. In the CD54/74HC/HCT162 and 163 counters (synchronous reset types), the requirements for setup and hold time with respect to the clock must be met.

Two count enables, PE and TE, in each counter are provided for n-bit cascading. In all counters reset action occurs regardless of the level of the SPE, PE and TE inputs (and the clock input, CP, in the CD54/74HC/HCT160 and 161 types).


If a decade counter is preset to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram.

The look-ahead carry feature simplifies serial cascading of the counters. Both count enable inputs (PE and TE) must be high to count. The TE input is gated with the Q outputs of all four stages so that at the maximum count the terminal count (TC) output goes high for one clock period. This TC pulse is used to enable the next cascaded stage.

The CD54HC160 through 163 and the CD54HCT160 through 163 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC160 through 163 and the CD74HC160 through 163 are supplied in 16-lead dual-in-line plastic packages (E suffix), and in 16-lead dual-in-line surface mount plastic packages (M suffix). All types are also supplied in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}, @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, IIK (FOR Vi < -0.5 V OR Vi > Vcc +0.5 V)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	±25 mA
DC V _{cc} OR GROUND CURRENT, (I _{cc}):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	•
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{sto})	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

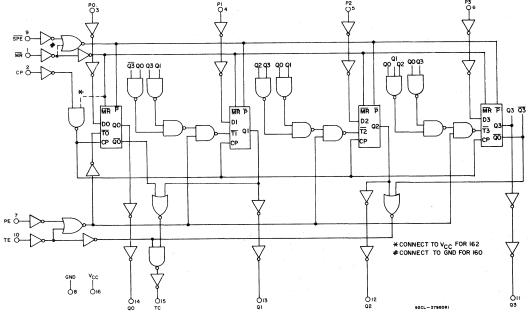
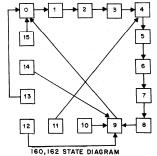



Fig. 1 - Logic diagram for the CD54/74HC/HCT160 and 162.

NOTE: ILLEGAL STATES IN BCD COUNTERS CORRECTED IN ONE COUNT.

92CS-40259RI

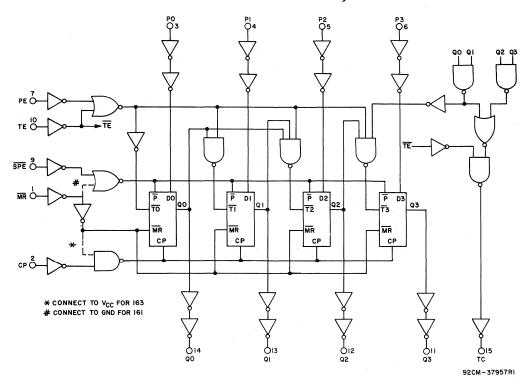


Fig. 2 - Logic diagram for the CD54/74HC/HCT161 and 163.

MODE SELECT - FUNCTION TABLE, 160, 161

OPERATING MODE			OUTPUTS					
OPERATING MODE	MR	СР	PE	TE	SPE	Pn	Qn	тс
Reset (Clear)	L	х	х	х	х	х	L	L
	н		х	х	ı	1	L	L
Parallel Load	н		×	x	1	h	н	(a)
Count	н		h	h	h(c)	х	count	(a)
1-6:6:4	Н	х	l(p)	х	h(c)	х	q _n	(a)
Inhibit	н	x	×	l(p)	h(c)	Х	q _n	L

Technical Data	
I DCDDICAL LIATA	

MODE SELECT - FUNCTION TABLE, 162, 163

		INPUTS									
OPERATING MODE	MR	СР	PE	TE	SPE	Pn	Q _n .	тс			
Reset (Clear)	ı		х	· x	х	Х	L	L			
	h(f)		х	х	1	ı	L	L			
Parallel Load	h(f)		x	Х	1	h	н	(d)			
Count	h(f)		h	h	h(f)	х	count	(d)			
	h(f)	х	l(e)	х	h(f)	×	q _n	(d)			
Inhibit	h(f)	×	х	ı(e)	h(f)	×	q _n	L			

H = HIGH voltage level steady state.

L = LOW voltage level steady state.

h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition.

I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.

X = Don't care.

q = Lower case letters indicate the state of the referenced output prior to the LOW-to-HIGH clock transition.

= LOW-to-HIGH clock transition.

NOTES

- (a) The TC output is HIGH when TE is HIGH and the counter is at Terminal Count (HHHH for 161 and HLLH for 160).
- (b) The HIGH-to-LOW transition of PE or TE on the 54/74161 and 54/74160 should only occur while CP is HIGH for conventional operation.
- (c) The LOW-to-HIGH transition of SPE on the 54/74161 and 54/74160 should only occur while CP is HIGH for conventional operation.
- (d) The TC output is HIGH when TE is HIGH and the counter is at Terminal Count (HLLH for 162 and HHHH for 163).
- (e) The HIGH-to-LOW transition of PE or TE on the 54/74163 should only occur while CP is HIGH for conventional operation.
- (f) The LOW-to-HIGH transition of SPE or MR on the 54/74163 should only occur while CP is HIGH for conventional operation.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIR	AITS	UNITS	
CHARACTERISTIC	MIN. MAX.		OMITS	
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*				
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _i , V _o	0	Vcc	V	
Operating Temperature T _A :				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times, t _r , t _f				
at 2 V	0	1000	ns	
at 4.5 V	О	500	ns	
at 6 V	0	400	ns	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD74	HC16	60-163	/CD5	4HC1	60-16	3			CI	D74H	CT166	0-163	CD5	HCT	160-1	63		
CHARACTERISTIC			TEST CONDITIONS			74HC/54HC 74HC SERIES SERIE				54HC SERIES		TEST CONDITIONS		74HCT/54HCT SERIES				ICT RIES	54H SEF	ICT	
CHARACTERISTIC		V,	lo	V _{cc}		+25° C	;	-4 +85	0/ s° C	-5 +12		V _i	Vcc	-	+25° C		i i	-40/ +85° C		5/ 5° C	UNITS
		•	mA		Min	Тур	Max	Min	Max	Min	Max	V	'	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5				4.1				
Input Voltage V	н			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	_	_	2	_	2	_	V
				6	4.2	_	_	4.2	_	4.2	-		5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5			-					
Input Voltage V	fL.			4.5	-	_	1.35	-	1.35	_	1.35	_	to	_	_	0.8	_	0.8	_	0.8	v
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	VIL									
Output Voltage Vo	эн	or	-0.02	4.5	4.4	-	_	4.4	-	4.4	_	or	4.5	4.4		_	4.4	-	4.4	-	v
CMOS Loads		V _{IH}		6	5.9	_		5.9	_	5.9	_	ViH									
		VIL										VIL									
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	_	v
		ViH	-5.2	6	5.48	_	_	5.34	_	5.2	_	Vін		-							
Low-Level		VIL		2	_	_	0.1	_	0.1	-	0.1	Vil	-								
Output Voltage Vo	DL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1		0.1	, v
CMOS Loads		V _{IH}		6	-	_	0.1	_	0.1	_	0.1	ViH									1
		VIL										Vil									
TTL Loads		or	4	4.5	_	_	0.26		0.33	_	0.4	or	4.5	_		0.26	_	0.33	_	0.4	V
		V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	ViH									
Input Leakage		V _{cc}										Any Voltage									
Current I		or		6	_ '	_	±0.1		±1		±1	Between	5.5	_		±0.1		±1	-	±1	μΑ
-		Gnd										V _{cc} and Gnd									
Quiescent		V _{cc}									-	Vcc									
Device		or	- 0	6	_	_	8		80	_	160	or	5.5	_	_	8	_	80	_	160	μΑ
Current Ic	c	Gnd					J.					Gnd									
Quiescent Device Current per input pin: 1 unit load \(\Delta \)	c*											V _{cc} -2.1	4.5 to 5.5	-	100	360	_	450	-	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

par zouanig . auto										
Input	Unit Loads *									
P0-P3	0.25									
PE	0.65									
СР	1.05									
MR	0.8									
SPE	0.5									
TE	1.05									

*Unit load is ΔI_{cc} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25°C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r , t_t = 6 ns)

CHARACTERISTIC	CVMDO	CL	TYP	UNITS	
CHARACTERISTIC	SYMBOL	(pF)	54/74HC	54/74HCT	UNITS
Propagation Delay CP to TC	t _{PHL}	15	15	18	ns
CP to Qn	t _{PLH}	15	15	16	ns
TE to TC		15	9	13	ns
MR to Qn (160, 161)	t _{PHL}	15	18	21	ns
Power Dissipation Capacitance *	CPD		60	63	pF

^{*} CPD is used to determine the dynamic power consumption, per package.

C_L = output load capacitance. V_{CC} = supply voltage.

PREREQUISITE FOR SWITCHING FUNCTION

		LIMITS												
CHARACTERISTIC	TEST	25° C			-40°C to +85°C				-55°C to +125°C				UNITS	
CHARACTERISTIC	CONDITIONS	нс		нст		74HC		74HCT		54HC		54HCT		UNITS
	V _{cc}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Max. CP Freq. * f _{MAX}	2	6	†=	 -	-	5	_	=	-	4	-	=	<u> </u>	
	4.5	30	_	30		24		24	—	20	—	20	—	MHz
	6	35	_	<u> </u>	_	28				24				
	2	80	-	I -	-	100		_	-	120		_	-	
CP Width (Low) tw(L)	4.5	16	-	16	-	20	—	20	_	24	l -	24	-	ns
	6	14	<u> - </u>			17				20	_		<u> </u>	
	2	100	Γ-	T —	I —	125	l —	I —		150	_	_		
MR Pulse Width tw	4.5	20	-	20	_	25	-	- 25	-	30	-	30		ns
160, 161	6	17	<u> </u>	_		21				26				<u> </u>
	2	60	_	I —	T	75	_	_	-	90	-	_	-	
Setup Time tsu	4.5	12	_	10	-	15		13	_	18		15	-	ns
Pn to CP	6	10	-	_	-	13		_	<u> </u>	15	<u> </u>	_	L-	
	2	50	_	_	-	65	-	-	_	75	-	_	-	
Setup Time tsu	4.5	10	—	13	-	13		16		15	-	20		ns
PE or TE to CP	6	9	_	_		11	_	_		13	-		L-	
	2	60	T —	T -	T -	75	I -	I -	T -	90	_	_	-	
Setup Time tsu	4.5	12		12	l —	15	—	15	-	18	-	18	-	ns
SPE to CP	6	10	<u> </u>	<u> </u> –	<u> </u>	13				15	_			
	2	65	_	_	T-	80	T -	T -	_	100	 	_	_	
Setup Time t _{su}	4.5	13	_	13	-	16	-	16	-	20	_	20		ns
MR to CP (162, 163)	6	11	-	<u> </u>	-	14	<u> </u>		<u> </u>	17		_		
	2	3	T -	T	I -	3	-	Γ-	-	3	-	_	-	
Hold Time t _H	4.5	3	-	5		3		5		3	-	5		ns
Pn to CP	6	3	_	—	—	3	l –	l —		3	_	_	<u> </u>	
	2	0	Τ-	Τ-	_	0	T -		T -	0	T -	I -] -	
Hold Time t _H	4.5	0	-	3	-	0	-	3		0	_	3	_	ns
TE or PE to CP	6	0	_	l —	_	0	_	 		0	<u> </u>	l –	_	
,	2	3	_	_		3	<u> </u>		-	3	I —	_	T —	
Hold Time 160, t _H	4.5	3	—	3	_	3	_	3	-	3	-	3	-	ns
SPE to CP 162	6	3		<u></u>		3	<u></u>	<u>L-</u>	<u></u>	3	<u> </u>	<u> </u>	<u> </u>	
	2	0	T-		-	0	_	_	T-	0	Τ-		-	
161, t _н	4.5	0	-	3	-	0] —	3	-	0	-	3	-	ns
163	6	0	<u></u>	<u> </u>	<u></u>	0				0		<u>L-</u>	<u></u>	
	2	75	_	T —	_	95	I —	-	T —	110	_	_	T	
Recovery Time 160 t _{REC}	4.5	15	—	15	_	19	_	19	-	22	-	22	-	ns
MR to CP 161	6	13	_	_	_	16	-		_	19	_	_	_	

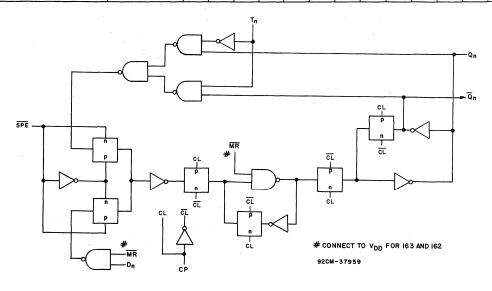
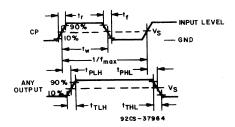
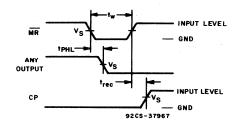
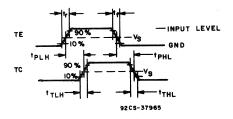
^{*} Applies to non-cascaded operation only. With cascaded counters clock to terminal count propagation delays, count enables (PE or TE)-to-clock set-up times, and count enables (PE or TE)-to-clock hold times determine max. clock frequency. For example with these HC devices:

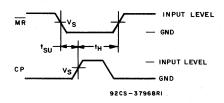
fmax (CP) =_ CP-to-TC prop. delay + TE-to-CP setup + TE-to-CP Hold

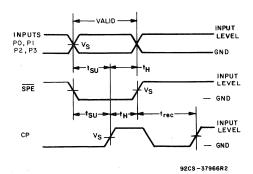
 $P_D = C_{PD} V_{CC}^2 f_i + \sum (C_L V_{CC}^2 f_o)$ where: f_i = input frequency. f_o = output frequency.

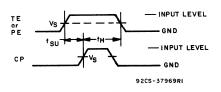
SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r , t_f = 6 ns)

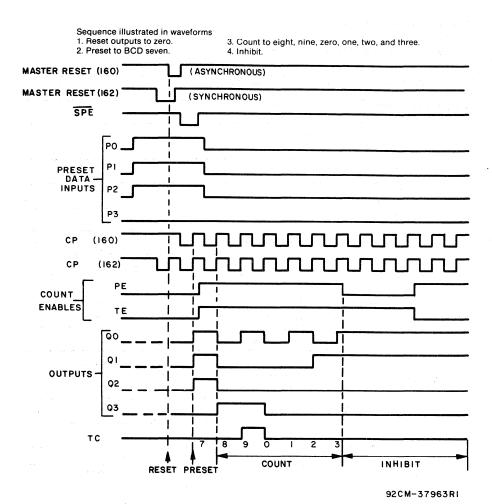
		LIMITS													
CHARACTERISTIC		TEST	25° C				-40°C to +85°C				-55°C to +125°C				
			нс		нст		74HC		74HCT		54HC		54HCT		UNITS
		V _{CC}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	<u> </u>	185	_	_	-	230	-			280	_	-	-
CP to TC	t _{PHL}	4.5	-	37	-	42		46	-	53	-	56	_	63	ns
		6		31		<u> </u>	<u></u>	39	<u> </u>		L-	48	_		
	t _{PLH}	2	-	185	-	-	_	230	-	-	_	280	_	_	
CP to Qn	t _{PHL}	4.5	-	37	-	39	—	46	-	49	-	56	—	59	ns
		6	<u>l – </u>	31	_	l –		39	_		_	48		_	
	t _{PLH}	2	-	120	-	_	-	150	_	_	_	180	-	-	
TE to TC	t _{PHL}	4.5	-	24		32	_	30	_	40		36	-	48	ns
		6	<u> </u>	20				26	<u> </u>	<u> </u>		31	_		
		2	-	210	-	_	_	265	_	-		315	_	_	
MR to Qn,	t _{PHL}	4.5	—	42	-	50	_	53	-	63	-	63	-	75	ns
(160, 161)		6		36	_		_	45		_	_	54			
		2	_	210	_	_	_	265	-		-	315	_	_	
MR to TC	t _{PHL}	4.5	-	42	—	50	_	53	—	63	-	63	_	75	ns
(160, 161)		6		36				45	_	_	_	54	_	_	
		2	_	75	_	_	_	95	_	-	_	110	_	_	
Output Transition	tTLH	4.5	-	15		15	—	19	—	19	_	22	—	22	ns
Time	t _{THL}	6		13			_	16	<u> </u>			19	_		
Input Capacitance	Cin		_	10	_	10	_	10	_	10	_	10	_	10	pF

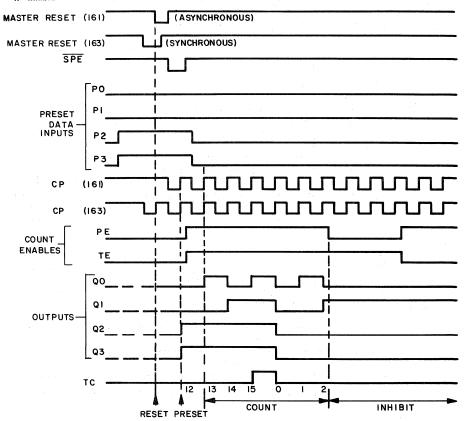

Fig. 3 - Detail of flip-flops for all types.


Transition times, propagation delay times, setup, hold, and recovery times.

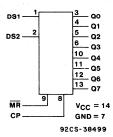




·	CD54/74HC	CD54/74HCT				
Input Level	V _{cc}	3 V				
Vs	0.5 V _{cc}	1.3 V				


Timing diagrams for the CD54/74HC/HCT160 and 162.

Timing diagrams for the CD54/74HC/HCT161 and 163.


Sequence illustrated in waveforms

- 1. Reset outputs to zero.
- 2. Preset to binary twelve.
- 3. Count to thirteen, fourteen, fifteen, zero, one, and two.
- 4. Inhibit.

92CM-37962

High-Speed CMOS Logic

8-Bit Serial-In/Parallel-Out Shift Register

Type Features:

- Buffered Inputs
- Asynchronous Master Reset
- Typical $f_{MAX} = 60 \text{ MHz}$ @ $V_{CC} = 5V$, $C_L = 15 \text{ pF}$, $T_A = 25^{\circ} C$

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC164 and CD54/74HCT164 are 8-bit serial-in parallel-out shift registers with asynchronous reset. Data is shifted on the positive edge of Clock (CP). A LOW on the Master Reset (MR) pin resets the shift register and all outputs go to the LOW state regardless of the input conditions. Two Serial Data inputs (DS1 and DS2) are provided, either one can be used as a Data Enable control.

The RCA CD54/74HC164 are supplied in 14-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT164 are supplied in a 14-lead plastic dual-in-line plastic package (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). The CD54/74HC/HCT164 are also supplied in chip form (H suffix).

VCC GND

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:

 $N_{\rm IL}$ = 30%, $N_{\rm IH}$ =30% of $V_{\rm CC}$; @ $V_{\rm CC}$ =5 V

92CM-3850IR2

■ CD 54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL}=0.8 V Max., V_{IH}=2 V Min. CMOS Input Compatibility

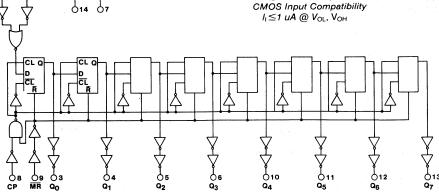
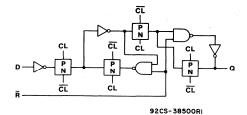



Fig. 1 - Logic diagram for the CD54/74HC164, CD54/74HCT164

MODE SELECT — TRUTH TABLE

Operating		Inp	uts					
Mode	MR	CP	DS1	DS2	Q0	Q1		Q7
Reset (Clear)	L	X	X	X	L	L	_	L
	Н	5	1	1	L	qo	_	q ₆
	H		-1	h	L	qo	_	q_6
Shift	Н	_	h	1	L	qo	_	q ₆
	н	5	h	h	Н	qo		q_6

FLIP FLOP DETAIL

H=HIGH voltage level.

h=HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition.

L=LOW voltage level.

I=LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.

q=Lower case letters indicate the state of the reference input (or output) one setup time prior to the LOW-to-HIGH clock transition.

X=Don't care.

__=LOW-to-HIGH clock transition.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (V _{CC}):
(Voltages referenced to ground)
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} + 0.5$ V)
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} +0.5$ V)
DC DRAIN CURRENT, PER OUTPUT (I _O) (FOR -0.5 V $<$ V $_{\rm O}$ $<$ V $_{\rm CC}$ + 0.5 V)
DC V _{CC} OR GROUND CURRENT (I _{CC})
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -40 to +60°C (PACKAGE TYPE E)
For T _A + +60 to +85°C (PACKAGE TYPE E)
For T _A = -55 to +100° C (PACKAGE TYPE F, H)
For T _A = +100 to +125°C (PACKAGE TYPE F, H)
For $T_A = -40 \text{ to } +70^{\circ} \text{ C (PACKAGE TYPE M)}$ 400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)
OPERATING-TEMPERATURE RANGE (T _A):
PACKAGE TYPE E, M40 to +85° C
PACKAGE TYPE F, H55 to +125° C
STORAGE TEMPERATURE (T _{stg})65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)
with solder contacting lead tips only+300° C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OHADACTEDICTIC	LIN	IITS	LIMITO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	1

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

e e e e e e e e e e e e e e e e e e e			CD74H	IC164	/CD54	HC16	4				CD74HCT164/CD54HCT164										
CHARACTERISTIC		TEST IDITIONS		J	HC/54 TYPES		74 TYI		1	HC PES	TEST CONDITIONS		J	T/54H YPES		74H TYF		54H TYF		UNITS	
CHARACTERISTIC	V I	Io	v _{cc}		+25° C		1 .	i0/		i5/ 5°C	V ₁	V CC	+25° C			-40/ +85° C					
	. v	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	V	Min	Тур	Max	Min	Max	Min	Max		
High-Level			2	1.5	_		1.5	_	1.5	1		4.5									
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	-	_	to	2	-	_	2	-	2	-	· · v	
			6	4.2	_	_	4.2	_	4.2	_		5.5									
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5								- 1.	
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	_	to	_	-	0.8	_	0.8	_	0.8	V	
			6	Ī-	_	1.8	_	1.8	_	1.8		5.5		İ							
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	V _{IL}								-		
Output Voltage V _{OH}	or	-0.02	4.5	4.4		_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	, v	
CMOS Loads	VIH		6	5.9	_	_	5.9	_	5.9	_	v v _{IH}										
	V _{IL}	100									V _{IL}										
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	_	V	
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	VIH		-								
Low-Level	V _{IL}		2	_	_	0.1	-	0.1	_	0.1	V _{IL}										
Output Voltage V _{OL}	or	0.02	4.5	_	-	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	V	
CMOS Loads	, V _{IH}		6	_	_	0.1	_	0.1	_	0.1	VIH										
	V _{IL}										V _{IL}										
TTL Loads	or	4	4.5	_	_	0.26	-	0.33		0.4	or	4.5	_	_	0.26	-	0.33	-	0.4	v	
	VIH	5.2	6	-	_	0.26	-	0.33	_	0.4	VIH										
Input Leakage	V _{CC}										Any Voltage										
Current I _I	or		6		_	±0.1	_	±1	_	±1	between V _{CC}	5.5	-	_ 1	±0.1	-	±1	-	±1	μΑ	
	Gnd										& Gnd										
Quiescent	Vcc										V _{CC}										
Device	or	0	6	-	_	8	_	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ	
Current I _{CC}	Gnd										Gnd							-			
Additional Quiescent Device Current per input pin: 1 unit load					•				•		V _{CC} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ	

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
Date Shift-In (1,2)	0.3
MR	0.9
Clock	0.7

^{*}Unit Load is $\Delta\,I_{CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu\!A$ max. @ 25° C.

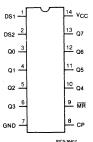
SWITCHING CHARACTERISTICS (V_{CC} =5 V, T_A =25°C, Input t_r , t_i =6 ns)

	HARACTERISTIC		SYMBOL	Туј	UNITS	
C	HANACTERISTIC	C _L	STMBOL	54/74HC	54/74HCT	UNITS
Maximum Clock Freq	uency	15	f _{MAX}	60	54	MHZ
Propagation Delay:	CP to Qn	15	t _{PLH} , t _{PHL}	14	15	ns
	MR to Qn	15	t _{PHL}	11	16	ns
Power Dissipation Cap	pacitance		C _{PD} *	47	49	pF

 $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per device.

 $P_D = C_{PD} V_{CC^2} f_1 + \Sigma (C_L V_{CC^2} f_0)$ where:

f_I = input frequency.

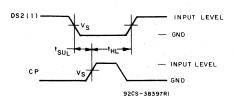

fo = output frequency.

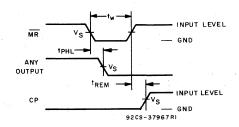
C_L = output load capacitance.

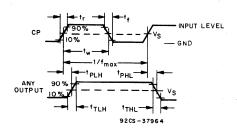
V_{CC} = supply voltage.

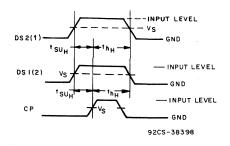
PREREQUISITE FOR SWITCHING FUNCTION

				25	°C,			-40° C t	o +85° C	:					
CHARACTERISTIC	SYMBOL	v _{cc}	н	C	н	СТ	74	нс	74H	СТ	54	нс	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6	-	-	_	5	_	-	_	4	_	_	-	
Frequency	f _{MAX}	4.5	30		27	-	24	_	- 22	-	20	_	18	-	MHz
		6	35				28	<u> </u>		_	24	_	_	<u> </u>	
MR Pulse Width		2	60	-	-	-	75	_	-	_	90	_	_	_	
	t _W	4.5	12	-	18	-	15		23		18	-	27	-	ns
		6	10		_		13			_	15	-		<u> </u>	
CP Pulse Width		2	80	_	-	_	100	_	_	_	120	_		-	
	tw	4.5	16	_	18	_	20	-	23	_	24	-	27	-	ns
		6	14		_	_	17	_	_	_	20	-	_		
Setup Time		2	60	_	-	-	75	_	_	_	90	-		-	
	t _{SU}	4.5	12	_	12	-	15		15	-	18	-	18	_	ns
		6	10				13	_			15	_			
Hold Time		2	4	-	_	_	4	_	_	_	4	_		_	
	tH	4.5	4	-	4	-	4	_	4	-	4	_	4	-	ns
		6	4		-	_	4	_		-	4	_	_	l –	
MR to CP		2	80	_	_	_	100	_	_	_	120	_	_	_	
Removal Time	t _{REM}	4.5	16	-	16	-	20	_	20	-	24	_	24	-	ns
	1	6	14	-	_		17		_	-	20	_		_	

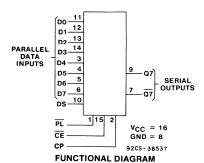



TERMINAL ASSIGNMENT


SWITCHING CHARACTERISTICS (C_L=50 pF, Input t_r, t_f= 6 ns)


				25	°C			-40°C t	o +85°C	:	-55°C to +125°C				
CHARACTERISTIC	SYMBOL	Vcc	н	С	нст		74HC		74HCT		54HC		54HCT		UNITS
		100	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	_	170	_	_		212	_		_	255	_	-	
CP to Qn	tpHL	4.5	_	34	_	36	_	43	-	45	_	51	_	54	ns
		6	_	29		-	-	36	-	_	-	43	- 1	-	
MR to Qn		2	_	140	_	-		175	_	T _	_	210		-	
		4.5		28	~ <u>~</u> ·	38	-	35	-	46	-	42		57	ns
	t _{PHL}	6	_	24	_		_	30		_	_	36	-		
Output		2	_	75	_	_	_	95	_	_		110	_	_	
Transition Time	t _{TLH}	4.5	_	15	_	15	_	19	_	19	_	22		22	ns
•	t _{THL}	6	_	13	_	_	-	16	_	_	-	19	· · — , ·		
Input Capacitance	Cı	_	_	10	_	10	-	10	_	10	_	10	_	10	pF

Transition times, propagation delay times, setup, hold times, and removal times.



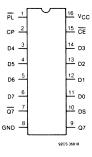
	54/74HC	54/74HCT
INPUT LEVEL	vcc	3 V
SWITCHING VOLTAGE, VS	50% V _{CC}	1.3 V

High-Speed CMOS Logic

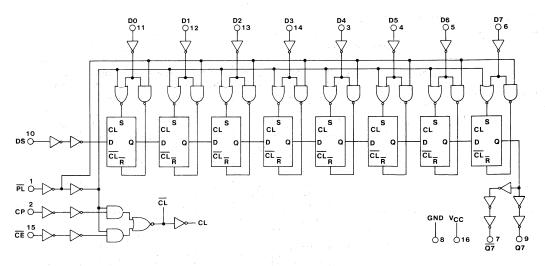
8-Bit Parallel-In/ Serial-Out Shift Register

Type Features:

- Buffered Inputs
- Asynchronous Parallel Load
- Complementary Outputs
- Typical $f_{MAX} = 60 \text{ MHz}$ @ $V_{CC} = 5V$, $C_L = 15 \text{ pF}$, $T_A = 25^{\circ} \text{ C}$


The RCA-CD54/74HC165 and CD54/74HCT165 are 8-bit parallel or serial-in shift registers with complementary serial outputs (Q7 and $\overline{Q7}$) available from the last stage. When the parallel load (\overline{PL}) input is LOW, parallel data from the D0 to D7 inputs are loaded into the register asynchronously. When the \overline{PL} is HIGH, data enters the register serially at the DS input and shifts one place to the right (Q0-Q1-Q2, etc.) with each positive-going clock transition. This feature allows parallel-to-serial converter expansion by tying the Q7 output to the DS input of the succeeding device.

For predictable operation the LOW-to-HIGH transition of $\overline{\text{CE}}$ should only take place while CP is HIGH. Also, CP and $\overline{\text{CE}}$ should be LOW before the LOW-to-HIGH transition of PL to prevent shifting the data when $\overline{\text{PL}}$ goes HIGH.


The CD54HC/HCT165 devices are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT165 devices are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
 - CD54HC/CD74HC Types:
 - 2 to 6 V Operation
 - High Noise Immunity:
 - $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5~V$
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - $V_{\rm IL} = 0.8 \text{ V Max.}, V_{\rm IH} = 2 \text{ V Min.}$
 - CMOS Input Compatibility
 - $I_{\rm I} \leq 1~\mu A @ V_{
 m OL},~V_{
 m OH}$

TERMINAL ASSIGNMENT

92CM-38538R2

Fig. 1 — Logic diagram for the CD54/74HC165 and CD54/74HCT165.

TRUTH TABLE

Operating			Inp	uts	Q _n F	Register	Outputs		
Modes	PL	CE	CP	DS	D0-D7	Q0	Q1-Q6	Q7	Q 7
Parallel Load	L.	X	Х	Х	L	L	L-L	L	Н
	L	X	Х	X	Н	Н	H-H	Н	L
Serial Shift	Н	L	5	1	X	L	q ₀ - q ₅	q_6	\overline{q}_6
	Н	L		h	×	Н	q ₀- q ₅	q ₆	$\overline{q_6}$
Hold "Do Nothing"	Н	Н	х	X	х	q _o	q1-q6	q ₇ .	q ₇

- H = HIGH voltage level
- h = HIGH voltage level one setup time prior to the LOWto-HIGH clock transition.
 L = LOW voltage level.
- I = LOW voltage level one setup time prior to the LOWto-HIGH clock transition.
- q_n = Lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition.
- X = Don't care.

 √ = LOW-to-HIGH clock transition.

STATIC ELECTRICAL CHARACTERISTICS

		c	D74H	IC165	/CD54	HC1	65					CE	74HC	T165	/CD54	нст	165			
CHARACTERISTIC	1	TEST CONDITIONS		1	74HC/54HC 74HC 54HC TYPE TYPE			TEST 74HCT/54HCT TYPES						ICT PE	i	ICT PE	UNITS			
CHARACTERISTIC	V,	I _o mA	V _{cc}		+25° C	;	I .	10/ 5° C	-5 +12	5/ 5° C	V,	V _{cc}	+25° C		;	-40/ +85° C		-55/ +125°C		UNITS
		ma	ľ	Min	Тур	Max	Min	Max	Min	Max			Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5		_	1.5		1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	_	3.15	_	_	to	2	_	-	2	-	2	-	v
			6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level			2	_	-	0.5		0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	-	to	-	-	0.8	-	8.0	-	0.8	V
			6	_	_	1.8	_	1.8	_	1.8		5.5					1			
High-Level	, V _{IL}		2	1.9		_	1.9	_	1.9	_	V _{IL}									
Output Voltage V _{он}	or	-0.02	4.5	4.4		_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9		V _{IH}									
	V _n										V _{IL}									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	-	v
	V _{iH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	, A ^{II}		2		_	0.1	-	0.1	_	0.1	V _{IL}				İ					
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	V
CMOS Loads	V _{IH}		6	_	_	0.1	-	0.1	_	0.1	V _{IH}									
	V _{IL}										Vil									
TTL Loads	or	4	4.5	_		0.26		0.33	_	0.4	or	4.5	-	_	0.26	-	0.33	-	0.4	V
	V _{IH}	5.2	6	_		0.26		0.33	-	0.4	VIH						<u> </u>		ļ	
Input Leakage	V _{cc}					-					Any Voltage									
Current I,	or	:	6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd				-				<u> </u>	ļ	& Gnd									
Quiescent	V _{cc}										V _{cc}			ĺ		-				
Device	or	0	6	-	-	8	-	80	-	160	or	5.5		-	8		80	-	160	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current											V _{cc} -2.1	4.5 to	_	100	360	_	450		490	μΑ
per input pin: 1 unit load Δlcc*												5.5								

^{*}For dual-supply systems theoretical worst case ($V_1 = 2.4 \text{ V}$, $V_{CC} = 5.5 \text{ V}$) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
DS, D0 to D7	0.35
CP, PL	0.65

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC} + 0.5$ V)	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vcc $+$ 0.5V)	±25mA
DC V _{cc} OR GROUND CURRENT (I _{cc})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	-65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LIMITS					
CHARACTERISTIC	MIN.	MAX.	UNITS				
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*							
CD54/74HC Types	2	6					
CD54/74HCT Types	4.5	5.5	, V				
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V				
Operating Temperature T _A :							
CD74 Types	-40	+85					
CD54 Types	-55	+125	°C				
Input Rise and Fall Times t _r , t _f	i,						
at 2 V	0	1000					
at 4.5 V	0	500	ns				
at 6 V	C	400					

^{*}Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25° C, Input t_r , t_f = 6 ns)

CHARACTERISTIC	CL	SYMBOL	TYP	UNITS		
CHARACTERISTIC	(pF)	STWIDGE	HC	HCT	014113	
Propagation Delay						
CP to Q7	15	t _{PHL}	13	17	ns	
PL to Q7	15	t _{PLH}	14	17	ns	
D7 to Q7	15		12	14	ns	
Power Dissipation Capacitance*	_	C _{PD}	17	24	pF .	

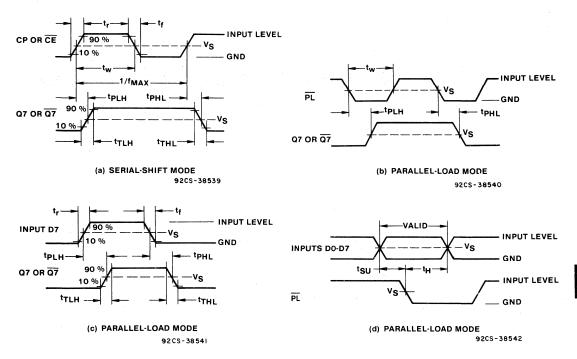
 $^{{}^{\}bullet}C_{PD}$ is used to determine the dynamic power consumption, per package.

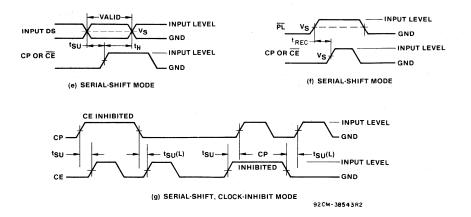
 $P_D = C_{PU}^{-} \, V_{CC}^{-2} \, f_{_1} + \Sigma \, \left(C_L \, V_{cc}^{-2} \, f_0 \right)$ where:

f, input frequency

fo output frequency

C_L output load capacitance.

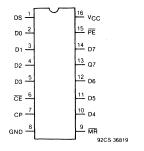

Vcc = supply voltage.


PRE-REQUISITE FOR SWITCHING FUNCTION

				25	°C		-4	O°C t	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	IC	H	CT	74	нс	741	ICT	54	HC	54H	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
CP Pulse Width	twL	2	80			_	100	_	_	_	120	_		T -	
	tw⊢	4.5	16	_	18		20	-	23	_	24		27	-	ns
		6	14				17				20	-	_	_	
		2	80	_		_	100	-	_	_	120	_	_	_	
PL Pulse Width	twL	4.5	16	-	20		20	_	25	_	24	-	30	_	ns
		6	14				17		_		20	-	_	-	
Set-up Time		2	80	_	_	_	100	_	_	_	120	T T	Ι –	Ī —	
DS to CP	t _{SU}	4.5	16		20	-	20	-	25	_	24		30	_	ns
		6	14			_	17	_	_	_	20	-		_	
		2	80	-	_	_	100	_	_	_	120		_	_	
CE to CP	t _{SU(L)}	4.5	16	_	20	-	20	_	25	_	24	<u>-</u>	30	_	ns.
		6	14				17			_	20	_	_		
		2	80	_	_	_	100	_	_	-	120	Ī —	_	_	
D0-D7 to PL	t _{su}	4.5	16		20		20		25	_	24	-	30	_	ns
		6	14				17		_		20		_	_	
Hold Time		2	35	-	_	_	45	_	_		55	-	_		
DS to CP	- t _H	4.5	7	-	7		9	_	9	_	11	_	11	_	ns
or CE		6	6		_	_	8	_	_		9	l –		_	
		2	0	_	-	_	0	_	_	_	0	_	_	_	
CE to CP	tн	4.5	0	-	0		0		0	_	0	_	0	_	ns
		6	0	_		_	0		_		0	_	_	_	
Recovery Time		2	100	_	_	_	125	_	_		150	_	_	_	
PL to CP	tREC	4.5	20	_	20	_	25	_	25	_	30	_	30	_	ns
		6	17	_	_	_	21		_		26		_	_	
Maximum Clock		. 2	6	_	_		5	_	_	_	4	 	_	 	
Pulse Frequency	f _{MAX}	4.5	30	_	27		24	-	22		20	-	18	-	MHz
		6	35	_			28	-	_	-	24		_		

SWITCHING CHARACTERISTICS (CL=50 pF, Input t,,t,=6 ns)

					25	°C		-4	0°C t	o +85°	,C	-5	5°C to	+125	°C	
CHAR	RACTERISTIC	SYMBOL	Vcc	Н	C	Н	CT	74	нс	74F	ICT	54	нс	541	ICT	UNITS
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propag	gation Delay	tpLH	2	-	165	-		. —	205		_	_	250	_	T. —	
	CP or CE to	t _{PHL}	4.5	_	33	-	40	_ ·	41	-	50		50	_	60	ns
	Q7 or Q7		6	_	28	_	_		35	_	_		43		_	
	PL to Q7 or	t _{PLH}	2		175	_	_	_	220	_	-		265	_	_	
	t _{PHL}	4.5	_	35	_	40	_	44	-	50	_	53	-	60	ns	
	Q7		6		30				37	-	-	_	45			
	D7 to Q7 or	t _{PLH}	2		150	_	-	_	190	_	_	_	225		_	
	Q7	t _{PHL}	4.5	-	30	_	35	_	38		44		45	_	53	ns
			6		26				33	_			38			
		t _{TLH}	2	-	75		_	_	95		_	-	110	_	_	
Output	t Transition	t _{THL}	4.5		15		15	_	19	-	19	-	22	_	22	ns
Time			6	_	13		_	_	16		-		19		_	
				_	-			_	_		_		_	_	_	
Input C	nput Capacitance	· C _i		-	10	_	10	<u> </u>	10		10		10	_	10	рF
							<u> </u>							_		



	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, Vs	50% V _{CC}	1.3 V

Fig. 2 — Switching waveforms for the CD54/74HC165 and the CD54/74HCT165

High-Speed CMOS Logic

8-Bit Parallel-In/Serial-Out Shift Register

Type Features:

- Buffered inputs
- Typical f_{MAX} = 50 MHz @ V_{CC} = 5V, C_L = 15 pF, T_A = 25°C

TERMINAL ASSIGNMENT

The RCA-CD54/74HC166 and CD54/74HCT166 8-bit shift register is fabricated with silicon gate CMOS technology. It possesses the low power consumption of standard CMOS integrated circuits, and can operate at speeds comparable to the equivalent low power Schottky device.

The CD54/74HCT166 is functionally as well as pin compatible with the standard 54LS/74LS166.

The 166 is an 8-bit shift register that has fully synchronous serial or parallel data entry selected by an active LOW Parallel Enable (\overline{PE}) input. When the \overline{PE} is LOW one setup time before the LOW-to-HIGH clock transition, parallel data is entered into the register. When \overline{PE} is HIGH, data is entered into internal bit position Q0 from Serial Data Input (DS), and the remaining bits are shifted one place to the right (Q0 \rightarrow Q1 \rightarrow Q2, etc.) with each positive-going clock transition. For expansion of the register in parallel to serial converters, the Q7 output is connected to the DS input of the succeeding stage.

The clock input is a gated OR structure which allows one input to be used as an active LOW Clock Enable (\overline{CE}) input. The pin assignment for the CP and \overline{CE} inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of \overline{CE} input should only take place while the CP is HIGH for predictable operation.

A LOW on the Master Reset $\overline{(MR)}$ input overrides all other inputs and clears the register asynchronously, forcing all bit positions to a LOW state.

The CD54HC166 and CD54HCT166 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC166 and CD74HCT166 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: NIL = 30%, NIH = 30% of VCC; @ VCC = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility VIL = 0.8 V Max., VIH = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 μA @ Voι, Voн

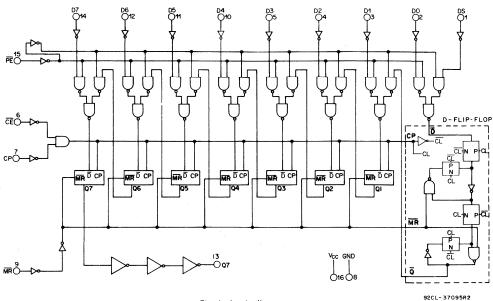


Fig. 1 - Logic diagram.

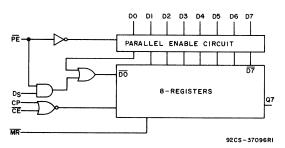


Fig. 2 - Functional diagram.

TRUTH TABLE

		lr	nputs							
Master	Parallel	Clock			Parallel		erna! tates	Quitmut		
Reset	Enable	Enable	Clock	Serial	Do D7	Q	Q1	Output Q7		
L	х	х	X .	Х	х	L	L	L		
н	x	L	L	x	×	Q00	Q10	Q0		
Н	L	L	_~	x	ah	а	b	h		
н	н	L	· ~	н	×	Н	Q0n	Q6n		
н .	Н	L		Ĺ	x	L	Q0n	Q6n		
н	×	н	. حر	x	X	Q00	Q10	Q70		

H = high level (steady state).

a . . . h = the level of steady-state input at inputs Do thru D7, respectively.

L = low level (steady state). Q00, Q10, Q70 = the level of Q0, Q1, or Q7, respectively, before the indicated steady-state input conditions were established. X = irrelevant (any input, including transitions).

Qon, Q6n = the level of Q0 or Q6, respectively, before the most recent † transition of the clock.

- = transition from low to high level.

STATIC ELECTRICAL CHARACTERISTICS

			c	D74H	IC166	/CD5	4HC10	56					CE	74HC	T166	/CD5	4HCT	166			
			TEST NDITIONS		74HC/54HC TYPES			ı	74HC 54HC TYPES TYPES		TEST CONDITION	1	CT/54		1	ICT PES	1	ICT PES	LINITS		
CHARACTERISTIC		V, V	I _o	V _{cc}		+25° (;	1	10/ 5° C	-5 +12	5/ 5° C	V,	V _{cc}		+25° C	:	1	10/ 5° C	1	5/ 5°C	UNITS
				ľ	Min	Тур	Max	Min	Max	Min	Max	•	•	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_		1.5	_	1.5	_		4.5								
Input Voltage V	/ ₅₁			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2		-	2	-	2	-	v
				6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level				2	-	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V	/ ₁₁			4.5	_	_	1.35	_	1.35	_	1.35	_	to	-	_	0.8	-	0.8	-	0.8	v
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level	-	Vil		2	1.9	_	_	1.9	_	1.9	_	V _{i,}									
Output Voltage V)н	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	_	4.4	-	4,4		V
CMOS Loads		V _{iH}		6	5.9	_	_	5.9		5.9	_	V _{IF}									
		V _{IL}										VIL									
TTL Loads		or	-4	4.5	3.98	_		3.84	_	3.7	_	or	4.5	3.98	_		3.84	-	3.7	-	V
		V _{IH}	-5.2	6	5.48	_	_	5.34	-	5.2	-	V _{IF}									
Low-Level		V _{IL}		2	-	_	0.1	_	0.1		0.1	V ₁ ,									
Output Voltage V	DL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	٧
CMOS Loads		V _{IH}		6	_	_	0.1		0.1	_	0.1	V,,,									
		VIL										V _{IL}									
TTL Loads		or	4	4.5		_	0.26		0.33		0.4	or	4.5	-	-	0.26	-	0.33	-	04	V
,		V _{IH}	5.2	6	_		0.26	_	0.33	_	0.4	V _{IH}					L			L	
Input Leakage		Vcc										Any Voltage									
Current	I,	or		6	-	-	±0.1		±1	-	±1	Between V _{cc}	5.5			±0.1	-	±1	-,	±1	μA
	_	Gnd										& Gnd					ļ				
Quiescent		V _{cc}										Vcc									
Device		or	0	6	-		8	-	80		160	or	5.5	-		8	-	80		160	μΑ
Current I	СС	Gnd			L	L						Gnd						-			
Additional Quiescent Device Current per input pin:												V _{cc} -2.1	4.5 to	_	100	360	-	450	_	490	μΑ
1 unit load Δ lcc													5.5						L		

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
DS, D0-D7	0.2
PE	0.35
CP, CE	0.5
MR	0.2

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu{\rm A}$ max. @ 25°C.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, IIK (FOR VI < -0.5 V OR VI > Vcc +0.5V)	
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	
DC Vcc OR GROUND CURRENT (Icc)	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

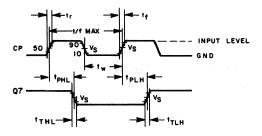
	LII	MITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply Voltage Range (For TA = Full Package Temperature Range) VCC:*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage Vin, Vo∪T	0	Vcc	V
Operating Temperature TA:			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, tr, tr			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r, t_f = 6 ns)

CHARACTERISTIC		C	Ty	pical	11-14-
CHARACTERISTIC		рF	HC	HCT	Units
Propagation Delay- Clock to Q	t _{PLH}	15	13	17	ns
Maximum Clock Frequency	f _{MAX}	15	50	50	MHz
Power Dissipation Capacitance*	C_{PD}	_	41	٠ 41	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

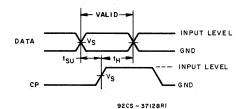
 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where: f_i =input frequency


f_i=input frequency f_o=output frequency C_L=output load capacitance V_{cc}=supply voltage

PRE-REQUISITE FOR SWITCHING FUNCTION

PRE-REGUISITE FOR								LIM	IITS						
CHARACTERIST		TEST CONDITION		25	°C	-	-4	0°C te	+85°	c	-5	5°C to	+125	°C	UNITS
CHARACTERIST	ic		н	C	н	СТ	74HC		74HCT		54HC		54F	ICT	UNITS
		Vcc	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Clock Frequency	fmax	2	6		_		5		_		4		_		
Fig. 3		4.5	30		25		25		20		20		16		MHz
		6	35		_		29		_		23	- 1	-		
MR Pulse Width	tw	2	100				125		_		150		_		
Fig. 4		4.5	20		35		25		44		30		53		ns
		6	17		-		21		_		26		_		
Clock Pulse Width	tw	2	80		_		100		_		120		_		
Fig. 3		4.5	16		20		20		25		24		30		ns
		6	14		-		17		_		20		_		
Set-up Time	tsu	2	80		_		100		_		120		_		
Data and CE to		4.5	16		16		20		20		24		24		ns
Clock, Fig. 5, 6		6	14				17				20				
Hold Time	tн	2	1				1				1		_		
Data to Clock,		4.5	1		0		1		0		1		0		ns
Fig. 5		6	1		-		1		_		1		_		
Removal Time	tREM	2	0		_		0		_		0		_		
MR to Clock		4.5	0		0		0		0		0		0		ns
Fig. 4		6	0		-		0		-		0		-		
Set-up Time	tsu	2	145		_		180		_		220		_		
PE to CP		4.5	29		30		36		38		44		45	ļ	ns
Fig. 6		6	25				31		-		38				
Hold Time	tн	2	0		_		0		_		0		<u> </u>		
PE to CP or CE		4.5	0		0		0		0		0		0		ns
Fig. 6		6	0		-		0		-		0		-	1	1

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t = 6 ns)


								LIM	IITS						
		TEST	25° C				-4	0°C to	o +85°	,C	-5	5°C to	+125	°C	UNITS
CHARACTERIST	ic	CONDITION	нс		нст		74HC		74HCT		54HC		54HCT		UNITS
		Vcc V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	tPLH	2		160		_		200		-		240		_	
Clock to Output	tPHL	4.5		32		40		40		50		48		60	ns
Fig. 3		6	ļ	27		—		34				41		_	
Output Transition	tTLH	2		75		_		95		-		110		_	4 1
Time	tTHL	4.5		15		15		19		19		22		22	ns
Fig. 3		6		13		_		16				19		_	
Propagation Delay	tPHL	2		160		_		200				240		-	
MR to Output		4.5		32		40		40		50		48		60	ns
Fig. 4		6		27		_		34				41		_	
Input Capacitance	Cı			10		10		10		10		10		10	pF

92CS-37126RI

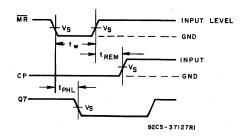

	54/74HC	54/74HCT
INPUT LEVEL	v _{cc}	3.0 V
V _S	50% V _{CC}	1.3 V

Fig. 3 - Clock pre-requisite times and propagation and output transition times.

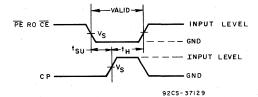
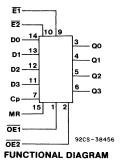

	54/74HC	54/74HCT
INPUT LEVEL	V _{cc}	3.0 V
v _s	50% V _{CC}	1.3 V

Fig. 5 - Data pre-requisite times.

e in the second	54/74HC	54/74HCT
INPUT LEVEL	V _{cc}	3.0 V
V _S	50% V _{CC}	1.3 V


Fig. 4 - Master reset pre-requisite times and propagation delays.

		54/74 HC	54/74 HCT
	INPUT LEVEL	V _{cc}	3.0 V
2	V _S	50% V _{CC}	1.3 V

Fig. 6 - Parallel enable or clock enable pre-requisite times.

High-Speed CMOS Logic

Quad D-Type Flip-Flop, 3-State Positive-Edge Triggered

Type Features:

- 3-state buffered outputs
- gated input and output enables

The RCA CD54/74HC173 and CD54/74HCT173 high speed 3-STATE QUAD D TYPE FLIP-FLOPS are fabricated with silicon gate CMOS technology. They possess the low power consumption of standard CMOS Integrated circuits, and can operate at speeds comparable to the equivalent low power Schottky devices. The buffered outputs can drive 15 LSTTL loads. The large output drive capability and 3-STATE feature make these parts ideally suited for interfacing with bus lines in bus oriented systems.

The four DTYPE FLIP-FLOPS operate synchronously from a common clock. The outputs are in the 3-STATE mode when either of the two output disable pins are at the logic "1" level. The input ENABLES allow the flip-flops to remain in their present states without having to disrupt the clock. If either of the 2 input ENABLES are taken to a logic "1" level, the Q outputs are fed back to the inputs, forcing the flip flops to remain in the same state. Reset is enabled by taking the MASTER RESET (MR) input to a logic "1" level. The data outputs change state on the positive going edge of the clock

The CD54/74HCT173 logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC173 and CD54HCT173 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC173 and D74HCT173 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range):
 Standard Outputs 10 LSTTL Loads
 Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁≤1 µA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

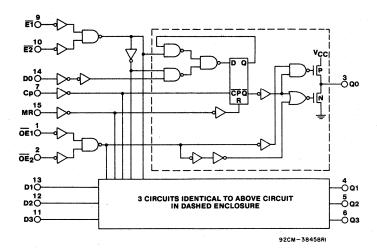
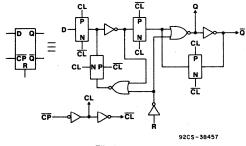



Fig. 1 — Logic diagram for the CD54/74HC/HCT173.

Flip-Flop Detail

TRUTH TABLE

		nputs			
		Data	Enable	Data	Output
MR	СР	E1	E2	D	Q
Н	×	x	×	l x	L
L	L	X	X	X	Q _o
<u> </u>		!!	X	X	Q _o
-		Į X	H	l X	Q ₀
L		L	L	L	L
L		L	L.	1 Н.	. H.

When either $\overline{OE1}$ or $\overline{OE2}$ (or both) is (are) high the output is disabled to the high-impedance state, however, sequential operation of the flip-flops is not affected.

H = high level (steady state)

X = don't care (any input including transitions)

L = low level (steady state)

Q₀ = the level of Q before the indicated steady-state

→ = low-to-high level transition

input conditions were established.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (Vcc): DC V_{cc} OR GROUND CURRENT (I_{cc}) ± 70 mA POWER DISSIPATION PER PACKAGE (PD): OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE F, H-55 to +125°C PACKAGE TYPE E, M.....-40 to +85°C STORAGE TEMPERATURE (Tstg)-65 to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. +265°C Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead tips only+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIM	ITS	T
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _o	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r , t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

				CD74	HC17	3/CD	54HC	173					CD	74HC	T173.	CD5	4HCT	173			
		1	TEST	S	l	IC/54		741 TY		54I	HC PE	TEST		1	T/54		ı	ICT PE		ICT PE	
CHARACTERIS	STIC			Vcc	V _{cc} +2		25°C		-40/ +85°C		5/ 5°C	Vı	Vcc	-	+25°C		-40/ +85°C		-55/ +125°C		UNITS
		V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	. V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	, -		4.5								
Input Voltage	V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	_		2	_	2	-	v
				6	4.2	_	_	4.2	_	4.2			5.5					5.7			
Low-Level				2	_	-	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	-	_	1.35	_	1.35	_	1.35		to	-	_	0.8		0.8	_	0.8	v
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9		_	1.9	_	1.9	_	VII									
Output Voltage	Vон	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	 	4.4	-	v v
CMOS Loads		Vін		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
		VıL										VıL									
TTL Loads		or	-6	4.5	3.98	_	-	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_	3.7	_	v
(Bus Driver)		V _{IH}	-7.8	6	5.48		_	5.34	_	5.2		V _{IH}									
Low-Level		VIL		2	_	_ 1	0.1	_	0.1	_	0.1	VIL									
Output Voltage	Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_ ;	_	0.1	_	0.1	_	0.1	v
CMOS Loads		ViH		6	_	_	0.1	-	0.1		0.1	V _{IH}									
		VIL										VIL									
TTL Loads		or	6	4.5		_	0.26	-	0.33	_	0.4	or	4.5	-	_	0.26	_	0.33	-	0.4	· v
(Bus Driver)		V _{IH}	7.8	6		_	0.26	_	0.33		0.4	ViH									
Input Leakage		V _{CC}										Any Voltage									
Current	. 1	or		6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5	-	_	±0.1	-	±1	-	±1	μΑ
		Gnd										& Gnd									
Quiescent		Vcc										Vcc									
Device		or	0	6	-	_	8	_	80	-,	160	or	5.5	-	_	8	_	80	-	160	μΑ
Current	Icc	Gnd										Gnd									
Additional Quiescent Device Current per input pin: 1 unit load	Δlcc*			_								V _{CC} -2.1	4.5 to 5.5	1	100	360	_	450	_	490	μΑ
3-State Leakage Current		V _{IL} or V _{IH}	V _e =V _{cc} or Gnd	6	-	_	±0.5	_	±5.0	-	±10	V _{IL} or V _{IH}	5.5	-	-	±0.5	-	±5.0	-	±10	μА

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

	Input	Unit Loads*
	D0-D3	0.15
- 1	E1 & E2	0.15
1	CP	0.25
1.0	MR	0.2
	OE1 & OE2	0.5

*Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25°C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t, = 6 ns)

AN AN ANTERIOR		CL	TYP	ICAL	LINITO
CHARACTERISTIC		(pF)	нс	нст	UNITS
Propagation Delay, Clock to Q	t _{PLH}	15	17	18	ns
Propagation Delay, Output Disable and Enable to Q	t _{PLZ}	15	12	12	ns
en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de	t _{PZL} t _{PZH}	15	12	14	ns
Maximum Clock Frequency	f _{max}	_	60	60	MHz
Power Dissipation Capacitance*	СРД	_	29	34	pF

PREREQUISITE FOR SWITCHING FUNCTION

	,	LIMITS												
	TEST		25	°C		-4	0°C to	+85	°C	-5	5°C to	+125	s°C	
CHARACTERISTIC	CONDITION	н	нс		нст		74HC		74HCT		нс	54F	ICT	UNITS
	V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock	2	6		_		5		_		4		_		
Frequency f _{max}	4.5	30		20		24		16		20		13		MHz
Fig. 3	6	35	[28		_		24				<u> </u>
	2	80			,	100		_		120		_		
MR Pulse Width tw	4.5	16		15		20	1 1	19		24		22		ns
Fig. 4	6	14	1	_	:	17				20				
	2	80		_		100		_		120		_		
Clock Pulse Width tw	4.5	16		25		20		31		24		38		ns
Fig. 3	6	14		_	1	17		_		20		_		
Set-up Time	2	60				75				90		-		
Data to Clock	4.5	12		12	:	15		15		18		18		ns
Fig. 5 t _{su}	6	10		_		13		_		15				
Set-up Time	2	60		_		75		_		90		_		
E to Clock	4.5	12		18		15		23		18		27		ns
t _{su}	6	10		_		13				15		_		
Hold Time	2	3		_		3		_		3				
Data to Clock	4.5	3		0		3		0		3		0		ns
Fig. 5 t _H	6	3				3				3			-	
Hold Time	2	0	1	_		0		_		0		_		
E to Clock	4.5	0	and the second	0		0		0		0	20.00	0		ns
t _H	6	0		_		0		,		0				
Removal Time	2	60		_		75		-		90		_		
MR to Clock tREM	4.5	12		12		15		15	1	18		18		ns
	6	10				13		_		15		_		

 $^{^*}$ C_{PD} is used to determine the dynamic power consumption, per package. P_D = C_{PD} V_{CC}² f_i+ Σ C_L V_{CC}² f_o where: f_i = input frequency, f_o = output frequency, C_L = output load capacitance, V_{CC} = supply voltage.

SWITCHING CHARACTERISTICS (VL = 50 pF, input t, t; = 6 ns)

								LIM	IITS						
0111 - 4 0 - 1 0 - 1		TEST CONDITION		25	°C		-4	0°C to	+85	°C	-55°C to +125°C				UNITS
CHARACTERIST	CHARACTERISTIC		н	IC .	нст		74HC		74HCT		54HC		54НСТ		
		V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.	
Propagation Delay	t _{PLH}	2	_	200	_	_	_	250	_	_	-	300	-	_	
Clock to Output	t _{PHL}	4.5		40	-	43		50	-	54	-	60	-	65	ns
Fig. 3		6	_	34				43	_	<u>L</u>	1	51		_	
Propagation Delay		2	_	175	_	_	_	220	-	-	— .	265	l —	· <u>-</u>	ar . b
MR to Output	t _{PHL}	4.5	_	35		37	_	44	—	46	_	53	_	56	ns
Fig. 4		6		30				37	_		_	45		_	eresur L
Propagation Delay,	t _{PLZ}	2	_	150	_	-	_	190	_	_	_	225	_	-	
Output Enable to	Q t _{PHZ}	4.5		30	-	30		38	_	38	_	45	l –	45	ns
		6	_	26		_	_	33	_		_	38			
	t _{PZL}	2	·	150	—	_	<u> </u>	190	-	_	_	225	.,	-	
	t _{PZH}	4.5		30	-	35		38	_	44	·	45	-	53	ns
Fig.6		6	_	26		_	<u> </u>	33			_	38			
Output Transition	t _{TLH}	2	_	60	_	_		75	-	_	—	90	—	—	
Time	t _{THL}	4.5	_	12	_	12		15		15	_	18	-	18	ns
Fig. 3		6	_	10		_		13		_	_	15		_	
Input Capacitance	Cı		_	10		10		10		10		10		10	pF
3-State Output Capacitance	Со	1	-	20	_	20		20		20	_	20	_	20	pF

Fig. 3 — Clock to output delays and clock pulse width.

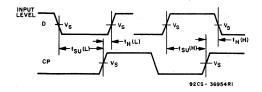


Fig. 5 — Data set-up and hold times.

	CD54/74HC	CD54/74HCT
Input Level	V _{cc}	3 V
Vs	0.5 V _{cc}	1.3 V

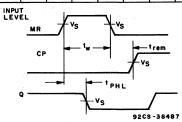


Fig. 4 — Master reset pulse width. Master reset to output delay and master reset to clock recovery time.

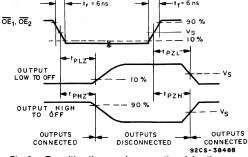
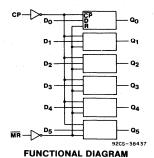



Fig. 6 — Transition times and propagation delay times.

High-Speed CMOS Logic

Hex D-Type Flip-Flop with Reset Positive-Edge Triggered

Type Features:

- Buffered Positive-Edge-Triggered Clock
- Asynchronous Common Reset

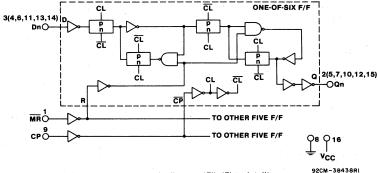
The RCA-CD54/74HC174 and CD54/74HC174 are edge triggered flip-flops which utilize silicon gate CMOS circuitry to implement D-type flip-flops. They possess low power and speeds comparable to low power Schottky TTL circuits. The devices contain 6 master-slave flip-flops with a common clock and common reset. Data on the D input having the specified setup and hold times is transferred to the Q output on the low to high transition of the CLOCK input. The MR input, when low, sets all outputs to a low state.

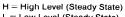
Each output can drive 10 low power Schottky TTL equivalent loads. The CD54/74HCT174 is functionally as well as pin compatible to the 54LS174/74LS174.

The CD54HC174 and CD54HCT174 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC174 and CD74HCT174 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs — 10 LSTTL Loads Bus Driver Outputs — 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{cc}; @ V_{cc} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 µA @ V_{OL}, V_{OH}

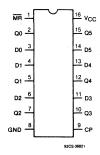



Fig. 1 — Logic diagram (Flip/Flop detail)

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} + 0.5$ V)	$\dots \dots \pm 20 \text{ mA}$
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	\pm 25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC}):	± 50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For $T_A = -55$ to $+100$ °C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contact	ing lead tips only+300°C
TRITH TARIE	

TRUTH TABLE (EACH FLIP-FLOP)


	INPUTS								
RESET (MR)	CLOCK CP	DATA Dn	Qn						
L	×	х	· L						
н		н	н						
н		L	L						
н	L	x	Qo						

L = Low Level (Steady State)

✓ Transition from Low to High Level

Qo, = Level Before the Indicated Steady-State Input Conditions were established

TOP VIEW

TERMINAL ASSIGNMENT

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :* CD54/74HC Types CD54/74HCT Types	2 4.5	6 5.5	v
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A : CD74 Types CD54 Types	-40 -55	+85 +125	°C
Input Rise and Fall Times, t _r , t _r at 2 V at 4.5 V at 6 V	0 0 0	1000 500 400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

X = Irrelevant

STATIC ELECTRICAL CHARACTERISTICS

				CD	74HC	174/C	D54H	C174						CD74	нст	174/C	D54F	ICT17	4																				
			TEST IDITIONS	S		IC/54 TYPE		74H TY		54I TY		TEST	ONS	74HC	T/54		74F TY	ICT PE		HCT YPE																			
CHARACTERIS	TIC	V,	lo	Vcc	-	+25°C	;	-4 +85		-5 +12		V,	V _{cc}	+25°C		+25°C		cc	+25°C		+25°C		+25°C		+25°C		+25°C		+25°C		+25°C		+25°C		l	10/ 5°C	-5 +12		UNITS
		V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	v	٧	Min	Тур	Max	Min	Max	Min	Max	÷																		
High-Level				2	1.5		-	1.5	_	1.5	_		4.5																										
Input Voltage	VIH			4.5	3.15	_	_	3.15	_	3.15		-	to	2	-	_	2	-	2	-	, v																		
				6	4.2	_	_	4.2	_	4.2	_		5.5					<u> </u>																					
Low-Level				2		_	0.5	_	0.5	_	0.5		4.5																										
Input Voltage	VıL			4.5		_	1.35	-	1.35		1.35	-	to	_	_	0.8	-	0.8	- ı	0.8	v																		
				6		_	1.8	_	1.8	_	1.8		5.5						<u> </u>																				
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	Vil																											
Output Voltage	V _{он}	or	-0.02	4.5	4.4	_		4.4	_	4.4		or	4.5	4.4	-	_	4.4	-	4.4	-	٧																		
CMOS Loads		VIH		6	5.9	_	_	5.9	_	5.9		V _{IH}					<u> </u>	<u> </u>		_																			
		VIL										VıL						ŀ		-																			
TTL Loads		or	-4	4.5	3.98	_	_	3.84		3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	-	٧																		
		V _{IH}	-5.2	6	5.48		_	5.34		5.2	_	V _{IH}						<u> </u>		L																			
Low-Level		VIL		2			0.1		0.1	_	0.1	VIL																											
Output Voltage	VoL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	v																		
CMOS Loads		V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH} .						<u> </u>		_																			
		VIL			L							VıL																											
TTL Loads		or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-		0.26	-	0.33	- <u>.</u>	0.4	V																		
		V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	ViH																											
Input Leakage		V _{cc}	1									Any Voltage																											
Current	l _i	or		6	-	-	±0.1	_	±1	-	±1	Between V _{cc}	5.5	1	-	±0.1	-	±1	-	±1	μΑ																		
-		Gnd				<u> </u>	_		_			& Gnd		_		<u> </u>		<u> </u>	ļ	L																			
Quiescent		Vcc										Vcc																											
Device		or	0	6	-	-	8	-	80	_	160	or	5.5	-	-	8	-	80	-	160	: μA																		
Current	lcc	Gnd		-								Gnd					_		<u> </u>	<u> </u>																			
Additional Quiescent Device Current per input pin: 1 unit load	ΔΙςς											V _{cc} -2.1	4.5 to 5.5	-	100	360	-	450	_	490	μΑ																		

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

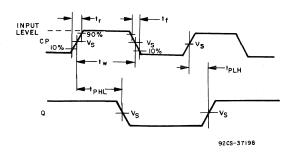
Input	Unit Loads*
СР	0.80
MR	0.55
D	0.15

^{*}Unit load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

PREREQUISITE FOR SWITCHING FUNCTION

								LIM	ITS						
		TEST	25°C				-4	lo°C to	+85	°C	-55°C to +125°C				LIMITO
CHARACTERIS	TIC		н	С	н	СТ	74	нс	74F	ICT	54	нС	54F	ICT	UNITS
		V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Clock Pulse		2	80	-	_	_	100	_	_	_	120	_	-	_	
Width	tw	4.5	16	_	20		20	-	25	-	24	_	30	l –	ns
Fig. 3		6	14	_			17		_	_	20		<u> </u>	<u> </u>	
		2	80	-		_	100	_		-	120	_	_`	-	
MR Pulse Width	tw	4.5	16	_	25	-	20	-	31	-	24	_	38	-	ns
Fig. 4		6	14	·-	<u> </u>	_	17	<u> </u>		<u> </u>	20	<u> </u>	_		
Setup Time Data		2	60	-	_	_	75	_	_	l –	90	_	-	-	
to Clock	tsu	4.5	12	_	16	_	15	-	20	_	18	ı —	24	_	ns
Fig. 5		6	10	_			13	<u> </u>		<u></u>	15	<u> </u>	_	_	
Hold Time Data		2	5		-	-	5	-	_	l —	5	-	-	_	
to Clock	t _H	4.5	5	-	5	_	5	-	5	-	5	-	5	-	ns
Fig. 5		6	5				5		_		5	<u> </u>			
Removal Time		2	5	-	 	_	5	-	-		5	-	-	-	
MR to Clock	t _{rem}	4.5	5	-	12	-	5	-	15	-	5	-	18	-	ns
Fig. 4		- 6	5		<u> </u>		5			_	5	<u> </u>			
		2	6	_	_	_	5	-	_	-	4	-	-	-	
Clock Frequency	f _{max}	4.5	30	-	25	-	24	_	20	-	20	-	17	-	MHz
		6	35		_	<u> </u>	28	$\perp =$		$\perp =$	24	<u></u>	<u></u>	L=_	

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t = 6 ns)

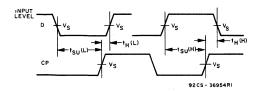

				LIMITS												
		TEST	25°C				-4	0°C to	+85	°C	-55°C to +125°C]	
CHARACTERIST	TIC .	CONDITION	н	IC	н	СТ	74	нс	741	1CT	54	нС	541	ICT	UNITS	
	-	V _{cc}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
Propagation Delay	t _{PLH}	2	_	165	_	_	_	205	_		_	250	_	_		
Clock to Q	t _{PHL}	4.5	_	33	_	40	_	41		50	-	50	–	60	ns	
Fig. 3		6	_	28				35			_	43		_		
Propagation Delay	t _{PLH}	2	l –	150		_	_	190		-	l –	225	-	—		
MR to Q	t _{PHL}	4.5	_	30	_	44	_	38	-	55	-	45	_	66	ns	
Fig. 4		6	<u> </u>	26			L	33			<u> </u>	38	_	_		
Output Transition	tTLH	2	<u> </u>	75	_	-	l —	95	-	-	_	110	-	-		
Time	t _{THL}	4.5	_	15	_	15	_	19	_	19	_	22	—	22	ns	
Fig. 6		6		13		<u> </u>		16		<u> </u>		19	<u> </u>			
Input Capacitance	Cin		_	10	_	10	_	10	_	10	_	10		10	pF	

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_h t_f = 6 ns)

		CL	Typical	Values	
CHARACTERISTIC		(pF)	НС	HCT	UNITS
Propagation Delay —	t _{PLH}	15	13	17	ns
Clock to Q Fig.3	t _{PHL}				
Propagation Delay —	t _{PLH}	15	12	18	ns
MR to Q Fig. 4	t _{PHL}	13	12		
Power Dissipation Capacitance*	СРО	_	38	44	pF

^{*}CPD is used to determine the dynamic power consumption, per flip-flop.

 $\begin{array}{l} P_{D} = C_{PD} \, V_{CC^2} \, f_i + \Sigma \, \left(C_L \, V_{CC^2} \, f_o \right) \, where: & f_i = input \, frequency, \, f_o = output \, frequency, \, \\ C_L = output \, load \, capacitance, \, V_{CC} = supply \, voltage \end{array}$


LEVEL	MR	↓ ν _s	
		1,,,,	- trem
	CP	- I	√v _s
•		+ PHL	-
Q		vs	
		ı	92CS-38444

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Vs	50% V _{CC}	1.3 V

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V

Fig. 3 — Propagation delay times and clock pulse width.

Fig. 4 — Prerequisite and propagation delay times for master reset.

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Vs	50% V _{cc}	1.3 V

Fig. 5 - Pre

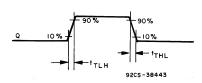
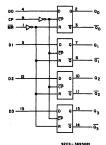



Fig. 6 — Transition times.

High-Speed CMOS Logic

Quad D Flip-Flop with Reset

Type Features:

- Common Clock and Asynchronous Reset on four D-Type Flip-Flops
- Positive-edge pulse triggering
- Complementary Outputs
- Buffered Inputs
- Typical $f_{MAX} = 50 \text{ MHz}$ @ $V_{CC} = 5 \text{ V}$, $C_L = 15 \text{ pF}$, $T_A = 25^{\circ} \text{ C}$

FUNCTIONAL DIAGRAM

The RCA CD54/74HC175 and the CD54/74HCT175 are high speed Quad D-Type Flip-Flops with individual D-inputs and Q, Q complementary outputs. The devices are fabricated using silicon gate CMOS technology. They have the low power consumption advantage of standard CMOS ICs and the ability to drive 10 LSTTL devices.

Information at the D input is transferred to the Q and \overline{Q} outputs on the positive-going edge of the clock pulse. All four Flip-Flops are controlled by a common clock (CP) and a common reset (\overline{MR}) . Resetting is accomplished by a low voltage level independent of the clock. All four Q outputs are reset to a logic 0 and all four \overline{Q} outputs to a logic 1.

The CD54HC175 and CD54HCT175 are supplied in 16-lead dual-in-line ceramic packages (F suffix) and the CD74HC175 and CD74HC175 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_IH = 30% of Vcc; @ Vcc = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility VIL = 0.8 V Max., VIH = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 µA @ V_{OL}, V_{OH}

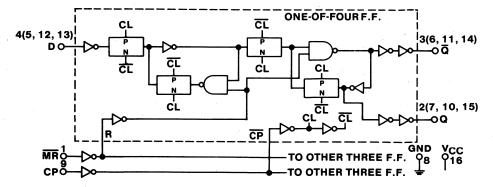
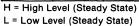


Fig. 1 - Logic block diagram.

92CM-36949R1

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{cc} OR GROUND CURRENT (I _{cc})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C
RECOMMENDED OPERATING CONDITIONS	


RECOMMENDED OPERATING CONDITIONS:
For maximum reliability, nominal conditions should be selected so that operation is always within the following ranges:

	LI			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply Voltage Range (For TA = Full Package Temperature Range) Vcc:*				
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage VIN, VOUT	0	Vcc	V	
Operating Temperature TA:				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times, tr, tr				
at 2 V	0	1000	ns	
at 4.5 V	0	500	ns	
at 6 V	0	400	ns	

^{*}Unless otherwise specified, an voltages are referenced to Ground.

TRUTH TABLE

	(EACH FLIP-FLOP)										
)	INPUTS	OUTPUTS									
RESET (MR)	CLOCK	DATA Dn	Qn	Qn							
L	×	×	L	Н							
н		н	н	L							
Н		L	L	н							
н	L	х	Qo	Qo							

X = Irrelevant

Qo, Qo = Levels Before the Indicated Steady-State

MR 1	$\overline{}$	16 VC	С
Q0 -2		15 Q3	
Q0 3		14 Q3	
D0 4		13 D3	
D1 5		12 D2	
Q1 6		11 Q2	
Q1 _7		10 Q2	
GND 8		9 CP	
		•	92CS-36822

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

		C	D74H	C175	CD54	HC17	75					CD	74HC	T175	CD54	HCT	175			
CHARACTERISTIC	1	TEST NDITIONS		ı	IC/54		741 TYI	HC PES		HC PES	TEST CONDITIO			CT/54 FYPE		74H TYI		54F TYI	ICT PES	UNITS
CHANACTERISTIC	V,	I _o	V _{cc}		+25° C	;	-4 +85	10/ 5° C	1 -	5/ 5°C	V, V	V _{cc}		+25° C	;	-4 +85	0/ 5° C		5/ 5°C	UNITS
		l IIIA	•	Min	Тур	Max	Min	Max	Min	Max	'	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5		_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	_	_	2	-	2	-	V
			6	4.2	_	_	4.2	_	4.2	_		5.5								-
Low-Level			2	_	_	0.5	_	0.5	-	0.5		4.5								
Input Voltage V _{IL}			4.5	_		1.35	-	1.35	_	1.35	-	to	-	-	0.8	-	0.8	_	0.8	V
			6	_	_	1.8	-	1.8	_	1.8	1	5.5								
High-Level	VIL		2	1.9	-	_	1.9	_	1.9	-	V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4		-	4.4	_	4.4	-	or	4.5	4.4	-	-	4.4	-	4.4	-	V
CMOS Loads	V _{IM}		6	5.9	_	-	5.9	_	5.9	_	V _{IH}									
	Vil										V _{IL}									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7		or	4.5	3.98	_	-	3.84	-	3.7	-	v
	V _{IH}	-5.2	6	5.48	_		5.34	_	5.2	_	V _{IH}							-		
Low-Level	V _{IL}		. 2	-		0.1	-	0.1	_	0.1	V _{IL}									
Output Voltage V _{OL}	or	0.02	4.5	-	_	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	v
CMOS Loads	V _{IH}		6	_	-	0.1	_	0.1	_	0.1	V _{IH}			ŀ						
	VIL										V _{IL}						-			
TTL Loads	or .	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	_	0.4	v
	V _{IH}	5.2	6	-	_	0.26	-	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any									
Current I _i	or		6	-		±0.1	_	±1	-	±1	Voltage Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd										& Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	_	-	8		80	-	160	or	5.5	_		8	-	80	_	160	μΑ
Current I _{cc}	Gnd										Gnd			-						
Additional Quiescent Device Current per input pin: 1 unit load \(\Delta \) lcc*									-		V _{cc} -2.1	4.5 to	_	100	360	_	450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*					
MR	1.0					
D	0.15					
СР	0.6					

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

PRE-REQUISITE FOR SWITCHING FUNCTION 54/74HC SERIES AND 54/74HCT SERIES

								LIM	ITS						
		TEST		25	°C		-4	0°C to	+85°	С	-55	5°C to	+125	°C	UNITS
CHARACTERIS	TIC	CONDITION	н	С	н	ст	741	нс	74H	ICT	54	нс	541	ICT	UNITS
		Vcc V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Clock Pulse		2	80	_	_	_	100	_	_	-	120	_		-	
Width	tw	4.5	16		20	-	20	-	25	—	24	-	30	_	ns
Fig. 3		6	14	_	_		17				20			<u> </u>	
		2	80	_	_	_	100	_	_	_	120	_		_	
MR Pulse Width	tw	4.5	16	-	20		20	-	25	—	24		30		ns
Fig. 4		6	14	_			17	_	_	<u> </u>	20				
Setup Time Data		2	80	_	_	_	100	_	_	_	120		_	-	
to Clock	tsu	4.5	16	-	20	-	20	-	25		24	-	30	-	ns
Fig. 5		6	14	-	-	_	17	-	-	-	20	-	-		
Hold Time Data		2	5	_	_	_	- 5	_	_	-	5	-	_	-	
to Clock	tH	4.5	5	-	5		5		5	-	5	—	5	-	ns
Fig. 5		6	5	-	-	_	5	_		_	5	_	_		
Removal Time		2	5	 -	_	_	5		-		5	-		-	
MR to Clock	t _{REM}	4.5	5	-	5	_	5	-	5		5		5		ns
Fig. 4		6	5	_	_	_	5	_		_	5	<u> </u>	_	_	
		2	6	_	-	_	5	_	-	-	4	T-	_	_	
Clock Frequency	f_{max}	4.5	30	_	25		25	_	20	_	20	-	16	-	MHz
		6	35	-	-	-	29	l –	_	_	23	_	_	_	

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input $t_{\rm f}$, $t_{\rm f}$ = 6 ns)

								LIM	ITS						
CHARACTERISTIC		TEST CONDITION		25° C -40° C						C to +85° C -55				s° C	UNITS
			н	C	н	СТ	74	нс	74F	łCT	54	нс	54F	ЮТ	ONITS
		V _{cc} V	Min.	Мах.	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Max.	
Propagation Delay	t_{PLH}	2	_	175	_	_		220	_	_		265		_	
Clock to Q or Q	t _{PHL}	4.5	_	35	-	33	_	44	_	41	_	53	-	50	ns
Fig. 3		6	_	30	-	_		37	_	_	_	45	_	_	
Propagation Delay	t _{PLH}	2	_	175	_	_	_	220	_	_	_	265		_	
(MR) to Q or Q	t _{PHL}	4.5	_	35	_	35	-	44	_	44	_	53		53	ns
Fig. 4		6	_	30				37	name of the last		_	45		_	
Output Transition	t _{TLH}	2	_	75	_	_	-	95	_	_	_	110	_	_	
Time	t_{THL}	4.5	_	15	_	15		19	_	19	_	22	_	22	ns
Fig. 6		6	_	13	_	-	_	16	_	_		19		—	
Input Capacitance	Cı			10	_	10	_	10	_	10		10		10	pF

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, input t_r, t_i = 6 ns)

OLIADA OTENIATIO		C	Тур	ical	Units
CHARACTERISTIC		рF	НС	нст	Units
Propagation Delay-	t _{PLH}	15	4.4	10	
Clock to Q or Q, Fig. 3	t _{PHL}	15	14	13	ns
Propagation Delay	t _{PHL}	15	4.4	4-7	
MR to Q or Q, Fig. 4	t _{PLH}	15	14	1 1/	ns
Power Dissipation Capacitance*	C _{PD}	_	65	67	pF

^{*}CPD is used to determine the dynamic power consumption, per flip-flop.

PD = $CPDVcc^2fi + \Sigma CLVcc^2fo$ where fi = input frequency, fo = output frequency,

CL = output load capacitance, Vcc = supply voltage

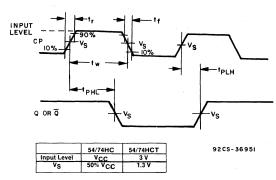


Fig. 3 - Propagation delay times and clock pulse width.

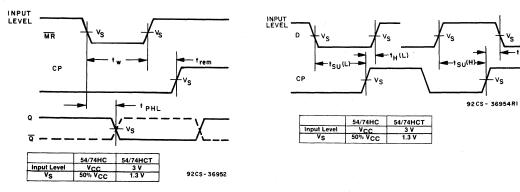


Fig. 4 - Pre-requisite and propagation delay times for master reset.

Fig. 5 - Pre-requisite for clock.

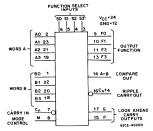



Fig. 6 - Transition times.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM ACTIVE-HIGH DATA

4-Bit Arithmetic Logic Unit

Type Features:

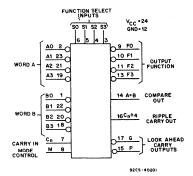
- Full look-ahead carry for speed operations on long words
- Generates 16 logic functions of two Boolean variables
- Generates 16 arithmetic functions of two 4-bit binary words
- A = B comparator output available (open drain)
 - Ripple-carry input and output available
- Available in both narrow- and wide-body plastic packages

The RCA CD54/74HC181 and CD54/74HCT181 are low-power four-bit parallel arithmetic logic units (ALU) capable of providing 16 binary arithmetic operations on two four-bit words and 16 logical functions of two Boolean variables. The mode control input M selects logical (M=High) or arithmetic (M=Low) operation. The four select inputs (S0, S1, S2, and S3) select the desired logical or arithmetic functions, which include AND, OR, NAND, NOR, and exclusive-OR and -NOR in the logic mode, and addition, subtraction, decrement, left-shift and straight transfer in the arithmetic mode, according to the truth table. The HC/HCT181 operation may be interpreted with either active-low or active-high data at the A and B word inputs and the function outputs, by using the appropriate truth table.

The HC/HCT181 contains logic for full look-ahead carry operation for fast-carry generation using the carry-generate and carry-propagate outputs G and P for the four bits of the HC/HCT181. Use of the HC/HCT182 look-ahead carry generator in conjunction with multiple HC/HCT181s permits high-speed arithmetic operations on long words. A ripple-carry output Cn+4 is available for use in systems where speed is not of primary importance.

Also included in these devices is a comparator output A = B, which assumes a high level whenever the two four-bit input words A and B are equal and the device is in the subtract mode. A=B is an open-drain output that can be wire-AND connected to give a comparison for more than 4 bits. In addition, relative magnitude information may be derived from the carry-in input C_n and ripple carry-out output C_{n+4} by placing the unit in the subtract mode and externally decoding using the information in the Magnitude Comparison table.

The CD54HC181 and CD54HCT181 are supplied in 24-lead dual-in-line frit-seal ceramic packages (F suffix). The CD74HC181 and CD74HCT181 are supplied in 24-lead dual-in-line, narrow-body plastic packages (EN suffix), in 24-lead dual-in-line, wide-body plastic packages (E suffix), and in 24-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).


Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation

High noise immunity:

 $N_{\rm IL}$ =30%, $N_{\rm IH}$ =30% of $V_{\rm CC}$; @ $V_{\rm CC}$ =5 V

■ CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I₁ ≤ 1 µA @ VoL, VoH

FUNCTIONAL DIAGRAM ACTIVE-LOW DATA

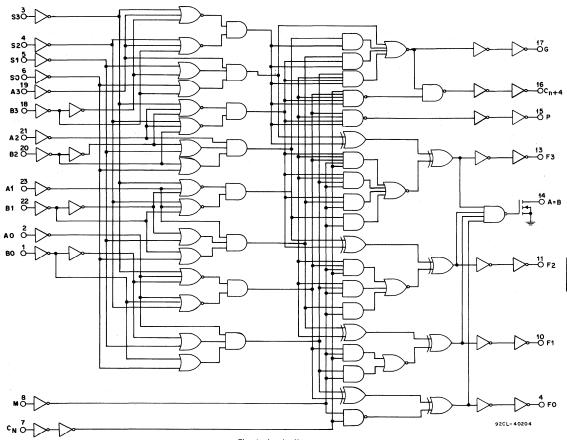


Fig. 1 - Logic diagram.

FUNCTION TABLES

Г				Inputs/Outputs Active High										
F	unc	tio	n	Logic	Arithmetic Function									
	Sel	ect		Function	M = L									
S 3	S 2	S 1	SO	M = H	C _n =H (no carry)	C _n =L (with carry)								
L	L	L	L	Ā	Α	A plus 1								
L	L	L	н	A + B	A + B	(A + B) plus 1								
L	L	н	L	ĀB	A+B	(A + B) plus 1								
L	L	н	н	Logic 0	minus 1 (2's compl.)	Zero								
L	н	L	L	AB	A plus AB	A plus AB plus 1								
L	н	L	н	B	(A + B) plus AB	(A+B)plusABplus1								
L	н	н	L	А⊕В	A minus B minus 1	A minus B								
L	н	н	н	AB	AB minus 1	ΑB								
Н	L	L	L	Ā+B	A plus AB	A plus AB plus 1								
Н	L	L	н	A⊕B	A plus B	A plus B plus 1								
Н	L	н	L	В	(A + B) plus AB	(A+B)plusABplus1								
Н	L	н	н	AB	AB minus 1	AB								
н	н	L	L	Logic 1	A plus A*	A plus A plus 1								
H	Н	L	н	A + B	(A + B) plus A	(A+B) plus A plus 1								
Н	Н	н	L	A + B	(A + B) plus A	(A+B) plus A plus 1								
Н	Н	н	н	Α .	A minus 1	· A								

Function				Logic	Arithmetic Function			
Select				Function	M = L			
S3	S3 S2 S1 S0		SO	M = H	C _n =L (no carry)	C _n =H (with carry)		
L	L	L	L	Ā	A minus 1	Α		
L	L	L	н	AB	AB minus 1	AB		
L	L	Н	L	Ā + B	AB minus 1	ΑĒ		
L	L	Н	Н	Logic 1	minus 1(2's compl.)	Zero		
L	Н	L	L	A + B	A plus (A + B)	A plus (A+B) plus 1		
L	н	L	н	_ <u>B</u>	AB plus (A + B)	ABplus(A+B)plus1		
L	н	н	ᆫ	А⊕В	A minus B minus 1	A minus B		
Ĺ	Н	н	н	A + B	A + B	(A + B) plus 1		
н	L	L	L	ĀB	A plus (A + B)	A plus (A+B) plus 1		
Н	L	L	н	А⊕В	A plus B	A plus B plus 1		
Н	L	н	L	В	AB plus (A + B)	ABplus(A+B)plus1		
Н	L	н	н	A + B	A + B	(A + B) plus 1		
Н	н	L	L	Logic 0	A plus A*	A plus A plus 1		
н	н	L	н	ΑĒ	AB plus A	AB plus A plus 1		
Н	н	н	L	AB	AB plus A	AB plus A plus 1		
Н	н	H	H	Α	Α	A plus 1		

Inputs/Outputs Active Low

H = High Level L = Low Level

^{*} Each bit is shifted to the next more significant position.

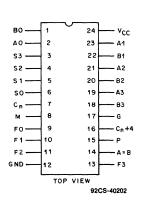
MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, IIK (FOR VI < -0.5 V OR VI > VCC +0.5 V)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V	/)±20 mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	±25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50 mA
POWER DISSIPATION PER PACKAGE (P₀):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F,H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F,H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F,H	55 to +125° C
PACKAGE TYPE E,M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300° C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIMITS		UNITS
CHARACTERISTIC	MIN. MAX.		
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} :*			
CD54/74HC Types	2	6	l v
CD54/74HCT Types	4.5	5.5	'
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times, t _r ,t _r :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	


^{*}Unless otherwise specified, all voltages are referenced to Ground.

MAGNITUDE COMPARISON TABLE

A	ctive - I	ligh Data	Active - Low Data		
Input Cn	Output Cn+4	Magnitude	Input Cn	Output Cn+4	Magnitude
1	1	A≤B	0	0	A≤B
0	1	A < B	1	0	A < B
1	0	A>B	0	1	A>B
0	0	A≥B	1	- 1	A≥B

1 = High Level

0 = Low Level

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

				CD	74HC	181/0	:D54	IC181	1.				CD7	нст	181/0	:D54F	ICT1	B1			
		1	TEST CONDITIONS		74HC/54HC 74HC 54HC TYPES TYPES			TEST CONDITIO	NS		CT/54		1	ICT PES		ICT PES	i e e.				
CHARACTERIS	TIC	Vi	lo	Vcc		+25° (;	1 .	0/ 5°C	1 1	5/ 5°C	Vı	Vcc		+25° (:	i	10/ 5° C	1 -	5/ 5° C	UNITS
		٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	-	_	1.5	-	1.5	_		4.5								
Input Voltage	VIH			4.5	3.15	_	_	3.15	—	3.15	[_ [_	to	2	-	-	2	_	2	_	v
			L	6	4.2	_		4.2	_	4.2	_		5.5				l	1			
Low-Level				2		-	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_	_	1.35		1.35	_	1.35		to	-	-	0.8	-	0.8	l –	0.8	V
				6	_	-	1.8	_	1.8	_	1.8		5.5								
High-Level		V _{IL}		2	1.9	_	_	1.9	-	1.9	_	VIL									
Output Voltage	VoH	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	_	4.4	-	4.4	-	V
CMOS Loads		ViH		6	5.9	_		5.9	_	5.9	_	V _{IH}									
		VıL										VIL									
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	V
		V _{IH}	-5.2	6	5.48	L	_	5.34	<u> </u>	5.2	_	V _{IH}						<u> </u>			
Low-Level		VıL		2	<u></u>	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage	Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	 –	-	0.1	–	0.1	_	0.1	v
CMOS Loads		V _{IH}		6		_	0.1	<u> </u>	0.1	_	0.1	V _{IH}									
		VIL										VIL	l					1	l		
TTL Loads		or	4	4.5	-	_	0.26	_	0.33	_	0.4	or	4.5	l –	l –	0.26	-	0.33	-	0.4	٧
		VIH	5.2	6		_	0.26	_	0.33	_	0.4	V _{IH}			L_		_				
Input Leakage		Vcc										Any									
Current	h,	or		6	_	_	±0.1	_	±1	_	±1	Voltage	5.5	_	_	±0.1	_	±1	_	±1	μΑ
		Gnd							-		-	Between								-	
		 			_	-			<u> </u>			V _{cc} & Gnd				<u> </u>	_	<u> </u>		_	
Quiescent		Vcc					_					Vcc	l								
Device Current	lcc	or Gnd	0	6	-	-	8	-	80	-	160	or Gnd	5.5	-	-	8	-	80	-	160	μΑ
Additional		Grid		L		<u> </u>	L	نــــا	L	L		Gna		-	 	-	-	\vdash	-	-	
Quiescent Device													4.5				-				
Current per input												V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ
pin: 1 unit load	Δlcc*	ľ											5.5		1			1			

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
S0-S3	1
All A and B (Data)	0.75
M, C _n	0.5

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc=5 V, Ta=25°C, Input t,tr=6 ns)

		0 (5)	TYPICAL	VALUES	
CHA	ARACTERISTIC	C _L (pF)	HC	нст	UNITS
	Propagation Delay: tplh, tphl				
	A _n or B _n to C _{n+4}	15	19	22	
SUM Mode	A _n or B _n to G	15	18	23	
	A _n or B _n to P	15	14	17	
	A _n or B _n to F _n	15	19	24	
	A _n or B _n to C _{n+4}	15	20	23	
	A _n or B _n to G	15	18	23]
DIFFERENCE Mode	A _n or B _n to P	15	14	17	ns
	A _n or B _n to F _n	15	20	24	
	A _n or B _n to A = B	15	21	25	
LOGIC Mode	A _n or B _n to F _n	15	19	23	No. of the Control of
SUM and	C _n to C _{n+4}	15	13	18	
DIFFERENCE Mode	C _n to F _n	15	17	20	
Power Dissipation Ca	pacitance* C _{PD}	T -	120	140	pF

 $^{{}^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per package.

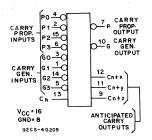
 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma C_L V_{CC}^2 f_o$ where f_i = input frequency

fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage.

AC Test Setup Reference (Active-Low Data)


Test Delay Times	AC F	aths	DC Date	Inputs	Mode*
rest Delay Times	Inputs	Outputs	To Gnd	To VCC	Mode
SUM _{IN} to SUM _{OUT}	BO	Any F	B1, B2, B3, M, C _n	All Ā's	ADD
SUM _{IN} to P	ĀŌ	P	A1, A2, A3, M, C _n	All B's	ADD
SUM _{IN} to G	BO	Ğ	All A's, M, Cn	B1, B2, B3	ADD
SUM _{IN} to C _{n+4}	BO	Cn+4	All A's, M, Cn	B1, B2, B3	ADD
C _n to SUM _{OUT}	Cn	Any F	All A's, M	All B's	ADD
C _n to C _{n+4}	Cn	Cn+4	All Ā's, M	All B's	ADD
SUM _{IN} to A = B	BO	A = B	All A's, B1, B2, B3, M	Cn	SUBTRACT
SUM _{IN} to SUM _{OUT} (Logic Mode)	All B's	Any F	All Ā's, C _n	М	EXCLUSIVE- OR

*ADD Mode: S0, S3 = V_{CC}; S1, S2 = Gnd. SUBTRACT Mode: S0, S3 = Gnd; S1, S2 = V_{CC}.

SWITCHING CHARACTERISTICS ($C_L = 50$ pF, input t_r , $t_f = 6$ ns)

		LIMITS													
CHADACTEDIC	ric	\ \v		25	°C		-4	0°C t	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERIS'	i iC	VCC	Н	C	H	CT		HC		ICT		НС		ICT	UNITS
		(V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	tpLH	2	Τ-	225	_	_	_	280	_	T-	_	345	_	—	
SUM Mode	t _{PHL}	4.5	_	45	_	53	_	56	_	66	l —	69	_	80	
An or Bn to Cn+4		6	_	38		_	- i	48	_	-	:	59		<u> - </u>	
		2	T -	210	T = 1	T -	_	265		_	T	315	T —	_	
A _n or B _n to G		4.5	_	42	_	54		53	_	53	-	63	—	63	
		6	_	36		-	_	45		l —		54		<u> -</u>	
		2	_	170	Γ-	_	_	215	I —	_	Γ-	255	T -	T-	
A _n or B _n to P		4.5	_	34	-	41	_	43	—	51	-	51	-	62	
		6	_	29	_			37	l —	-		43	_		
		2	T -	230	_	T -	—	290	T-	T-	_	345	_	-	
A _n or B _n to F _n		4.5	_	46	_	58	_	58	—	58	_	69	-	69	
		6	 	39	_	-	_	49	_	-	_	59		_	
Propagation Delay,	t _{PHL}	2	T -	235	_	T-	T -	285	T-	-	_	355	T -	-	
DIFFERENCE Mode	t _{PLH}	4.5	_	47	_	55	-	59	_	69	-	71	l —	83	
An or Bn to Cn+4	1.5	6		40	_			50	<u> </u>	<u> </u>		60			
	1.0	2	_	215	_	-	-	270	I —	-		325	-	-	
A _n or B _n to G		4.5	-	43		54	l –	54	-	54	_	65	-	65	l
		6		37	L=_	_	<u> </u>	46	<u> </u>	<u>L</u>		55	<u> </u>	<u> </u>	
		2	_	170	_	_	-	215	_	_	-	255	-	_	l
A _n or B _n to P		4.5	-	34	-	40	l —	43	—	50	-	51	-	60	ns
		6	<u> </u>	29	<u> </u>	<u> </u>		37			<u> </u>	43	<u> </u>	_]
		2	-	235	_	-	-	295	_	-		355	_	-	
A _n or B _n to F _n		4.5	-	47	-	57	— [*]	59	—	71	-	71		86	
		6	<u> </u>	40	<u> </u>	<u> </u>		50	<u>L</u> _		_	60		_	
		2	-	245	_	-	-	305	_		-	370	—	-	
A _n or B _n to A=B		4.5	-	49	-	60	-	61	_	75	-	74	-	90	
		6	<u>L-</u> _	42		L-	<u> </u>	52		<u> </u>		63	_		
Propagation Delay,	t _{PHL}	2	-	230	_		-	290	_	-	-	345	-	-	
LOGIC Mode	t _{PLH}	4.5	-	46	-	54	-	58	_	68	-	69	-	81	
A _n or B _n to F _n		6		39	_			49			1=	59	_	<u> </u>	
Propagation Delay,	t _{PHL}	2	-	165	-	-	-	205	—	-		250	l –	-	1
SUM & DIFF. Modes	t _{PLH}	4.5	1 —	33	-	42	—	41	- .	53	-	50	-	63	1
C _n to C _{n+4}		6	_	28	<u> </u>	_		35		<u> </u>	_	43	_		1
		2	-	200	-	-	-	250	-	-	-	300	_	-	
C _n to F _n		4.5	-	40	-	48	-	50		56	-	60	-	68	
		6	<u> </u>	34	<u> </u>	_		43	_	<u> </u>	<u> </u>	51		1=	1
Output Transition	t _{THL}	2	-	75	-	_	-	95	-	-	-	110	_	-	
Time	t _{TLH}	4.5	-	15	-	15	-	19	-	19	-	22	-	22	
		6	<u> </u>	13	$\perp =$	<u></u>	<u> </u>	16	<u> </u>	<u> </u>	└	19	<u> </u>	1-	
Input Capacitance	Cı	I -	_	10	I —	10		10		10	-	10	l —	10	pF

High-Speed CMOS Logic

Look-Ahead Carry Generator

Type Features:

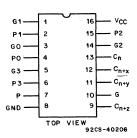
- Provides carry look-ahead across a group of four ALUs
- Multi-level look-ahead for high-speed arithmetic operation over long word length

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC182 and CD54/74HCT182 carry lookahead generators are high-speed silicon-gate CMOS devices and are pin compatible with low-power Schottky TTL (LSTTL).

The CD54/74HC/HCT182 accept up to four pairs of active LOW carry propagate $(\overline{P}_0, \overline{P}_1, \overline{P}_2, \overline{P}_3)$ and carry generate $(\overline{G}_0, \overline{G}_1, \overline{G}_2, \overline{G}_3)$ signals and an active HIGH carry input(C_n). The devices provide anticipated active HIGH carries ($C_{n+x}, C_{n+y}, C_{n+y}$) across four groups of binary adders. The HC/HCT182 also has active LOW carry propagate (\overline{P}) and carry generate (\overline{G}) outputs which may be used for further levels of look ahead.

The logic equations provided at the outputs are:


$$\begin{array}{l} C_{n+x} = P_0 C_n \\ C_{n+y} = G_1 + P_1 G_0 + P_1 P_0 C_n \\ C_{n+z} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_n \\ G = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 \\ \overline{P} = \overline{P_3 P_2 P_1 P_0} \end{array}$$

The CD54/74HC/HCT182 can also be used with binary ALUs in an active LOW or active HIGH input operand mode. The connections to and from the ALU to the carry lookahead generator are identical in both cases.

The CD54HC182 and CD54HCT182 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC182 and CD74HCT182 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range):
 Standard outputs 10 LSTTL loads
 Bus driver outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC Types:
 - 2 to 6 V Operation High noise immunity: $N_{\rm IL}$ = 30%, $N_{\rm IH}$ = 30% of $V_{\rm CC}$, @ $V_{\rm CC}$ = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL input logic compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V Min. CMOS input compatiblity I_I ≤ 1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

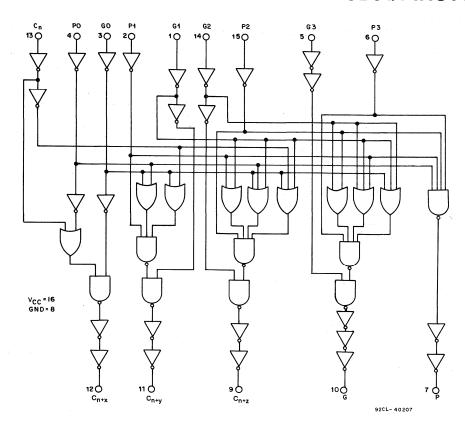


Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (V _{CC}):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} + 0.5 \text{ V})$	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc + 0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (I ₀) (FOR -0.5 V < V ₀ < V _{CC} + 0.5 V)	±25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	+50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300° C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIMITS MIN. 2 4.5 0 -40 -55	HITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	l v
DC Input or Output Voltage V _i , V _o	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r , t _r			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

FUNCTION TABLE

				INPUTS						C	OUTPUT	s	
C _n	G _o	Po	G ₁	P ₁	G₂	P ₂	G₃	P ₃	C _{n+x}	C _{n+y}	C _{n+z}	G	Р
X L X H	H H L X	H X L							L H H				
X X X H	X H X L X	X H X X L	XXLIII	HXXXLL									
X X L	X X H	X X H X	хнн	X H X	H H H	H X X					L L L		
X X H	X X L X	X X L	X L X	X X L	X X X	X L L					HHHH	, .	
	X X H		XXHH	XXHX	X H H	X H X	1111	H X X				H H H	
	X X L		X X L X	X X L	X L X	X X L	X X X	X L L				L L L	
		H X X L		X H X L		X X X X L		X X H L					H H H L

H = HIGH voltage level

L = LOW voltage level

X = don't care

STATIC ELECTRICAL CHARACTERISTICS

		CD74HC182/CD54HC182											CD74	нст	182/C	D54H	ICT18	32					
CHARACTERISTIC		ı	TEST CONDITIONS			IC/54 TYPE		741 TYI	HC PES	541 TYF		TEST CONDITION	NS.	1	CT/54 TYPES			ICT PES	54H TYP	- 1	UNITS		
		V,	V ₁ I ₀ V _{cc}		V ₁ I ₀ V _{cc}					+25° C	;	-4 +85		-5 +12		V.	Vcc		-25° C	;	1	0/ 5°C	-5: +12!
		٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max			
High-Level				2	1.5	_	_	1.5	-	1.5	_		4.5										
Input Voltage	VIH			4.5	3.15	_	_	3.15	_	3.15			to	2	-	-	2	-	2		٧,		
				6	4.2	_	_	4.2	_	4.2	_		5.5	<u> </u>							· · ·		
Low-Level				2	_	_	0.5		0.5		0.5		4.5										
Input Voltage	VIL			4.5	<u></u>	_	1.35	_	1.35	_	1.35		to		l –	0.8		8.0	-	0.8	٧		
				6	_	_	1.8	_	1.8	1	1.8		5.5	<u> </u>									
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	VIL											
Output Voltage	VoH	or	-0.02	4.5	4.4	<u> </u>	<u> </u>	4.4	<u>L-</u>	4.4	_	or	4.5	4.4	–	-	4.4	l –	4.4	-	V		
CMOS Loads		VIH		6	5.9	<u> </u>	_	5.9	_	5.9	_	V _{IH}						L					
		VIL		<u></u>			<u> </u>					VIL		1				ŀ	l				
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	· V		
		ViH	-5.2	6	5.48		_	5.34		5.2	_	V _{IH}											
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	V _{IL}		1					l				
Output Voltage	Vol	or	0.02	4.5	_	_	0.1	_	0.1	L	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	٧		
CMOS Loads		ViH		6	_		0.1		0.1		0.1	V _{IH}		<u> </u>				1	L				
		VIL										VIL		1				1					
TTL Loads		or	4	4.5		<u> </u>	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	٧		
		VIH	5.2	6		_	0.26		0.33	_	0.4	V _{IH}											
Input Leakage		Vcc				l		ĺ				Any		1				l	1				
Current	l ₁	or	ĺ	6	l_	l _	±0.1	_	±1	l _	±1	Voltage	5.5	_	l _	±0.1	_	±1	l _	±1	μA		
		Gnd		ľ					-		-	Between											
				<u> </u>						<u> </u>		V _{cc} & Gnd		├		_	<u> </u>	<u> </u>					
Quiescent		Vcc	İ									V _{CC}				1					1		
Device Current	lcc	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ		
		Gnd	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>		Gnd	<u> </u>	<u> </u>			<u> </u>	_					
Additional													4.5				1						
Quiescent Device												Vcc -2.1	to	_	100	360	_	450	_	490	μΑ		
Current per input		1											5.5										
pin: 1 unit load	∆lcc*	I											1	1	1	1	l			1	l		

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
P ₀ , P ₁ , P ₂ , G ₀ , G ₁	1.5
P ₃ , G ₂ , C _n	1.25
G₃	0.3

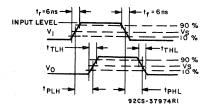
Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_{A} = 25°C, Input t_{r} , t_{f} = 6 ns)

			TYPICAL	. VALUES	
CHARACTERISTIC		C _L (pF)	нс	нст	UNITS
Propagation Delay Time:					
P _n to P	t _{PHL} , t _{PLH}	15	9	11	
C _n to any output	t _{PHL} , t _{PLH}	15	12	17	ns
P _n to any output	t _{PHL} , t _{PLH}	15	12	13	
G _n to any output	t _{PHL} , t _{PLH}	15	11	13	
Power Dissipation Capacitance *	СРО		66	72	pF

 $^{^{\}star}$ C_{PD} is used to determine the dynamic power consumption, per package.

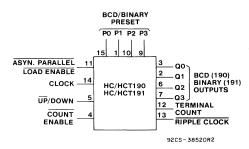
 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where: f_i = input frequency


fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, input $t_{\rm r},\,t_{\rm f}$ = 6 ns)


							LIM	IITS						
ON A DA OTERIOTIO	TEST		25	°C		-4	0°C to	o +85°	,C	-5	5°C to	+125	°C.	UNITS
CHARACTERISTIC	CONDITIONS	н	HC HCT 74HC 74HCT 54HC 54HC		1CT	UNITS								
	V _{cc}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay, tplh	2	-	120	_	[-	_	150	-	_	-	180	_	_	
t _{PHL}	4.5	-	24		28		30	-	35	-	36	_	42	
P _n to P	6	_	20				26	<u> </u>		<u> </u>	31	_		
t _{PLH}	2	-	150	-	-	_	190	 	_	—	225	—	-	
t _{PHL}	4.5	-	30	-	40	-	38	-	50	-	45	-	60	
C _n to any output	6	_	26		_	_	33				38	_		
t _{PLH}	2	l –	145	—	_	_	180		_	-	220	-	_	
t _{PHL}	4.5	_	29	_	33	_	36	_	41	-	36	_	50	ns
P _n to any output	6	-	25	_	_	_	31	_	_	_	31		_	
tpLH	2	Γ-	135	-	_	 -	170	-	-	_	205	-	_	
t _{PHL}	4.5	_	27	-	32	_	34	-	40	-	41	—	48	
G _n to any output	6	_	23	_	-	_	29	_	-	_	35	_		-
Transition t _{TLH}	2	_	75	_	_	_	95	_	_	_	110	_		
Time t _{THL}	4.5	_	15	-	15		19	-	19	_	22	_	22	
	6	_	13	_	_		16		_	_	19		_	
Input C _I		_	10	_	10	_	10	_	10	_	10	_	10	pF

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _S	50% V _{cc}	1.3 V

Fig. 2 - Transition times and propagation delay times.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Presettable Synchronous 4-Bit Up/Down Counters

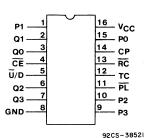
CD54/74HC/HCT190 BCD Decade Counter CD54/74HC/HCT191 Binary Counter

Type Features:

- Synchronous counting and asynchronous loading
- Two outputs for n-bit cascading
- Look-ahead carry for high-speed counting

The RCA-CD54/74HC/HCT190/191 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively.

Presetting the counter to the number on preset data inputs (P0-P3) is accomplished by a Low asynchronous parallel load input (\overline{PL}) . Counting occurs when \overline{PL} is high, Count Enable (\overline{CE}) is low, and the Up/Down (\overline{U}/D) input is either low for up-counting or high for down-counting. The counter is incremented or decremented synchronously with the low-to-high transition of the clock.


When an overflow or underflow of the counter occurs the Terminal Count output (TC), which is low during counting, goes high and remains high for one clock cycle. This output can be used for look-ahead carry in high-speed cascading (see Fig. 6). The TC output also initiates the Ripple Clock. (RC) output which, normally high, goes low and remains low for the low-level portion of the clock pulse. These counters can be cascaded using the Ripple Clock output as shown in Fig. 7.

If a decade counter is preset to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one or two counts as shown in state diagrams.

The CD54HC/HCT190 and the CD54HC/HCT191 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT190 and the CD74HC/HCT191 are supplied in a 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). The CD54/74HC/HCT190 and the CD54/74HC/HCT191 are also supplied in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}, @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

HC/HCT190, HC/HCT191 TERMINAL ASSIGNMENT

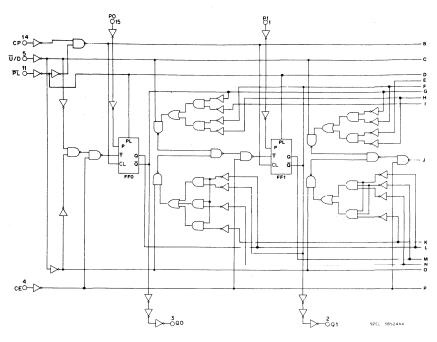


Fig. 1 - Logic diagram for HC/HCT190 (continued on next page).

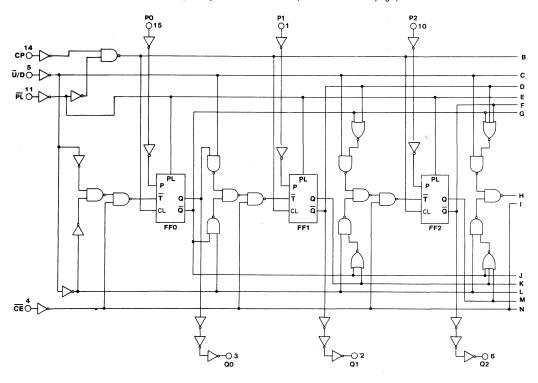


Fig. 2 - Logic diagram for HC/HCT191 (continued on next page).

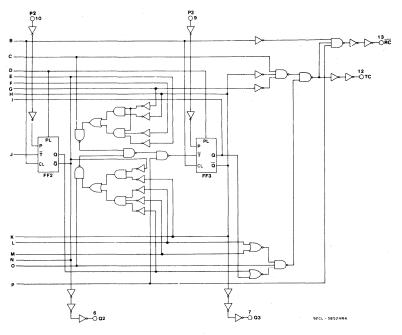


Fig. 1 - Logic diagram for HC/HCT190 (continued from previous page).

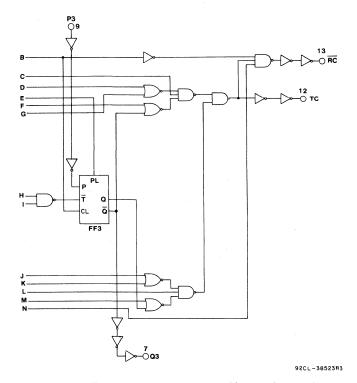
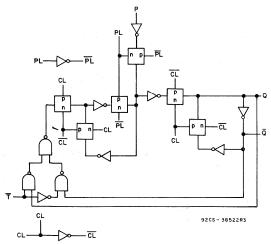



Fig. 2 - Logic diagram for HC/HCT191 (continued from previous page).

TRUTH TABLE

	Inp	uts		Function
PL	CE	Ū/D	CP	FullCuoli
Н	L	L	5	Count Up
н	L	Н		Count Down
L	Х	X	Х	Asyn. Preset
Н	Н	X	×	No Change

Note

 \overline{U}/D or \overline{CE} should be changed $\underline{\int}$ only when clock is high.

___Low-to-high clock transition.

X = Don't care.

Fig. 3 - Flip-flop cell for HC/HCT190 and HC/HCT191.

И	A	v	(I	ŀ	И	ι	J	V	ı	R	A	١	П	P	ı	G	٤	١,	1	4	b	S	0	lι	Jt	te	-	V	ĺé	X	i	m	ı	ır	n	ν	a	lu	es	:	

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} +0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5	5 V)±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vcc +0.5	V)±25 mA
DC Vcc OR GROUND CURRENT, (lcc)	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LI	MITS	LINUTO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} :*			
CD54/74HC Types	2	6	l ,,
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times, trt:			
at 2 V	0	1000	
at 4.5 V	.0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

***************************************					74HC 74HC								CD7	4HCT 4HCT	190/C 191/C	D54H	ICT1	90 91			
		1	TEST IDITIOI	NS		IC/54 TYPE		741 TY		54H TY		TEST	ONS	1	74HCT/54HCT TYPE		74F TY	ICT PE		ICT PE	
CHARACTERISTICS		V _i	I _o	Vcc	1	25° C	;	-4 +85		-5: +12!		V,	Vcc		+25° C	;	ı	0/ 5°C	1	5/ 5°C	UNITS
		V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_		1.5		1.5	_		4.5								
Input Voltage	VIH	ļ		4.5	3.15	_		3.15	_	3.15	_	_	to	2	_	_	2	-	2	_	v
				6	4.2	_	-	4.2	_	4.2	_		5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	V_{IL}			4.5	_		1.35	_	1.35	_	1.35	_	to	-	_	0.8	_	0.8	-	0.8	V
				6		_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	VIL						Ι.			
Output Voltage	V _{он}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	_	V
CMOS Loads		V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
		VIL										VIL									
TTL Loads		or	-4	4.5	3.9 8	_	_	3.84	_	3.7	-	or	4.5	3.98	_	_	3.84	_	3.7	_	v
		· VIH	-5.2	6	5.48	_	_	5.34	_	5.2	_	ViH									-
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	VIL									
Output Voltage	Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	_	0.1	l –	0.1	v
CMOS Loads		ViH		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
		VIL										VıL									
TTL Loads		or	4	4.5	_	_	0.26	_	0.33		0.4	or	4.5	_	_	0.26	_	0.33	-	0.4	V
		ViH	5.2	6	_	_	0.26		0.33	_	0.4	ViH									
Input Leakage Current	lı	V _{cc} or Gnd		6	_	-	±0.1	_	±1		±1	Any Voltage Between V _{cc} and Gnd	5.5	-		±0.1	_	±1		±1	μΑ
Quiescent Device Current	Icc	V _{cc} or Gnd	0	6	- 5	_	8	_	80	_	160	V _{cc} or Gnd	5.5		_	8		80	_	160	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load	Δlcc*											V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
P0-P3	0.4
CP PL	1.5
	1.5
Ū/D	1.2
CE	1.5

^{*}Unit load is Δ I_{cc} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

PREREQUISITE FOR SWITCHING FUNCTION

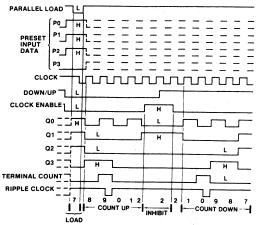
			_	25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	V _{cc}	Н	С	н	СТ	741	нс	74F	ICT	54	нс	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Setup Time	,	2	60	_	_	_	75	_	_		90	_	_	_	
Pn to PL		4.5	12	_	12	_	15	_	15	_	18	-	18		
		6	10	<u> </u>	l –		13	_	l –	_	15				
		2	60	_	_	_	75	-	_	_	90	-	_	_	
CE to CP	tsu	4.5	12	l —	12	_	15	_	15	_	18		18	_	
		6	10	_	_	_	13	_	_	<u> </u>	15	_	_	 	
		2	90	_	_	_	115	_	_	_	135	_	_	_	
U/D to CP		4.5	18	_	18	l _	23	_	23	_	27		27	_	
		6	15			_	20	_		_	23	_	_		
Hold Time		2	2		_		2	_		_	2	_	-	_	
Pn to PL		4.5	2	_	2	l _	2	_	2	_	2	l	2	_	
		6	2			_	2	_	l _	l	2	_	_ `	_	
	İ	2	2	Γ_			2	_	_		2	_	_		ns
CE to CP	t _H	4.5	2	_	2	·	2	_	2	_	2	_	2	_	
		6	2		_	_	2	_	_	_	2	_		_	
		2	0	_	<u> </u>	-	0	1_			0	_	_		1
U/D to CP		4.5	0	l _	0	l	0	_	0	_	0	_	0		
3/ <i>B</i> 10 01		6	0	_	_	l	0	_	_	_	0	_	_	_	1
		2	6	<u> </u>	1	<u> </u>	5	_	_	 	4	† 	_	<u> </u>	
Maximum Frequency*	f _{MAX}	4.5	30		30		25	_	25	_	20		20	l _	MH
waxiiiuiii i requeiloy	¹MAX	6	35		_		29	_	_		23	_	_	l	
		2	60		$\dagger \equiv$	†===	75	tΞ		=	90		 	t	
Recovery Time	tREC	4.5	12		12		15		15	_	18		18		
necovery rime	REC	6	10		12		13		_		15	_	_	l	
		2	80			$\vdash =$	100	1=	\vdash	-	120	$+ \equiv$			1
CP Pulse Width		4.5	16		16		20	_	20		24		24	_	ns
OF Fulse Width	tw		1	-		l		1		-	20		24		"
		6	14	-	 -	-	17	<u> </u>	├=-		1	-	-	+=-	1
50 B. J W. J.		2	100	_	-	-	125	-	-	-	150	-	-	-	
PL Pulse Width	tw	4.5	20	-	20	_	25	-	25	-	30	-	30	_	
	1	6	17	-	-	'	21	—	I —		26	-	_		1

^{*}Applies to non-cascaded operation only. With cascaded counters clock-to-terminal count propagation delays, count enable (CE)-to-clock set-up times, and count enable (CE)-to-clock hold times determine max. clock frequency. For example, with these HC devices:

$$f_{\text{max}}$$
 (CP) = $\frac{1}{\text{CP-to-TC prop. delay + }\overline{\text{CE-to-CP setup + }\overline{\text{CE-to-CP Hold}}}} = \frac{1}{42 + 12 + 2} \approx 18 \text{ MHz}$

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r , t_f = 6 ns)

			TYPICAL	S		
CHARACTERISTIC	SYMBOL	H	IC	Н	СТ	UNITS
		190	191	190	191	
Propagation Delay (C _L = 15 pF)						
PL to Qn		16	16	17	17	
Pn to Qn		14	14	16	16	
CP to Qn		14	14	14	14	
CP to RC	t _{PLH}	10	10	11.	11	ns
CP to TC	t _{PHL}	18	18	18	18]
U/D to RC		12	12	12	12	1
U/D to TC		13	13	16	16	
CE to RC		10	10	11	11	
Power Dissipation Capacitance	C _{PD} *	59	55	78	68	pF


^{*}C_{PD} is used to determine the power consumption, per package.

SWITCHING CHARACTERISTICS (CL = 50 pF. Input tr. tr = 6 ns)

				25	°C			40°C t	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	۲	IC	Н	СТ	74	НС	741	HCT	54	НС	541	нст	UNITS
			Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	195	_	_	_	245	_	_	_	295	- 1	-	
PL to Qn	t _{PHL}	4.5	— ı	39		40		49	_	50	_	59	-	60	
		6		33			_	42	_			50	_		
	t _{PLH}	2	_	175	_	-	_	220		_		265	-	-	
Pn to Qn	t _{PHL}	4.5	-	35	_	38	-	44	_	48		53	- 1	57	
		6		30				37		_		45			
	t _{PLH}	2		170	-	_	_	215	_	-	_	255	-	-	
CP to Qn	t _{PHL}	4.5	-	34	_	35	_	43	_	44	_	51	· — ·	53	
		6	<u> </u>	29		_	_	37		_		43			
-	tpLH	2	_	125	_	-	-	155	_	- ,	_	190	-	-	
CP to RC	t _{PHL}	4.5	-	25	_	27	-	31	_	34	_	38		41	
		6	_	21				26		_		32	_		
	t _{PLH}	2	_	210	_	-	_	265	_	_		315	-	-	
CP to TC	t _{PHL}	4.5	_	42		42		53	_	53	_	63	-	63	ns
		6		36				45		_	_	54	_		
	t _{PLH}	2	_	150	_	-	-	190	_	_	_	225	-	-	
U/D to RC	t _{PHL}	4.5		30	-	30	-	38	_	38	- -	45	- 1	45	
	ļ	6	<u> </u>	26		_		33				38	=		
	t _{PLH}	2	_	165	-	-	-	205	-	_	_	250	-		
U/D to TC	tpHL	4.5	-	33	_	38	_ '	41		48		50	-	57	
	ļ	6		28				35	_			43			
-	t _{PLH}	2	-	125	—	_	-	155	_	_	_	190	-	-	
CE to RC	t _{PHL}	4.5	-	25	-	27	-	31	_	34	_	38	_	41	
	 	6	=	21		<u> </u>	<u> </u>	26				32			
Output Transition	ttlH	2	_	75	_	_	-	95	_	_	_	110	-	-	
Time	t _{THL}	4.5	-	15	_	15	_	19	_	19	_	22	_	22	
Qn, TC, RC	-	6		13		_		16		-		19			
Input Capacitance	Cı			10		10		10	_	10		10		10	pF

PD=C_{PD} V_{Cc}² fi + Σ (C_L V_{Cc}² fo) where: fi=input frequency f_o=output frequency C_L=output load capacitance V_{Cc}=supply voltage

TIMING DIAGRAMS

quence:

(1) Load (preset) to BCD seven (3) Inhibit

(2) Count up to eight, nine, zero, one and two ! (4) Count down to one, zero, nine, eight, and seven

Fig. 4 - HC/HCT190 decade counters typical load, count, and inhibit sequences.

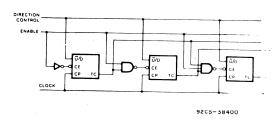


Fig. 6 - Sychronous n-stage counter with parallel gated Terminal Count.

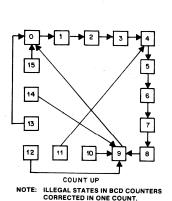
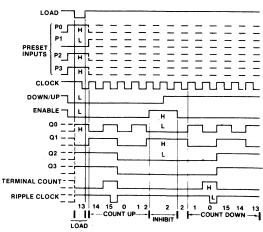



Fig. 8 - HC/HCT190 State Diagrams.

Sequence:
(1) Load (preset) to binary thirteen

(2) Count up to fourteen, fifteen, zero, one, and two

(3) Inhibit(4) Count down to one, zero, fifteen, fourteen, and thirteen

92CM-38402

Fig. 5 - HC/HCT191 binary counters typical load, count, and inhibit sequences.

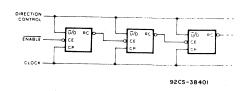
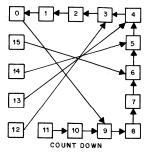
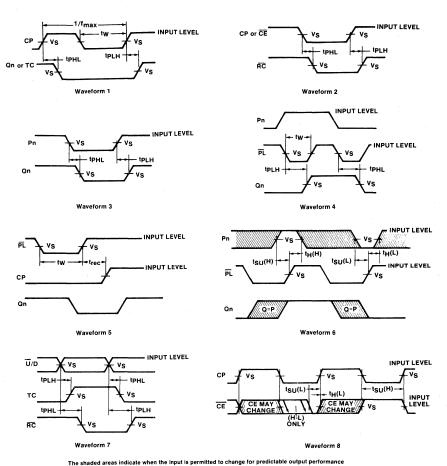
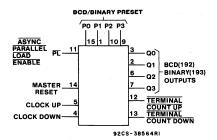




Fig. 7 - Synchronous n-stage counter using ripple clock.

NOTE: ILLEGAL STATES IN BCD COUNTERS CORRECTED IN ONE OR TWO COUNTS.

92CM-40338


2040

92 C L -38 403R3

	54/74HC	54/74HCT
Input Level	VCC	3 V
Switching Voltage, V _S	50% VCC	1.3 V

Fig. 9 - Transition, propagation delay, setup and hold, and recovery times.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

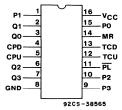
Presettable Synchronous 4-Bit Up/Down Counters

CD54/74HC/HCT192 BCD Decade Counter, Asynchronous Reset CD54/74HC/HCT193 4-Bit Binary Counter, Asynchronous Reset

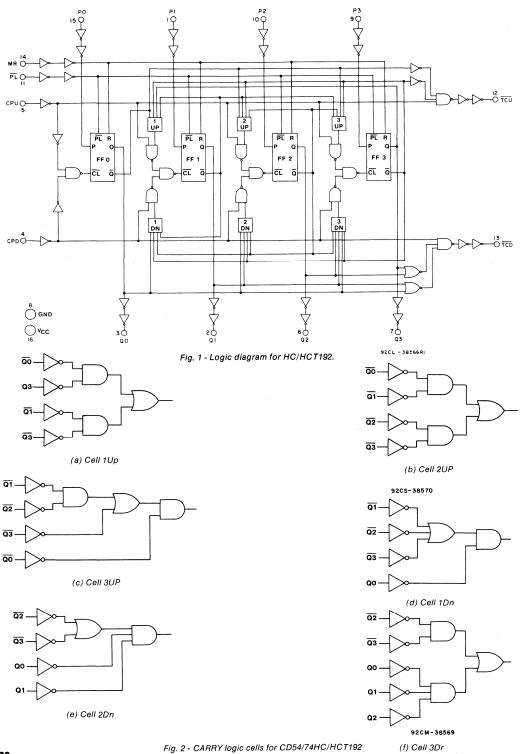
Type Features:

- Synchronous counting and asynchronous loading
- Two outputs for n-bit cascading
- Look-ahead carry for high-speed counting

The RCA-CD54/74HC/HCT192/193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively.


Presetting the counter to the number on preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL). The counter is incremented on the low-tohigh transition of the Clock-Up input (and a high level on the Clock-Down input) and decremented on the low-tohigh transition of the Clock-Down input (and a high level on the Clock-Up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count Up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and Clock-Down inputs, respectively, of the next most significant counter.

If a decade counter is preset to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram.


The CD54HC/HCT192 and the CD54HC/HCT193 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT192 and CD74HC/HCT193 are supplied in 16-lead plastic dual-in-line packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). The CD54/74HC/HCT192 and the CD54/74HC/ HCT193 are also supplied in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: $N_{\rm IL}=30\%$, $N_{\rm IH}=30\%$ of $V_{\rm CC}$, @ $V_{\rm CC} = 5 V$
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility $V_{\rm IL}=$ 0.8 V Max., $V_{\rm IH}=$ 2 V Min. CMOS Input Compatibility $I_1 \leq 1 \,\mu A \oplus V_{OL}, \, V_{OH}$

TERMINAL ASSIGNMENT

270

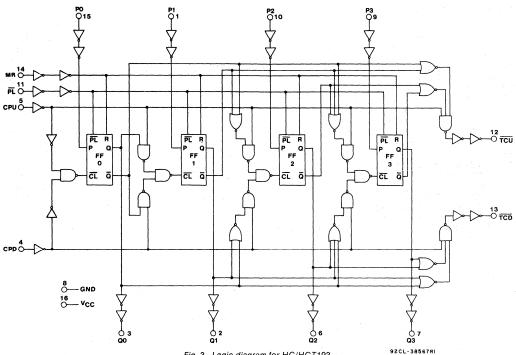


Fig. 3 - Logic diagram for HC/HCT193.

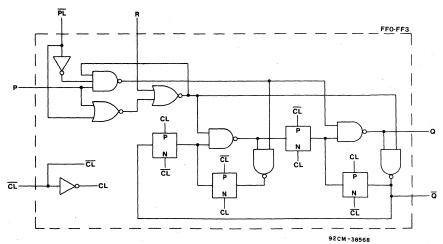


Fig. 4 - Logic diagram of flip-flops for HC/HCT192/193.

TRUTH TABLE

Clock Up	Clock Down	Reset	Parallel Load	Function
	H_	L	Н	Count Up
Н	5	[]	н	Count Down
Х	X	н	X	Reset
Х	X	· L	L	Load Preset
	1			Inputs

 \int = low-to-high transition x = don't care

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Voc +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT, (Icc)	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (T _{stg})	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	AITS	LINUTO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
Vcc:*			
CD54/74HC Types	2	6	l v
CD54/74HCT Types	4.5	5.5	\ \ \
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	∘c
CD54 Types	-55	+125	- 0
Input Rise and Fall Times, t, tf:			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	1

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CI	D74H	C192/	193C	D54H	C192	/193			CD	74HC	T192/1	93/C	D54H	CT19	2/193)		
CHARACTERISTICS		i	TEST CONDITIONS			74HC/54HC TYPE		74H		54H	- 1	TEST	74H	T/54			ICT PE		ICT PE		
		V,	lo	Vcc		25° C	;	-4: +85		-5: +12!		V,	V _{cc}		+25° C	:		0/ 5°C	1	5/ 5°C	UNITS
		v	mA	V	Min	Тур	Max	Min	Max	Min	Max	v	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	-		4.5								
Input Voltage	ViH			4.5	3.15	_	I	3.15	_	3.15	_	_	to	2	_	_	2	-	2	_	v
				6	4.2	_	_	4.2	_	4.2	_	'	5.5	1					1,		
Low-Level				2	_	-	0.5	_	0.5	_	0.5		4.5								-
Input Voltage	VIL			4.5	_		1.35	_	1.35	_	1.35	_	to	_	_	0.8	_	0.8	_	0.8	V
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	VIL								Ī	
Output Voltage	Voh	or	-0.02	4.5	4.4	_		4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	v
CMOS Loads		ViH	1	6	5.9	_	_	5.9	_	5.9	_	ViH			1						
	~~	VIL										VIL									
TTL Loads		or	-4	4.5	3.98	_	<u> </u>	3.84		3.7	_	or	4.5	3.98	_	_	3.84	_	3.7		v
		ViH	-5.2	6	5.48	_	Ι_	5.34	_	5.2	_	ViH									
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	ViL						T			
Output Voltage	Vol	or	0.02	4.5	_	_	0.1		0.1		0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads	. 0.	VIH	0.02	6	_	_	0.1	_	0.1		0.1	ViH	1,0			"	l			0	·
		VIL		Ť			ļ	-	<u> </u>	-		VIL		T	ļ	-	_	<u> </u>	<u> </u>		
TTL Loads		or	4	4.5	_	_	0.26		0.33		0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v
		VIH	5.2	6		_	0.26	_	0.33	_	0.4	V _{IH}	4.0			0.20		0.00		0.4	·
Input Leakage Current	l _t	V _{cc} or Gnd		6	_	_	±0.1	_	±1		±1	Any Voltage Between V _{cc} and Gnd	5.5	-	_	±0.1	-	±1	_	±1	μΑ
Quiescent Device												Vcc									
Current	Icc	V _{cc}	0	6	_	_	8	_	80	_ 1	160	or	5.5	_	_	8	_	80	_	160	μΑ
		Gnd			_	_		_	00		100	Gnd	0.0	-					-	130	μ^
Additional Quiescent Device Current per Input Pin: 1 Unit Load	ΔΙ _{σσ} *								•			V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450		490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
P0-P3	0.4
MR	1.45
PL	0.85
CPU, CPD	1.45

^{*}Unit load is Δ I_{cc} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC}=5 V, T_A=25°C, Input t_r,t_f=6 ns)

		TYP	ICAL	
OLIA DA OTERIOTIO	SYMBOL	VAL	UES	UNITS
CHARACTERISTIC	STNIBUL	HC	нст	UNITS
Propagation Delay (C _L = 15 pF)				
CPU to TCU and CPD to TCD	tplH	10	11	,
CPU; CPD to Qn	t _{PHL}	18	17	ns
PL to Qn		18	21	
MR to Qn	t _{PHL}	17	18	
Power Dissipation Capacitance	C _{PD} *	40	50	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

PD=C_{PD} V_{CC}² fi + Σ (C_L V_{CC}² fo) where:

fi=input frequency

fo=output frequency

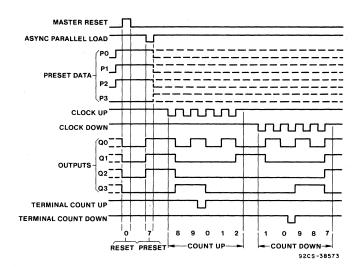
C_L=output load capacitance

V_{cc}=supply voltage

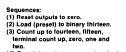
Pre-requisite for Switching Function

	<u> </u>	T .		25	°C		-4	10°C	o +85°	C	-5	5°C to	+125	°C	I
CHARACTERISTIC	SYMBOL	VCC	Н	IC	H	CT	74	HC	74F	ICT	54	HC	54F	ICT	UNITS
		00	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	İ
Pulse Width:		.2	115	_	_	_	145	_	_	_	175	_	_	_	
CPU, CPD	tw	4.5	23	_	23	_	29	_	29	1	35	_	35		
192	••	6	20		_	_	25	_	_	_	30	_	_	_	
CPU, CPD		2	100	_	_	_	125		_	_	150	_	_	_	1
		4.5	20	_	23		25`	_	29	_	30	_	35	-	
193		6	17	_	_	_	21	-	_	_	26	_		_	
		2	80	_	-		100	_		_	120	_	_		
PL	t _w	4.5	16	_	16	_	20	_	20	_	24	_	24	_	
	vv	6	14	_	_	_	17			_	20			_	
		2	100	_		_	125	_	_		150				
MR	t _w	4.5	20		20	_	25		25		30	_	30	_	
	••	6	17	_	_	_	21	-	_	_	26	_	-	_	
Setup Time		2	80	_	_	_	100	_	_	_	120	_	_	_	
Pn to PL	t _{su}	4.5	16	_	15	_	20	_	19	_	24	_	22	_	ns
	30	6	14	_	l — '	_	17	_	_	_	20	_		_	
Hold Time		2	0	_		_	0	I —	_	_	0	_	_	_	
Pn to PL	t _H	4.5	0	_	0	<u> </u>	0	-	0	_	0	_	0		
		6	0	_	_	_	0	_	_	_	0	-		_	
Hold Time		2	80	_	_	_	100	_	_	_	120	_	_	_	
CPD to CPU	t _H	4.5	16	_	16	_	20		20	_	24	_	24	_	
or CPU to CPD		6	14	_	_	_	17		_	_	20			-	
Recovery Time		2	80	_	_	_	100		_		120			_	
PL to CPU, CPD	t _{rec}	4.5	16	_	15	_	20		19	_	24		22		
	NEO	6	14	_		_	17	-	_	l –	20	_			
		2	5			_	5		_	_	5			-	100
MR to CPU, CPD	t_{REC}	4.5	5	-	5	_	5	_	5		5	_	5	_	
	1120	6	5			_	5	_	_	_	5	_	-		
Maximum Frequency		2	5	_	_	_	4		_	_	3	_	_	—	
CPU, CPD	f _{MAX}	4.5	22		22		18		18	_	15	_	15	_	MHz
192	WOA	6	24	_	-	_	21		-	_	18	_		_	
CPU, CPD		2	5	_	_	_	4		_	_	3		_		
		4.5	25		22	_	20		18	_	17	_	15	_	
193		6	29	_		_	24	_	_	_	20	_		_	

SWITCHING CHARACTERISTICS (CL=50 pF, Input tr,tr=6 ns)

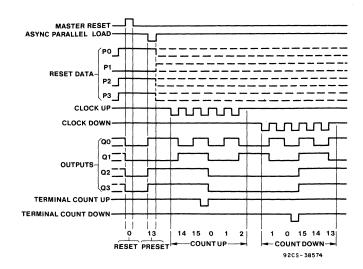

		T		25	°C		-4	0°C to	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	Н	IC	H	CT	74	HC	74F	ICT	54	НС	54H	ICT	UNITS
	288.		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	T —	125		_	_	155	_	_	<u> </u>	190	_	_	
CPU to TCU	t _{PHL}	4.5	-	25	-	27	-	31	_	34	-	38		41	
		6	—	21	-	-	-	26	_	L-	· —	32	_		
		2	_	125	_	_	_	155	_	_	_	190	_	_	
CPD to TCD		4.5	-	25	-	27	l —	31		34		38	-	41	
		6	_	21		_	_	26	_	_	-	32		_	
		2	_	220	_	_	_	270	—	_	_	325	_	_	
CPU to Qn		4.5		43	_	40	_	54	—	50	—	65	-	60	
		6		37	_		_	46	_	_	_	55		<u> </u>	
		2	T -	220	_	_	_	270	_	_	_	325	_	_	1
CPD to Qn		4.5	-	43	l —	40	-	54		50		65	-	60	
		6	<u> </u>	37	_	_	-	46	_	-		55	-	 	
		2	T-	220	_	_	_	275	_	I -		330	_	_	
PL to Qn		4.5	-	44	-	46	-	55	-	58	·	66	-	69	ns
		6	<u> </u>	37				47	<u> </u>			56			
		2	-	200	_	_	_	250	_	-	_	300	_	_	
MR to Qn	t _{PHL}	4.5	-	40	_	43	-	50	-	54		60	-	65	
		6		34	_			43				51			
Transition Time:	t _{THL}	2	-	75	_	_	-	95	-		i —	110	 	-	ĺ
Q, TCU, TCD	t _{TLH}	4.5	-	15		15	-	19	-	19	-	22		22	
		6		13	_		_	16				19		<u>L</u>	
Input Capacitance	Cı		_	10	_	10	-	10	_	10	_	10	 	10	pF.

Sequences:

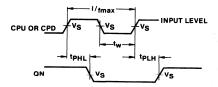

(1) Reset outputs to zero. (2) Load (preset) to BCD seven.

Count up to eight, nine, terminal count up, zero, one and two.
 Count down to one, zero, terminal count down, nine, eight and seven.

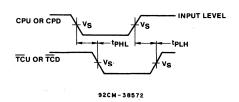
CD54/74HC192, CD54/74HCT192 CD54/74HC193, CD54/74HCT193


(a) HC192 synchronous decade counters. Typical reset, preset and count sequences.

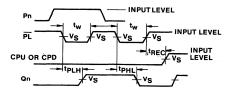
(4) Count down to one, zero, terminal count down, fifteen, fourteen and thirteen.

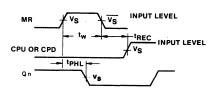

Note 1: Master reset overrides load data and clock inputs Note 2: When counting up, clock-down input

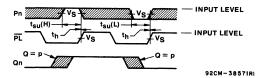
When counting up, clock-down input must be high; when counting down, clock-up input must be high.



(b) HC193 synchronous binary counters. Typical reset, preset and count sequences.

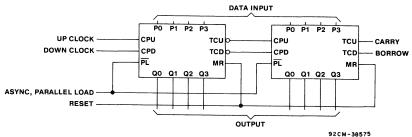

Fig. 6 - Timing diagrams for the CD54/74HC/HCT192(a) and 193(b).


(a) Clock to output delays and clock pulse width.


(b) Clock to terminal count delays.

(c) Parallel load pulse width, parallel load to output delays, and parallel load to clock recovery time.

(d) Master reset pulse width, master reset to output delay and master reset to clock recovery time.



(e) Setup and hold times data to parallel load (PL).

	54/74HC	54/74HCT
Input Level	VCC	3 V
Switching Voltage, V _S	50% VCC	1.3 V

Fig. 5 - AC waveforms.

APPLICATION

CASCADED UP/DOWN COUNTER WITH PARALLEL LOAD

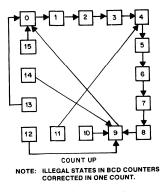
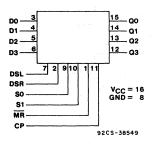



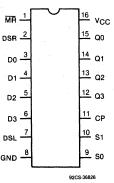
Fig. 6 - HC/HCT192 State Diagram:

High-Speed CMOS Logic

4-Bit Bidirectional Universal Shift Register

Type Features:

- Four Operating Modes: Shift Right, Shift Left, Hold and Reset
- Synchronous parallel or serial operation
- Typical f_{MAX} = 60 MHz @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C
- Asynchronous Master Reset


FUNCTIONAL DIAGRAM

The RCA-CD54/74HC194 and CD54/74HCT194 are 4-bit shift registers with Asynchronous Master Reset (MR). In the parallel mode (S0 and S1 are high), data is loaded into the associated flip-flop and appears at the output after the positive transition of the clock input (CP). During parallel loading serial data flow is inhibited. Shift left and shift right are accomplished synchronously on the positive clock edge with serial data entered at the shift left (DSL) serial input for the shift left mode, and at the shift right (DSR) serial input for the shift left mode. Clearing the register is accomplished by a Low applied to the Master Reset (MR) pin.

The CD54HC/HCT194 devices are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT194 devices are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation
 - High Noise Immunity:
 - $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5$ V
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - $V_{\rm IL} = 0.8 \ V \ Max., \ V_{\rm IH} = 2 \ V \ Min.$
 - CMOS Input Compatibility
 - $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

TERMINAL ASSIGNMENT

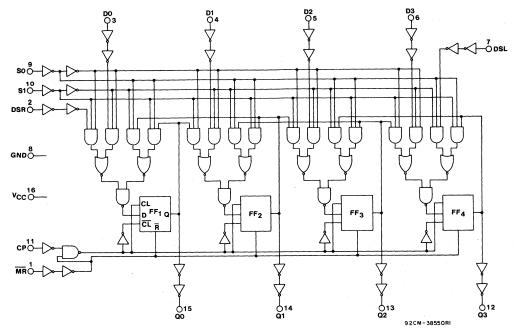


Fig. 1 - Logic diagram for the CD54/74HC194 and CD54/74HCT194.

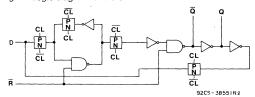


Fig. 2 - Detail of single Flip-Flop for the CD54/74HC194 and CD54/74HCT194.

TRUTH TABLE

Operating				Input	Outputs						
Mode	СР	MR	S ₁	So	DSR	DSL	Dn	Q0	Q1	Q2	Q3
Reset (clear)	X	L	Х	Х	Х	Х	Х	L	L	L	L
Hold (do nothing)	Х	Н	I(b)	I(b)	Х	Х	Х	q0	q1	q2	q3
Shift Left	1	Н	h	I(b)	X		X	q1	q2	q3	L
		Н	h	I(b)	Х	h	Х	q1	q2	q3	Н
Shift Right	1	Н	I(b)	h	T	Χ	X	L	q0	q1	q2
	\mathcal{I}	Н	l(b)	h	h	Χ	Х	Ι	q0	q1	q2
Parallel Load		Н	h	h	Х	Х	dn	d ₀	d ₁	d ₂	dз

H = HIGH voltage level.

h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition.

L = LOW voltage level.

I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.

 $\label{eq:dn} \textbf{d}_{n} \; (\textbf{q}_{n}) = \text{Lower case letters indicate the state of the referenced input (or output)} \\ \text{one setup time prior to the LOW-to-HIGH clock transition.}$

X = Don't care.

= LOW-to-HIGH clock transition.

NOTE: b. The HIGH-to-LOW transition of the S $_0$, and S $_1$ inputs on the 54/74194 should only take place while CP is HIGH for conventional operation.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, lik (FOR VI <-0.5 V OR VI > Vcc +0.5V)	<u>±</u> 20 mA
DC OUTPUT DIODE CURRENT, lok (FOR Vo < -0.5 OR Vo > Vcc +0.5 V)	<u>±</u> 20 mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < Vo < Vcc +0.5 V)	<u>±</u> 25 mA
DC Vcc OR GROUND CURRENT (Icc):	<u>±</u> 50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For TA = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING -TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tsig)	65 +150°C
LEAD TEMPERATUARE (DURING SOLDERING):	
At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII	UNITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	ł
DC Input or Output Voltage V ₁ V ₀	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times to to			
at 2 V	0	1000	·
at 4.5 V	0	500	ns
at 6 V	0	400	1

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			С	D74H	C/54I	4C194	•						CD	74HC	T/54H	ICT19	94			
		TEST		741	74HC/54HC 74HC				54	нс	TEST	г	74H	CT/54	нст	741	ICT	541	нст	
CHARACTERISTIC	co	CONDITIONS			TYPES			TYPES		PES	CONDITIONS		S TYPES			TYPES		TYPES		UNITS
CHARACTERISTIC	Vı	Io Vcc			25° (С	l	10/ 5°C		55/ 25° C	Vı	Vcc	+	25° C	;	l	0/ 5°C	1	55/ 25° C	
	v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	·V	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_		1.5	_	1.5	_		4.5								
Input Voltage Vін			4.5	3.15	_	_	3.15	_	3.15	-		to	2	_	-	2	-	2	-	
			6	4.2	_	_	4.2	_	4.2	-	-	5.5								٧
Low-Level			2	_	-	0.5	_	0.5		0.5		4.5								
Input Voltage VIL			4.5	_	_	1.35	_	1.35	_	1.35		to	-	-	0.8	-	0.8	-	0.8	v
			6	_	-	1.8	_	1.8	_	1.8		5.5								
High-Level	VIL		2	1.9	_	_	1.9	_	1.9	_	VIL									
Output Voltage Vон	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	, v
CMOS Loads	ViH		6	5.9	_	-	5.9	_	5.9	-	Viн									4 - 7
	V _{IL}										VIL									
TTL Loads	or	-4	4.5	3.98	_		3.84	_	3.7		or	4.5	3.98		-	3.84	-	3.7		v
	V _{IH}	-5.2	6	5.48	_		5.34	L_	5.2	_	ViH									
Low-Level	VIL		2	_	_	0.1		0.1	_	0.1	VIL									
Output Voltage Vol	or	0.02	4.5	_		0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	v
CMOS Loads	ViH		6	_	_	0.1		0.1	_	0.1	Vıн						<u> </u>			
	VIL										V _{IL}									
TTL Loads	or	4	4.5	_	_	0.26		0.33	-	0.4	or	4.5	-	_	0.26	-	0.33	-	0.4	v
	ViH	5.2	6	_		0.26	<u> </u> _	0.33	_	0.4	V _{IH}		<u></u>							
Input Leakage	Vcc			İ							Any Voltage									
Current I	or	ĺ	6	-	_	±0.1	_	±1	-	±1	Between Vcc &	5.5	-	_	±0.1	-	±1	-	<u>±</u> 1	
	Gnd			_				_			Gnd									Aπ
Quiescent	Vcc										Vcc		}							
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	_	80	-	160	Au
Current Icc	Gnd										Gnd									
Additional quiescent												4.5								
Device Current Alcc* per input pin:											Vcc-2.1	to	-	100	360	-	450	_	490	μА
1 unit load												5.5								

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
СР	0.6
MR	0.55
DSL, DSR, Dn	0.25
Sn	1.10

^{*}Unit Load is $\Delta l_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, tf = 6 ns)

CHARACTERISTIC		CL	TYP	UNIT		
CHARACTERISTIC			нс	нст	ONT	
Propagation Delay,	t _{PLH}	15	14	15	ns	
Clock to Q	t PHL					
Maximum Clock Frequency	fмах	15	60	50	MHz	
Power Dissipation Capacitance*	СРД	_	55	60	pF	

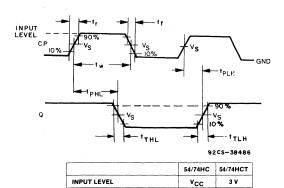
^{*}C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{CC}^2 fi + \Sigma (C_L V_{CC}^2 fo)$ where:

fi = input frequency.

fo = output frequency.

C_L = output load capacitance.


Vcc = supply voltage.

PREREQUISITE FOR SWITCHING FUNCTION

		TEST						LIN	AITS						
		CONDITION		2	5°C		-4	0°C to	+ 85	°C	-5	5°C to	+ 12	5°C	
CHARACTERISTIC		Vcc	ŀ	IC.	Н	СТ	74	нс	741	нст	54	4HC	541	нст	UNITS
CHARACTERISTIC		V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Civilia
Max. Clock Frequency	fмах	2	6		_		5		_		4		-		
Fig. 3		4.5	30		27		24		22		20		18		MHz
		6	35		-		28		_		23		_		
MR Pulse Width	tw	2	80				100		_		120		_		
Fig. 4		4.5	16		16	1	20		20		24		24		ns
		6	14		ļ. —		17				20		_		
Clock Pulse Width	tw	2	80		_		100		_		120		_		
Fig. 3		4.5	16		16		20		20		24		24	l	ns
		6	14	1	_		17		_		20				
Set-up time	tsu	2	70		_		90				105				
Data to Clock		4.5	14		14		18		18		21		21		ns
Fig. 5		6	12		_		15		_		19				
Removal Time	t REM	2	60		_		75		_		90		_		
MR to Clock		4.5	12		12		15		15		18		18		ns
Fig. 4		6	10				13		_		15		_		i .
Set-up Time	tsu	2	80		_		100		_		120				
S1, S0 to Clock		4.5	16		20		20		25		24		30		ns
Fig. 6		6	14				17		_		20		_	1	
Set-up Time	tsu	2	70		_		90		_		105		_		
DSL, DSR to Clock		4.5	14		14		18		18		21		21		ns
Fig. 6		6	12				15				18				Ì
Hold Time	tн	2	0		_		0		_		0				
S1, S0 to Clock		4.5	0		0		0		0		0		0		ns
Fig. 6		6	0		_		0		_		0				
Hold Time	tн	2	0		_		0		_		0		_		
Data to Clock		4.5	0		0		0		0		0		0		ns
Fig. 5		6	0		_		0		_		0		_		

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, tf = 6 ns)

TEST				LIMITS											
		CONDITION		25	°C -4			-40° C to + 85° C			-55°C to + 125			s°C	
CHARACTERISTIC		Vcc	Н	C	Н	СТ	74	нс	741	НСТ	54	НС	54	нст	UNITS
CHARACTERISTIC		V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	UNITS
Propagation Delay	t PLH	2		175		_		220		_		265		_	
Clock to Output	t _{PHL}	4.5		35	ĺ	37		44		46		53		56	ns
Fig. 3		6		30		l —		37		_		45		_	
Output Transition	tтьн	2		75		_		95		_		110		_	
Time	tтнL	4.5		15		15		19		19		22		22	ns
Fig. 3		6		13		_	ĺ	16	Ì			19			
Propagation Delay	tphl	2		140		_		175		_		210		_	
MR to Output		4.5		28		40		35	<u> </u>	50		42		60	ns
Fig. 4		6		24		_		30		_		36		_	
Input Capacitance															
	Cı	_		10		10		10		10		10		10	pF

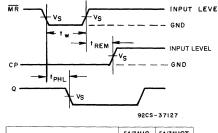
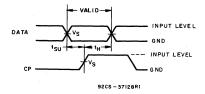


Fig. 3 - Clock pre-requisite times and propagation	and output
transition times	

SWITCHING VOLTAGE, VS

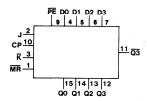

50% V_{CC}

1.3 V

	54/74HC	54/74HCT
INPUT LEVEL	Vcc	3 V
SWITCHING VOLTAGE, VS	50% V _{CC}	1.3 V

Fig. 4 - Master reset pre-requisite times and propagation delays.

	54/74HC	54/74HCT
INPUT LEVEL	Vcc	3 V
SWITCHING VOLTAGE, VS	50% V _{CC}	1.3 V


Fig. 5 - Data pre-requisite times.

VALID -	
OR DS	INPUT LEVEL
†vs	GND
	INPUT LEVEL
CP Vs	GND
	92CS-384IORI

	54/74HC	54/74HCT
INPUT LEVEL	Vcc	3 V
SWITCHING VOLTAGE, VS	50% V _{CC}	1.3 V

Fig. 6 Parallel load or shift-left/shift-right pre-requisite times.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

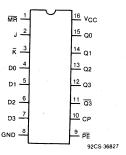
4-Bit Parallel Access Register

Type Features:

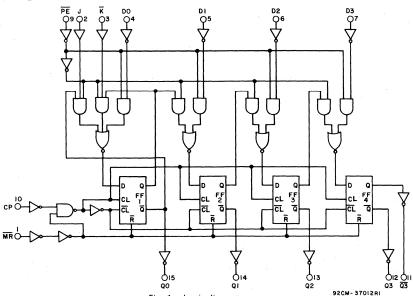
- Asynchronous Master Reset
- J, K, (D) inputs to first stage
- Fully synchronous serial or parallel data transfer
- Shift right and parallel load capability
- Complementary output from last stage
- Buffered inputs
- Typical f_{MAX}=50 MHz @ V_{CC}=5 V, C_L=15 pF, T_A=25°C

The functional characteristics of the RCA-CD54/74HC195 and CD54/74HC195 4-Bit Parallel Access Register are indicated in the Logic Diagram and Function Table. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-to-serial data transfers at very high speeds.

The two modes of operation, shift right (Q0-Q1) and parallel load, are controlled by the state of the Parallel Enable (PE) input. Serial data enters the first flip-flop (Q0) via the J and \overline{K} inputs when the \overline{PE} input is high, and is shifted one bit in the direction Q0-Q1-Q2-Q3 following each LOW-to-HIGH clock transition. The J and \overline{K} inputs provide the flexibility of the JK-type input for special applications and, by tying the two pins together, the simple D-type input for general applications. The device appears as four common-clocked D flip-flops when the PE input is LOW. After the LOW-to-HIGH clock transition, data on the parallel inputs (D0-D3) is transferred to the respective Q0-Q3 outputs. Shift left operation (Q3-Q2) can be achieved by tying the Qn outputs to the Dn-1 inputs and holding the \overline{PE} input low.


All parallel and serial data transfers are synchronous, occurring after each LOW-to-HIGH clock transition. The HC/HCT195 series utilizes edge-triggering; therefore, there is no restriction on the activity of the J, $\overline{\rm K}$, Pn and PE inputs for logic operations, other than the set-up and hold time requirements. A LOW on the asynchronous Master Reset ($\overline{\rm MR}$) input sets all Q outputs LOW, independent of any other input condition.

The CD54HC195 and CD54HCT195 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC195 and CD74HC1195 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic package (M suffix). Both types are also available in chip form (H suffix).


Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL}=30%, N_{IH}=30% of V_{CC} @ V_{CC}=5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL}=0.8 V Max., V_{IH}=2 V Min. CMOS Input Compatibility

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

TERMINAL ASSIGNMENT

Function Table

Fia	1 -	Logic	diac	ram

		INPUTS						OUTPUTS					
Operating Modes	MR	CP	PE	J	K	Dn	Q0	Q1	Q2	Q3	Q3		
Asynchronous Reset	L	Х	Х	Х	X	Х	L	L	L	L	Н		
Shift, Set first stage	Н	_	h	h	h	Х	Н	qo	q ₁	q ₂	q ₂		
Shift, Reset first stage	Н	_	h	1	1	X	L	q _o	q ₁	q ₂	q ₂		
Shift, Toggle first stage	н		h	h	1	Х	qo	q₀	q ₁	q ₂	q ₂		
Shift, Retain first stage	Н		h	1	h	Х	qo	q _o	q ₁	q ₂	q ₂		
Parallel Load	Н	-	1	X	X	dn	do	d ₁	d ₂	d ₃	व₃		

H=HIGH voltage level.

L=LOW voltage level.

X=Don't care.

I≈LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.

h=HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.

 d_n (q_n)=Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition.

J=LOW-to-HIGH clock transition.

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE. (Vcc):

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.	5V) ±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5	
DC Vcc OR GROUND CURRENT (Icc)	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F. H	55 to +125° C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	

with solder contacting lead tips only +300°C +300°C

STATIC ELECTRICAL CHARACTERISTICS

		C	D74H	C195	CD5	4HC19	95					CD	74HC	T195/	CD54	нст	195			
CHARACTERISTIC		TEST NDITIONS		1	IC/54 TYPE		74I TYI		54I TYI		TEST CONDITIO	ONS	1	CT/54		74H TYF	ICT PES	54H TYF	-	UNITS
ONAIRO EMBITO	V,	I _o	V _{cc}		+25° C	;	-4 +85	0/ 6° C	-5 +12		V.	V _{cc}		+25° C	:	-4 +85	0/ 5° C	-5 +12		OMITO
				Min	Тур	Max	Min	Max	Min	Max			Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_		1.5	_	1.5ء	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	٧
			6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level			2	_	-	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	-	1.35	_	1.35	_	1.35	-	to	-	-	0.8	_	0.8		0.8	v
			6	_	_	1.8	_	1.8		1.8		5.5								
High-Level	V _{IL}		2	1.9	_	_	1.9	-	1.9	_	V _{IL}									
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads	V _{iH}		6	5.9	_	_	5.9	-	5.9	_	V _{IH}									
	V _{IL}										VIL									
TTL Loads	or	-4	4.5	3.98	_		3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2		V _{IH}									
Low-Level	V _{IL}		2	_	_	0.1		0.1	_	0.1	VIL									
Output Voltage V _{OL}	or	0.02	4.5	_		0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	\ v
CMOS Loads	V _{IH}		6	-	_	0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}					1				
Input Leakage	V _{cc}										Any Voltage								1	
Current I,	or		6	-	-	±0.1	-	±1		±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd										& Gnd		<u> </u>							
Quiescent	V _{cc}										Vcc									
Device	or	0	6	-ı	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Current I _{cc}	Gnd										Gnd		_				<u></u>		_	
Additional Quiescent Device Current											V _{cc} -2.1	4.5 to	-	100	360	-	450	_	490	μΑ
per input pin: 1 unit load Δ l _{cc} *												5.5								

*For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
D0-D3	0.3
PE	-0.65
MR	0.3
СР	0.3
J, K	0.3
	1

*Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OLIADA OTEDIOTIO	LIN	AITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
Vcc:*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	ľ v
DC Input or Output Voltage Vin, Vout	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r ,t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r, t_f = 6 ns)

		C,	Тур	ical	
CHARACTERISTIC	SYMBOL	pF	НС	HCT	Units
CP to Qn Propagation Delay	t _{PHL} t _{PLH}	15	14	14	ns
MR to Qn	t _{PHL}	15	13	14	ns
Maximum Clock Frequency	f _{MAX}	15	50	50	MHz
Power Dissipation Capacitance*	C _{PD}	T-T	45	50	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per register.

PD = C_{PD} Vcc² fi + Σ C_L Vcc² fo where fi = input frequency

fo = output frequency

C_L = output load capacitance

Vcc = supply voltage.

Pre-requisite for Switching Function

			F	25	°C		-4	0°C to	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	H	CT	74	нС	74h	ICT	54	HC	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Clock Frequency	f _{MAX}	2	6	_	-	_	5	_	_	_	4	_	_	_	
(Figure 3)		4.5	30	-	25	_	25	-	20	-	20	-	16	—	ns
	1	6	35	_	_	-	29		l —		23	-	'	-	
MR Pulse Width	t _w	2	80	_	_	-	100	_	_	_	120	_	_	_	
(Figure 3)	į	4.5	16	_	20	_	20	-	25	-	24	-	30	_	ns
	1	6	14	-	l —		17	-	_	- 1	20	_	_	_	
Clock Pulse Width	t _w	2	80	_	_	_	100	_	_	_	120	_	_	_	
(Figure 3)	1	4.5	16	_	20	-	20	-	25	-	24	—	30	-	ns
		6	14		_	-	17		 -	—	20	-	—	-	
Set-up Time	t _{su}	2	100	_			125	Τ-	_	T-	150	1-	_	_	
J, K, PE to Clock		4.5	20	_	20	_	25	_	25	_	30	-	30	—	ns
(Figure 5)		6	17	_	<u> </u>	-	21	_	l —	—	26	-		_	
Hold Time	th	2	3	_	_	_	3	T-	_	_	3	T-		_	
J, K, PE to Clock	į.	4.5	3	_	3	_	3	-	3	—	3	-	3		ns
(Figure 5)		6	3		—	—	3	-	—	-	3	—	-	-	
Removal Time	t _{REM}	2	80	_	_	_	100	T-	T -	_	120	T-	_	T —	
MR to Clock		4.5	16	_	16		20	_	20	_	24	-	24	—	ns
(Figure 3)		6	14	_	—		17	-	—	-	20	-	_	_	

SWITCHING CHARACTERISTICS (CL=50 pF, Input t, t=6 ns)

				25	°C		-4	0°C to	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	H	CT	74	НС	74H	ICT	54	HC	54H	1CT	UNITS
	1	Ì	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	T-	175	_	_		220	_	_		265	_	_	
CP to Output	tpHL	4.5	—	35	_	35	_	44	—	44	_	53	-	53	ns
(Figure 3)	1	6	-	30	_	_		37	_	_		45	_	_	
Propagation Delay	t _{PHL}	2		150	_	_	_	190	_	_	_	225	_	_	
MR to Output	t _{PLH}	4.5	_	30		35	_	38	-	44	_	45	_	53	ns
(Figure 3)		6	_	26		_	-	33	_	_		38	_	_	
Output Transition	t _{TLH}	2	T-	75	_	_	_	95	_	_	_	110	_		
Time	t _{THL}	4.5	l –	15	_	15	_	19	l —	19		22	_	22	ns
	1	6	_	13	_	_	_	16	 —	—	_	19	 	_	
Input Capacitance	Cı		-	10		10	_	10	_	10	_	10	_	10	pF

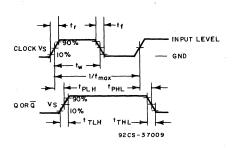


Fig. 3 - Clock pre-requisite and propagation delays and output transition times.

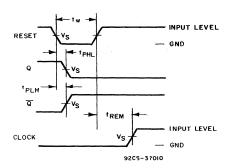
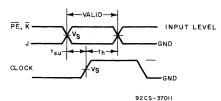
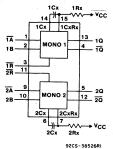



Fig. 4 - Master Reset pre-requisite and propagation delays.

5200 01011


Fig. 5 - J, \overline{K} or Parallel Enable pre-requisite times.

	НС	HCT
INPUT LEVEL	V _{cc}	3V
V _s	50%	1.3V

File Number 1670

Advance Information/ Preliminary Data

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Dual Monostable Multivibrator with Reset

Type Features:

- Overriding RESET Terminates Output Pulse
- Triggering From the Leading or Trailing Edge
- Q and Q Buffered Outputs
- Separate Resets
- Wide Range of Output-Pulse Widths
- Schmitt Trigger on B inputs

The RCA-CD54/74HC221 and CD54/74HCT221 are dual monostable multivibrators with reset. An external resistor (Rx) and an external capacitor (Cx) control the timing and the accuracy for the circuit. Adjustment of Rx and Cx provides a wide range of output pulse widths from the Q and $\overline{\Omega}$ terminals. Pulse triggering on the B input occurs at a particular voltage level and is not related to the rise and fall time of the trigger pulse.


Once triggered, the outputs are independent of further trigger inputs on \overline{A} and B. The output pulse can be terminated by a LOW level on the Reset (\overline{R}) pin. Trailing-edge triggering (\overline{A}) and leading-edge-triggering (B) inputs are provided for triggering from either edge of the input pulse. On power up, the IC is reset. If either Mono is not used each input (on the unused device) must be terminated either high or low.

The minimum value of external resistance, R_x , is typically 5000. The minimum value of external capacitance, C_x , is 0 pF. The calculation for the pulse width is $t_w=0.7\ R_xC_x$ at $V_{cc}=4.5\ V$.

The CD54HC/HCT221 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT221 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 - 2 to 6 V Operation High Noise Immunity:
 - $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5~V$
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - $V_{IL} = 0.8 \text{ V Max.}, V_{IH} = 2 \text{ V Min.}$ CMOS Input Compatibility
 - SMOS Input Compatibility
 - $I_{\rm I} \leq 1~\mu{\rm A} \ @\ V_{\rm OL},\ V_{\rm OH}$

TERMINAL ASSIGNMENT

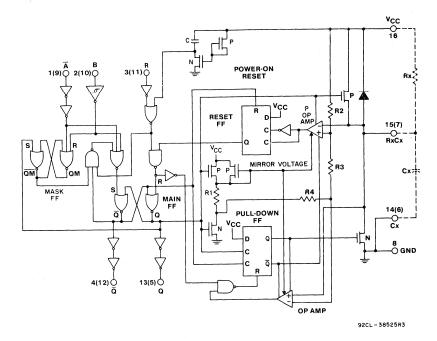


Fig. 1 — Logic diagram

	7	TRUTH TAB	LE	
	INPUTS		OUTI	PUTS
Ā	В	R	Q	Q
Н	Х	Н	L	Н
×	L	Н	L	Н
L		H	л	Ţ
¬_	H	Н	L.	J.
x	Х	L	L	н
L	н		Λ*	Ն⁺

H = High Level

= Low Level

= Transition from Low to High = Transition from High to Low = One High Level Pulse

= One High Level Pulse = One Low Level Pulse

X = Irrelevant

*For this combination the reset input must be low and the following sequence must be used: pin 1 (or 9) must be set high or pin 2 (or 10) set low, then pin 1 (or 9) must be low and pin 2 (or 10) set high. Now the reset input goes from low-to-high and the device will be triggered.

STATIC ELECTRICAL CHARACTERISTICS

		c	D74H	C221	CD54	4HC2	21					CD	74HC	T221	CD54	нст	221		-	
CHARACTERISTIC	1	TEST NDITIONS			IC/54	-		HC PES		HC PES	TEST CONDITIO			CT/54		ı	ICT PES		ICT PES	UNITS
	V, V	I _o	V _{cc}		+25° C	;	1	10/ 5° C	-5 +12	5/ 5° C	V,	V _{cc}		+25° C	;		10/ 5° C		5/ 5° C	0
		""	ľ	Min	Тур	Max	Min	Max	Min	Max	'	•	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	-	1.5	-	1.5	-		4.5								
Input Voltage V _{IH}			4.5	3.15	-	-	3.15	_	3.15	_	_ '	to	2		_	2	_	2	_	V .
			6	4.2	_	-	4.2	-	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	-	_	1.35	_	1.35	_	1.35	_	to	1_	-	0.8	-	0.8	_	0.8	v
			6	-	_	1.8	_	1.8	-	1.8		5.5								
High-Level	VIL		2	1.9	_	_	1.9	-	1.9	_	V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	-	4.4	-	or	4.5	4.4	_	-	4.4	-	4.4	-	· v
CMOS Loads	, V _{IH}		6	5.9	-	_	5.9	-	5.9	_	V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	-	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v
	V _{IH}	-5.2	6	5.48	-	_	5.34	-	5.2	-	V _{IH}							-		
Low-Level	VIL		2	-	_	0.1	_	0.1	-	0.1	V _{IL}									
Output Voltage Vol	or	0.02	4.5	-		0.1	-	0.1	-	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	,V
CMOS Loads	V _{IH}		6	_	-	0.1	_	0.1	_	0.1	V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	4	4.5	_	1	0.26		0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	-	0.4	v
	V _{IH}	5.2	6	_		0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any Voltage									
Current I	or		6	-	-	±0.1	-	±1	-	±1.	Between V _{cc}	5.5	-		±0.1	-	±1	-	±1	μΑ
	Gnd										& Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Current Icc	Gnd										Gnd		-				_			
Additional Quiescent Device Current											V _{cc} -2.1	4.5 to	_	100	360	_	450		490	μA
per input pin: 1 unit load Δl_{cc}											700 E.1	5.5		.55						"

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
All Inputs	0.3

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} + 0.5 \text{V}$)	±20mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	
DC V _{cc} OR GROUND CURRENT (I _{cc})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OLIADA OTERIOTIO	LI	MITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	٧
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
on Inputs A and R			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	.0	400	ns
Input Rise and Fall Times t _r , t _f			
on Input B			
at 2 V	0	Unlimited	ns
at 4.5 V	0	Unlimited	ns
at 6 V	0	Unlimited	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{ C}$, input t_r , $t_t = 6 \text{ ns}$)

CHARACTERISTIC		CL	TYPICAL		UNITS			
CHARACTERISTIC		(pF)	54/74HC	54/74HCT	/74HCT			
Propagation Delay								
\overline{A} , B, \overline{R} to Q	t _{PLH}	15	18	18	ns			
Ā, B, R̄ to Q̄	t _{PHL}	15	14	14	ns			
Power Dissipation Capacitance*	C _{PD}	_	166	166	pF			

^{*}C_{PD} is used to determine the dynamic power consumption, per multivibrator.

 $P_D = (C_{PD} + C_x) V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where: $f_i = input$ frequency.

f_i = input frequency. f_o = output frequency. C_L = output load capacitance.

 V_{CC} = supply voltage. assuming $f_i \ll \frac{1}{t_w}$

PREREQUISITE FOR SWITCHING FUNCTION

				25	°C		-4	0°C to	+85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC		V _{cc}	Н	С	Н	CT	74	НС	74F	ICT	54	НС	54H	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Input Pulse Width		2	70	_	_	_	90	_	_		105	_	_	_	
	twL	4.5	14	_	14	-	18	 -	18		21	—	21	-	ns
<u> </u>		6	12				15		_		18				
		2	70	_	_	_	90	_	_	_	105	-	_	_	
В	twH	4.5	14	-	14	_	18	_	18	—	21	-	21		ns
		6	12				15		_		18				
14		. 2	70	-	_	_	90	_	_	_	105	_	_	_	
Reset	twL	4.5	14		18	 -	18	-	23		21	_	27	-	ns
		6	12	_		_	15		_		18		_	_	
Recovery Time	-	2	0	-	-	_	0	-	_	-	0	-	_	_	
R to A or B	t _{REC}	4.5	0	—	0		0	-	0	-	0	_	0		ns
		6	0	_		_	0				0			_	
Output Pulse Width															
Q or Q	ŧ₩	5	630	770	630	770	602	798	602	798	595	805	595	805	μs
$C_x = 0.1 \mu\text{F R}_x = 10\text{k }\Omega$				L		<u></u>	<u> </u>								
Output Pulse			Typ	oical	Тур	ical							Ì		
Width Q or Q	tw	4.5	14	40	14	40	-	-		_	-	-	_	-	ns
$C_x = 28 \text{ pF}, R_x = 2K \Omega$			ļ												
$C_x = 1000 \text{ pF, } R_x = 2K \Omega$	tw	4.5	1	.5	1	.5			_		_	_		_	μs
$C_x = 1000 \text{ pF}, R_x = 10 \text{K }\Omega$	tw	4.5		7	-	7	_	_		_	_	_		_	μs

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_r = 6 \text{ ns}$)

		-		25	°C		-4	0°C to	o +85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	СТ	74	НС	74F	ICT	54	нС	54F	ICT	UNITS
	100		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		210	_	_	_	265	_	_	_	315	_	-	
Trigger		4.5		42		42	_	53	—	53	-	63	-	63	ns
Ā, B, R̄ to Q		6	_	36				45	_	_	_	54			
		2	_	170	_	_	_	215	_	_	_	255	-		
A, B, R to Q	t _{PHL}	4.5	-	34	_	34		43	-	43	-	51	_	51	ns
		6	_	29	_	_	_	37	_	l —		43	_	-	
Propagation Delay		2	_	160	_	_	_	200	_	_	_	240	_	_	
R to Q	t _{PLH}	4.5	-	32	_	38	-	40		48	_	48	-	57	ns
		6		27		_		34	_		_	41	_		
1		2	_	180	_	_		225	_	_	_	270	_	_	
R to Q	tent	4.5	-	36	_	37		45		46	_	54	_	56	ns
		6	_	31	_		_	38	_		_	46	_		
Output		2	_	75	_	_	_	95	_	_	_	110	_	_	
Transition Time	t _{TLH}	4.5	-	15	—	15		19	_	19		22	—	22	ns
	t _{THL}	6	_	13			_	16			_	19			
Input Capacitance	Cin		_	10	_	10	_	10	_	10	_	10	_	10	pF
Pulse Width match		4 5													
between circuits in		4.5	Тур	ical	Тур	ical									%
the same package		to		2	±	2		_		_		_	_	_	70
C _x =1000 pF,R _x =10KΩ		5.5		··											

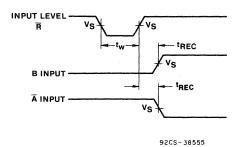


Fig. 2 — Recovery times, \overline{R} to \overline{A} or B.

	54/74HC	54/74HCT
Input Level	VCC	3 V
Switching Voltage, VS	50% VCC	1.3 V

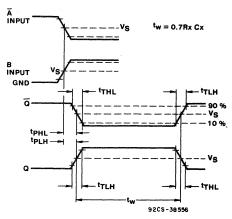


Fig. 3 — Triggering of One Shot by input A or input B₁ - a period t_w.

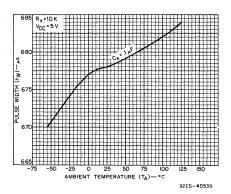


Fig. 4 — HC/HCT221 Output Pulse Width vs. Temperature.

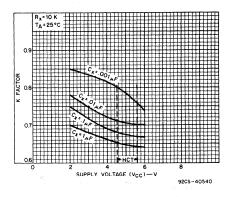


Fig. 5 — HC/HCT221 K Factor vs. Supply Voltage.

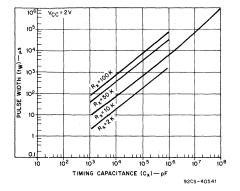


Fig. 6 — HC221 Output Pulse Width vs. C_x.

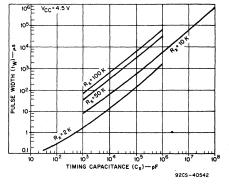


Fig. 7 — HC/HCT221 Output Pulse Width vs. Cx.

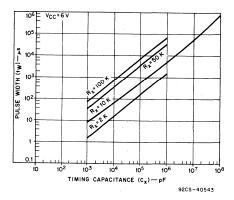
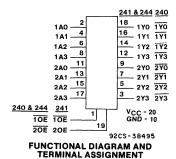



Fig. 8 — HC221 Output Pulse Width vs. $C_{\rm X}$.

High-Speed CMOS Logic

Octal Buffer/Line Drivers, 3-State

CD54/74HC/HCT240 Inverting CD54/74HC/HCT241 Non-Inverting CD54/74HC/HCT244 Non-Inverting

Type Features:

- Typical propagation delay = 8 ns
 @ V_{CC}=5 V, C_L=15 pF, T_A=25°C for HC240
- 3-State outputs
- Buffered inputs
- High-current bus driver outputs

TERMINAL ASSIGNMENT

The RCA-CD54/74HC240 and CD54/74HCT240 are inverting 3-state buffers having two active-low output enables. The RCA CD54/74HC/HCT241 and CD54/74HC/HCT244 are non-inverting 3-state buffers that differ only in that the 241 has one active-loy output enable, and the 244 has two active-low output enables. All three types have identical pinouts.

The CD54HC240/241/244 and CD54HCT240/241/244 are supplied in 20-lead ceramic dual-in-line packages (F suffix). The CD74HC240/241/244 and CD74HCT240/241/244 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). The CD54/74HC/HCT240/241/244 are also supplied in chip form (H suffix).

Family Features:

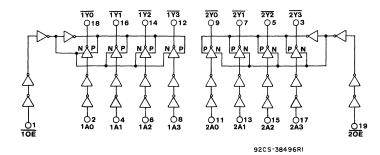
- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:

2 to 6 V Operation

High Noise Immunity:

 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5$ V

■ CD 54HCT/CD74HCT Types:

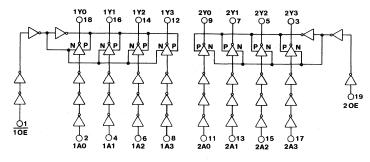

4.5 to 5.5 V Operation

Direct LSTTL Input Logic Compatibility

V_{IL}=0.8 V Mas., V_{IH}=2 V Min.

CMOS Input Compatibility

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$



TRUTH TABLE

INP	INPUTS					
10E,20E	A	Ÿ				
L	L	Н				
L	н	L				
н	Х	Z				

(HC/HCT240)

Fig. 1 - CD54/74HC/HCT240 logic diagram.

92CS-38497RI

Fig. 2 - CD54/74HC/HCT241 logic diagram.

TRUTH TABLE

INP	UTS	OUTPUT	INP	UTS	OUTPUT
10E	1A	1Y	20E	2A	2Y
L	L	L	L	Х	Z
L	Н	н н	н	L	L
Н	X	Z	н	н	Н

H=HIGH Voltage Level

(HCT/HCT241) L=LOW Voltage Level

X=Immaterial

Z=HIGH Impedance

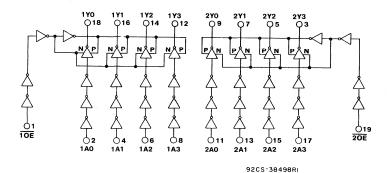


Fig. 3 - CD54/74HC/HCT244 logic diagram.

TRUTH TABLE

INP	INPUTS						
10E, 20E	A	Y					
L	L	L					
L	Н	н					
Н	X	Z					

(HC/HCT244)

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} +0.5 \text{ V}$)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5	V)±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V	V)±35 mA
DC Vcc OR GROUND CURRENT, (Icc)	±70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tsto)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s max.	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CUADACTERIOTIC	LIN	IITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	~55	+125	
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		CD74HC2	240/24	1/244	CD5	4HC240/241/244					CD74	4НСТ2	240/24	1/244	, CD5	4НСТ	240/24	11/24	4	
CHARACTERISTIC	со	TEST NDITIONS			HC/54		1 1		1		TEST	74HCT/54HCT 74HCT TYPES TYPES					54F TYI	UNITS		
	V ₁	lo	V _{CC}		+25° (;	1	10/ 5° C	l	i5/ 5°C	V _I	v _{cc}		+25° C	:		10/ 5° C	1	i5/ 5° C	
	V	mA	V	Min	Тур	Max	Min	Max	Min	Max	\ \ \	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	Ī-	1.5	-	1.5	_		4.5								
Input Voltage VIH			4.5	3.15	_	-	3.15	_	3.15	_	_	to	2	_	_	2	_	2	_	v
			6	4.2	_	_	4.2	_	4.2	_	1	5.5								
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage VIL			4.5	Ī-	_	1.35	_	1.35	_	1.35	_	to	_	_	0.8	_	0.8	l _	0.8	V
]		6	-	_	1.8	_	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	V
CMOS Loads	VIH		6	5.9	_	_	5.9	_	5.9	_	VIH							, a		
	VIL										VIL									
TTL Loads	or	-6	4.5	3.98		_	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_	3,7	_	٧
(Bus Driver)	ViH	-7.8	6	5.48	_	_	5.34	_	5.2	_	VIH									
Low-Level	VIL		2	Ī-	_	0.1	_	0.1	_	0.1	VIL									
Output Voltage VOL	or	0.02	4.5	-	_	0.1	_	0.1	_	0.1	or	4.5	_		0.1	-	0.1	_	0.1	V
CMOS Loads	V _{IH}		6	_		0.1		0.1		0.1	V _{IH}									
	VIL										VIL									
TTL Loads	or	6	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	·V
(Bus Driver)	VIH	7.8	6	_	_	0.26	_	0.33	_	0.4	VIH									
Input Leakage	V _{CC}										Any Voltage									
Current I _I	or		6	_	_	±0.1		±1	_	±1	between	5.5	_	_	±0.1	_	±1	-	±1	μΑ
	Gnd										V _{ÇC} & Gnd									
Quiescent	V _{CC}										V _{CC}									
Device	or	0	6	_	-	8	-	80		160	or	5.5	-	-	8	-	80	-	160	μΑ
Current I _{CC}	Gnd										Gnd									
Additional Quiescent Device Current per input pin: 1 unit load	:										V _{CC} -2.1	4.5 to 5.5		100	360		450	_	490	μΑ
3-state leakage current loz	V _{IL} or V _{IH}	V _O =V _{CC} or Gnd	6	_	_	±0.5		±5	_	±10	V _{IĻ} or V _{IH}	5.5	-	_	±0.5	_	±5	_	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Tables

CD54/74HCT240							
Input	Unit Loads*						
nA0-A3	1.5						
10E	0.7						
20F	0.7						

CD54/74HCT241							
Input	Unit Loads*						
nA0-A3	0.7						
10E	0.7						
20 <u>E</u>	1.5						

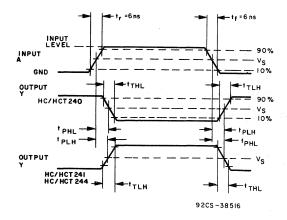
CD54/	74HCT244							
Input Unit Loads*								
nA0-A3	0.7							
10E	0.7							
20E	0.7							

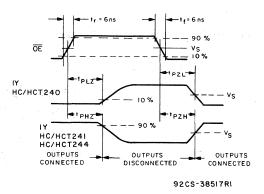
^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC}=5~V, T_A=25^{\circ}C$, Input $t_r, t_r=6~ns$)

CHARACTERISTIC	SYMBOL	C _L	2	40	2	41	2	14	UNITS
		pF	нс	нст	нс	нст	нс	нст	
Propagation Delay Data to Output	t _{PHL} t _{PLH}	15	8	9	9	10	9	10	ns
Output Disable/Enable to Outputs	t _{PZH} , t _{PZL} , t _{PHZ} , t _{PLZ}	15	12	12	12	12	12	12	ns
Power Dissipation Capacitance	C _{PD} *		38	40	34	38	46	40	pF

C_{PD} is used to determine the dynamic power consumption per channel.


PD=Vcc2fi (CPD + CL)


f_i=input frequency.

C_L = output load capacitance. V_{CC} = supply voltage.

SWITCHING CHARACTERISTICS (C_L=50 pF, Input t_r,t_f=6 ns)

				25	°C			-40° C t	o +85° C	;		-55°C to	+125°	С	
CHARACTERISTIC	SYMBOL	V _{CC}	н	IC	н	СТ	74	нс	74F	ICT	54	нс	541	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	_	100	_	_	_	125	_	_	_	150	_	_	
Data to Outputs	t _{PHL}	4.5	_	20	-	22	-	25	-	28		30 .	-	33	ns
HC/HCT 240		6		17			_	21		_	L-	26	_		
Data to Outputs	t _{PLH}	2	_	110	_	_	_	140	_	-		165	-	_	
HC/HCT241	t _{PHL}	4.5	-	22	_	25	_	28	_	31	-	33	-	38	ns
		6	_	19	_	_		24			L-	28			
Data to Outputs	t _{PLH}	2		110	_	_	-	140	_	_	_	165		-	
HC/HCT 244	t _{PHL}	4.5	_	22	_	25	_	28	_	31	_	33	-	38	ns
		6		19	_	-	_	24	_	_	_	28	_	_	
Output	tpzH	2		150	_	_	_	190	_	_	_	225	_	_	
Enable and	tpzL	4.5	_	30	_	1 30	_	38	_	38	_	45		45	ns
Disable Times	t _{PHZ}	6	_	26	-	_	_	33	-	-	-	38	_	-	1
	tPLZ														
Output		2		60	_	_		75		_		90	_	l –	
Transition Time	t _{TLH}	4.5		12	_	12		15	_	15	_	18	_	18	ns
	tTHL	6	-	10	_	_	_	13	-	_	_	15	-	-	
Input															
Capacitance	Cı		-	10	-	10	-	10	-	10	_	10	-	10	pF
3-State				-										-	
Output			_	20	_	20	_	20	_	20	_	20	_	20	pF
Capacitance	Co					-									

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _S	50% VCC	1.3 V

Fig. 2 - Transition times and propagation delay times.

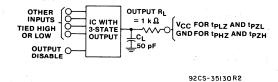
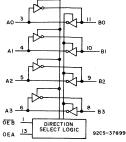



Fig. 4 - Three-state propagation delay test circuit.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Quad-Bus Transceiver with 3-State Outputs

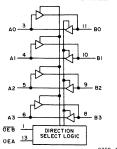
Type Features:

- Typical propagation delay (A \longrightarrow B) of 7 ns @ $V_{CC} = 5 V$ $C_L = 15$ pF, $T_A = 25^{\circ}$ C
- 3-state outputs
- Buffered inputs

CD54/74HC242, HCT242

The RCA-CD54/74HC242, 243 and CD54/74HCT242, 243 silicon-gate CMOS 3-state bidirectional inverting and non-inverting buffers are intended for two-way asynchronous communication between data buses. They have high drive current outputs which enable high-speed operation when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuits, and have speeds comparable to low power Schottky TTL circuits. They can drive 15 LSTTL loads.

The CD54/74HC242 and CD54/74HCT242 are inverting buffers; the CD54/74HC243 and CD54/74HCT243 are non-inverting buffers.


The states of the output enables (OEB, OEA) determine both the direction of flow (A to B, B to A), and the 3-state mode.

The CD54HC242, 243 and CD54HCT242, 243 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC242, 243 and CD74HCT242, 243 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
 - CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

FUNCTIONAL DIAGRAM

CD54/74HC243, HCT243

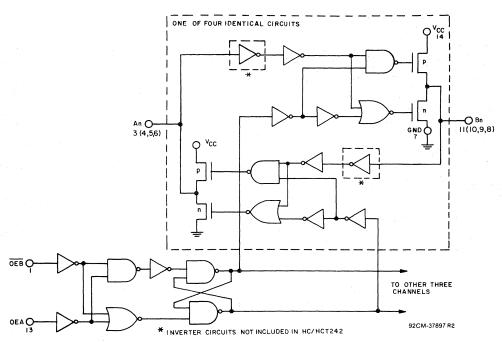


Fig. 1 - Logic diagram for the CD54/74HC/HCT242, 243.

TRUTH TABLE

		нс, нст	242 Series	HC, HCT243 Series						
	TROL PUTS	i .	PORT TUS		PORT					
OEB	OEA	. A _n	B _n	An	Bn					
Н	Н	ठ	ı	0	ı					
L	н	z	z	Z	z					
н н	L	z	z	Z	z					
L	L	l i	0	t to	0					

H = High

L = Low

I = Input

O = Output (Same Level as Input)
O = Output (Inversion of Input Level)
Z = High Impedance

To prevent excess currents in the High Z modes all I/O terminals should be terminated with 10 k Ω to 1 $M\Omega$ resistors.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} +0.5 \text{ V}$)	±20 mA
DC OUTPUT DIODE CURRENT, Iox (FOR Vo < -0.5 V OR Vo > Vcc +0.5	V)±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V	V)±35 mA
DC Vcc OR GROUND CURRENT, (Icc):	±70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{sto})	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in. 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIR	NITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			ļ
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t, t			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		CD74	HC24	2/243	/CD5	4HC2	42/24	3			С	D74H	CT24	2/243	/CD5	4HCT	242/2	43		
CHARACTERISTIC	COI	TEST NDITIONS		I .	HC/54		1	HC PE	1	HC PE	TEST CONDITI		1	CT/54		1	HCT PE		ICT PE	UNITS
CHARACTERISTIC	V,	I _o	V _{cc}		+25° (3	1	10/ 5°C	1	5°C	V _i V _{cc}			+25° (:	-40/ +85° C		-55/ +125°C		UNITS
		lii.		Min	Тур	Max	Min	Max	Min	Max] v	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	Ī-	1.5	_	1.5	-		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	Ī-	3.15	_	1 -	to	2		-	2	_	2	-	v
			6	4.2	-	-	4.2	-	4.2	-	1	5.5								
Low-Level			2	-	_	0.5	_	0.5	-	0,5		4.5								
Input Voltage V _{IL}			4.5	-	_	1.35		1.35	-	1.35	-	to	-	_	0.8	-	0.8	-	0.8	v
			6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	-	1.9	-	1.9	_	V _{IL}									
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	-	4.4	_	4.4	-	or	4.5	4.4	_	-	4.4	-	4.4	-	V
CMOS Loads	V _{IH}		6	5.9	-	-	5.9	_	5.9	-	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	-6	4.5	3.98	_	-	3.84	_	3.7	_	or	4.5	3.98	_		3.84	-	3.7	-	v
(Bus Driver)	V _{iH}	-7.8	6	5.48	_	_	5.34		5.2	-	V _{IH}									
Low-Level	V _{IL}		2	-	-	0.1	_	0.1	-	0.1	VIL									
Output Voltage Vol	or	0.02	4.5	-	-	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	6	4.5	-	-	0.26	_	0.33	_	0.4	or	4.5	_	-	0.26	-	0.33	–	0.4	v
(Bus Driver)	V _{IH}	7.8	6	-	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any									
Current I ₁	or		6	-	_	±0.1	_	±1	-	±1	Voltage Between	5.5	_	_	±0.1	-	±1	-	±1	μΑ
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	_	-	8	-	80	-	160	or	5.5	_	_	8	-	80	_	160	μΑ
Current I _{cc}	Gnd							1			Gnd									
Additional Quiescent Device Current per input pin: 1 unit load \(\Delta \) lcc*				: -		-					V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ
3-State Leakage Current loz	V _{IL} or V _{IH}	V _o = V _{cc} or Gnd	6	-	_	±0.5	_	±5.0	_	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	_	±5.0	_	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads *
An, Bn	1.1
OEA, ŌEB	0.6

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r , t_t = 6 ns)

		SYMBOL						
	CHARACTERISTIC		C _L pF	HC242	HCT242	HC243	HCT243	UNITS
Propa	gation Delay	t _{PHL}	45	7	8	-		
	Data to Output	t _{PLH}	15		•	,	9	ns
	Enable to High Z	t _{PHZ} , t _{PLZ}	15	12	14	12	14	ns
	Enable from High-Z	t _{PZH} , t _{PZL}	15	12	14	12	14	ns
Power	Dissipation Capacitance*	C _{PD}	_	85	90	80	91	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per channel.

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where:

f_i = input frequency.

C_L = output load capacitance.

V_{cc} = supply voltage.

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t, t, = 6 ns)

				25	°C		-4	0°C to	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	V _{CC}	Н	С	Н	СТ	74	нс	74H	ICT	54	нс	54H	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	90	_	_	_	115	_	_	_	135	_	_	
Data to Outputs	t _{PHL}	4.5	-	18	_	20	<u> </u>	23	-	25	—	27	_	30	ns
HC/HCT242		6	_	15	_	 		20	l —		_	23		_	
Propagation Delay	t _{PLH}	2	I -	90	_	_	_	115	_	_	_	135	_	_	
Data to Outputs	t _{PHL}	4.5	_	18	_	22	_	23	_	28	_	27	_	33	ns
for HC/HCT243		6	_	15	_	_	-	20	_	_		23	_	-	
Output High-Z:	t _{PZH}	2	_	150	_	_	_	190	_			225	_	_	
to High Level;	t _{PZL}	4.5		30		34	_	38	_	43	-	45	_	51	ns
to Low Level		6		26	 	-	_	33		_	_	38	_	-	
Output High Level;	t _{PHZ}	2	-	150	_	_	_	190	_	_	_	225	_	I —	
Output Low Level	t _{PLZ}	4.5		30	_	35	_	38		44		45	_	53	ns
to High-Z		6	_	26	-	_	_	33		_		38	_	_	
Output Transition	t _{TLH}	2	_	60	-	_	_	75	_	-	_	90	-	—	
Time	t _{THL}	4.5	_	12	_	12	_	15		15	_	18	-	18	ns
: 19		6	'	10	_	_	_	13	_	_	_	15	_	_	
Input Capacitance	Cı		_	10	_	10	_	10	_	10		10	_	10	pF
3-State Output Capacitance	Со		_	20	_	20		20	_	20		20	_	20	pF

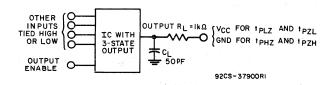
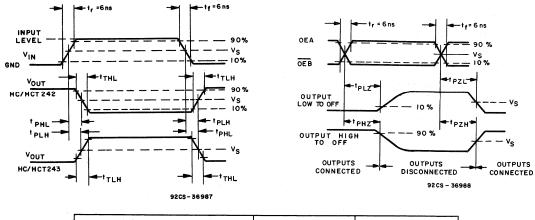



Fig. 2 - Three-state propagation delay test circuit.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{CC}	1.3 V

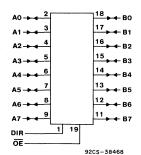
Fig. 3 - Transition times and propagation delay times.

OEB 1 14 VCC NC 2 13 OEA A0 3 12 NC A1 4 11 B0 A2 5 10 B1 A3 6 9 B2 GND 7 8 B3

TERMINAL ASSIGNMENT

92CS-36829

ORDERING INFORMATION


RCA CMOS device packages are identified by letters indicated in the following chart. When ordering a CMOS device, it is important that the appropriate suffix letter be affixed to the type number of the device.

Package	Suffix Letter
Dual-In-Line Plastic	Ε
Dual-In-Line Frit-Seal Ceramic	F
Dual-In-Line Surface Mount Plastic	М
Chip	Н

The CD54HC/HCT series is supplied in dual-in-line frit-seal ceramic packages (F suffix). The CD74HC/HCT series is supplied in dual-in-line plastic packages (E suffix) and in dual-in-line surface mount plastic packages (M suffix). Both series are supplied in chip form (H suffix).

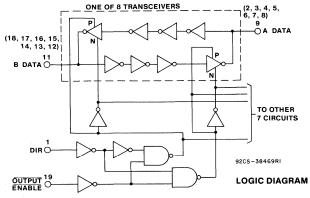
For example, a CD54HC242 will be identified as the CD54HC242F. The CD74HC242 will be identified as the CD74HC242E.

High-Speed CMOS Logic

Octal-Bus Transceiver, 3-State, Non-Inverting

Type Features:

- Buffered inputs
- 3-State outputs
- Bus line driving capability
- Typical propagation delay (A → B) 9 ns @ V_{CC} = 5V, C_L = 15 pF, T_A = 25° C


FUNCTIONAL DIAGRAM

The RCA-CD54/74HC245 and CD54/74HCT245 are high-speed octal 3-state bidirectional transceivers intended for two-way asynchronous communication between data buses. They have high drive current outputs which enable high-speed operation while driving large bus capacitances. They provide the low power consumption of standard CMOS circuits with speeds and drive capabilities comparable to that of LSTTL circuits.

The CD54/74HC245 and CD54/74HCT245 allow data transmission from the A bus to the B bus or from the B bus to the A bus. The logic level at the direction input (DIR) determines the direction. The output enable input (\overline{OE}) , when high, puts the I/O ports in the high-impedance state.

The HC/HCT245 is similar in operation to the HC/HCT640 and the HC/HCT643.

The CD54HC245 and CD54HCT245 are supplied in 20-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC245 and CD74HCT245 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). Both devices are also available in chip (H suffix) form.

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

	TRUTH TABLE										
	CON		OPERATION								
	ŌĒ	DIR	0, 2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
	L	L	B DATA TO A BUS								
Ī	L	Н	A DATA TO B BUS								
ſ	Н	Х	ISOLATION								

H = high level, L = low level, X = irrelevant

To prevent excess currents in the High-Z (Isolation) modes all I/O terminals should be terminated with 10K Ω to 1M Ω resistors.

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	±20mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	
DC V _∞ OR GROUND CURRENT (I _{cc})	
POWER DISSIPATION PER PACKAGE (Pp):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	,
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LIMITS				
CHARACTERISTIC	MIN.	MAX.	UNITS			
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :*						
CD54/74HC Types	2	6	v			
CD54/74HCT Types	4.5	5.5	V			
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V			
Operating Temperature T _A :						
CD74 Types	-40	+85	°C			
CD54 Types	-55	+125	° °C			
Input Rise and Fall Times t _r , t _f						
at 2 V	0	1000	ns			
at 4.5 V	0	500	ns			
at 6 V	0	400	ns			

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

		CD74HC245/CD54HCT245										CD74HC245/CD54HCT245									
		TEST CONDITIONS				74HC/54HC 74HC 54HC TYPES TYPE TYPE				-	TEST CONDITIO		ı	T/54 YPE		74HCT TYPE		54HCT TYPE			
CHARACTERIST	ric .	V, V	l _o	V _{cc}	. 4	•25° C	;	-4 +85		-5 +12		V. V	V _{cc}	,	•25° C	•	-4 +85		-5 +12	5/ 5° C	UNITS
		V	mA	•	Min	Тур	Max	Min	Мах	Min	Max	٠	•	Min	Тур	Max	Min	Max	Min	Max	-
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5					-			
Input Voltage	V _{IH}			4.5	3.15		_	3.15	_	3.15	_	_	to	2	_	-	2	-	2	_	٧
	-			6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level		***************************************		2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35		to	_	_	0.8		0.8	_	0.8	v
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		V _{IL}		2	1.9		-	1.9	_	1.9	_	V _{IL}									
Output Voltage	V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	_	v
CMOS Loads		V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
		VIL										V _{IL}									
TTL Loads		or	-6	4.5	3.98	_	-	3.84	_	3.7	_	or	4.5	3.98	-	- 1	3.84	-	3.7	-	v
(Bus Driver)		V _{IH}	-7.8	6	5.48	_	-	5.34	_	5.2	_	V _{IH}									
Low-Level		V _{IL}		2	_	_	0.1	_	0.1	-	0.1	V _{IL}		-							
Output Voltage	V _{OL}	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads		V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
		V _{IL}										V _{IL}									
TTL Loads		or	6	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	_	0.26	_	0.33	-	0.4	v
(Bus Driver)		V _{IH}	7.8	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage		V _{cc}										Any									
Current	I,	or		6	_	_	±0.1	_	±1	-	±1	Voltage Between	5.5	-	_	±0.1	-	±1	-	±1	μΑ
		Gnd										V _{cc} & Gnd									
Quiescent		V _{cc}										Vcc									
Device		or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Current	Icc	Gnd										Gnd									
Additional Quiescent Device Current per input pin: 1 unit load Δ	vlcc*								7			V _{cc} -2.1	4.5 to 5.5	-	100	360	-	450	_	490	μΑ
3-State		VıL	V _o = V _{CC}									V _{IL}									
Leakage Current		or	or	6	_		±0.5	_	±5.0	-	±10	or	5.5	-	_	±0.5	-	±5.0	-	±10	μΑ

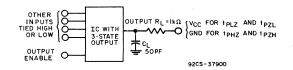
^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

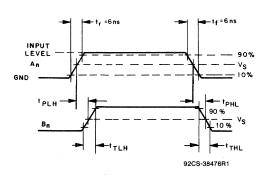
Input	Unit Loads*
A _n or B _n	0.4
ŌĒ	1.5
DIR	0.9

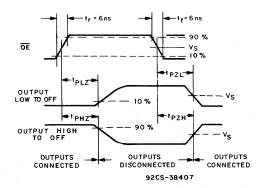
^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t = 6 ns)


	CL	TYP	ICAL	UNITS
	(pF)	НС	HCT	ONITS
$t_{\sf PHL}$	45		10	
t _{PLH}	15	9	10	ns
t _{PHZ} , t _{PLZ}	15	12	12	ns
t _{PZH} , t _{PZL}	15	12	13	ns
C_{PD}		53	55	pF
	t _{PLH} t _{PHZ} , t _{PLZ} t _{PZH} , t _{PZL}	t _{PHL} 15 t _{PHZ} , t _{PLZ} 15 t _{PZH} , t _{PZL} 15	t _{PHL} 15 9 t _{PHZ} , t _{PLZ} 15 12 t _{PZH} , t _{PZL} 15 12	tphL tphL HC HCT tphL 15 9 10 tphz, tplz 15 12 12 tpzh, tpzl 15 12 13

 $^{^{\}bullet}C_{PO}$ determines the no-load dynamic power consumption per channel. It is obtained by the following relationship: $P_D = V_{cc}^2 f_i (C_{PD} + C_L)$ where $f_i = \text{input frequency}$,


SWITCHING CHARACTERISTICS (Input t, t, = 6 ns, CL = 50 pF)


,		TEST						LIM	IITS						-
CHARACTERISTIC		CONDITION		25	°C		-4	0°C to	o +85°	°C	-55°C to +125°C]
CHANACIENIST		V _{cc}	Н	IC	H	CT	74	НС	74F	HCT	54	нс	54H	1CT	UNITS
		V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.]
Propagation Delay	t _{PLH}	2		110	_	_	_	140			_	165	_	T	
Data to Output	t_{PHL}	4.5	_	22	—	26	_	28	_	33	_	33		39	ns
		6	<u> </u>	19	_	_	_	24	_	_	_	28		_	
Propagation Delay	t_{PLZ}	2	T-	150	_	_	_	190		-		225		—.	
Output Disable		4.5	-	30	_	30	_	38		38	_	45		45	ns
to Output	t_{PHZ}	6	_	26	—.	_	_	33	_	l —	_	38		_	,
Propagation Delay	t _{PZL}	2	T -	150	_	_		190	_	_	_	225		_	
Output Enable		4.5	_	30	-	32		38		40	_	45	 	48	ns
to Output	tрzн	6	_	26	—	_	_	33	_			38	_	_	}
Output Transition	t_{TLH}	2	_	60		_		75	_	_	I —	90	_	_	
Time	t_{THL}	4.5		12	—	12	-	15	_	15	—	18		18	ns
		6	_	10			_	13		_	_	15	l —	-	
Input Capacitance	Cı		_	10		10	_	10	_	10	_	10	_	10	рF
3-State Output															
Capacitance	C _o	_	-	20	_	20		20		20	_	20	_	20	рF

C_L = output load capacitance, V_{CC} = supply voltage

Three-state propagation delay test circuit.

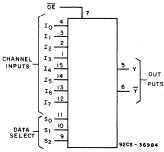

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _s	50% V _{CC}	1.3 V

Fig. 1 - Transition times and propagation delay times.

File Number 1489

Advance Information/ Preliminary Data

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

8-Input Multiplexer; 3-State

Type Features:

- Selects one of eight binary data inputs
- 3-state output capability
- True and complement outputs
- Typical (data to output) propagation delay of 14 ns @ V_{CC}=5 V, C_L=15 pF, T_A=+25° C

The RCA-CD54/74HC251 and CD54/74HCT251 are 8-channel digital multiplexers with 3-state outputs, fabricated with high-speed silicon-gate CMOS technology. Together with the low power consumption of standard CMOS integrated circuits, they possess the ability to drive 10 LSTTL loads. The 3-state feature makes them ideally suited for interfacing with bus lines in a bus-oriented system.

This multiplexer features both true (Y) and complement $\overline{(Y)}$ outputs as well as an output enable $\overline{(OE)}$ input. The \overline{OE} must be at a low logic level to enable this device. When the \overline{OE} input is high, both outputs are in the high-impedance state. When enabled, address information on the data select inputs determines which data input is routed to the Y and Y outputs. The CD54/74HCT251 logic family is speed, function, and pin-compatible with the standard 54LS/74LS251.

The CD54HC251 and CD54HCT251 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC251 and CD74HCT251 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:

 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5$ V

■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility VIL 0.8 V Max., VIH = 2 V Min. CMOS Input Compatibility I ≤ 1 µA @ Vol. VoH

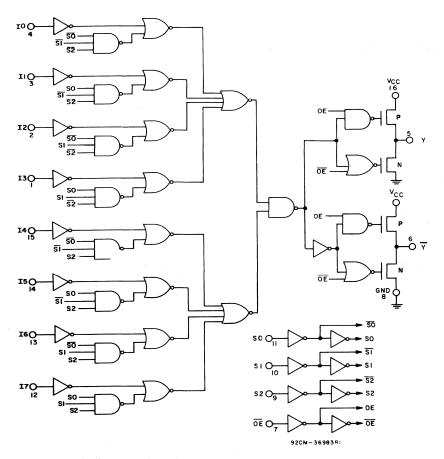


Fig. 3 - Logic diagram for HC/HCT251.

TRUTH TABLE

	II	OUTP	UTS			
	SELECT		ELECT OUTPUT			
\$2	S1	S0	CONTROL OE	•	•	
Х	X	X	Н	Z	Z	
L	L	L		10	10	
L	L	Н	L	!1	11	
L	Н	L	L	12	12	
L	Н	Н	L	lз	lз	
Н	Ĺ	L	L	14	14	
Н	L	Н	L	15	15	
Н	Н	L	L	16	16	
Н	н	Н	L	17	17	

H = high logic level

L = low logic level

X = irrelevant

Z = high impedance (off)

 I_0 , I_1 I_7 = the level of the respective input

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	±20mA
DC OUTPUT CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	-40 to +85° C
STORAGE TEMPERATURE (T _{stg})	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	UNITS	
CHARACTERISTIC	MIN.	MAX.	UNIIS
Supply-Voltage Range (For T _A =Full Package Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{in} , V _{out}	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times tr, tr			,
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

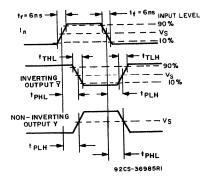
STATIC ELECTRICAL CHARACTERISTICS

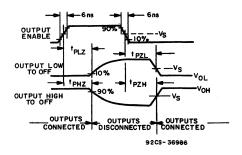
	CD74HC251/CD54HC251								CD74HCT251/CD54HCT251											
	CON	74HC/54HC 74HC TYPES TYPES				54HC TYPES		TEST CONDITIONS		74HCT/54HCT TYPES		74HCT TYPES		54HCT TYPES		UNITS				
CHARACTERISTIC	V,	l _o	V _{cc}		+25° C	;	-4 +85	0/ 5°C	-5 +12		٧. ٧	V _{cc}		+25° C	;	1	10/ 5° C		5/ 5°C	UNITS
	V	mA	٧	Min	Тур	Max	Min	Max	Min	Max		•	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5			4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	v
			6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35		1.35	-	to	-	_	0.8	-	0.8	-	0.8	V
			6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level	V_{IL}		2	1.9	_	_	1.9	_	1.9	_	ViL									
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	V
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v
5 TH	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	-	V _{IH}									
Low-Level	Vil		2	_	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage V _{OL}	or	0.02	4.5	-	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}										V _{IL}						ŀ			
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-		0.26	_	0.33	-	0.4	v
	V _{IH}	5.2	6	_	_	0.26		0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any Voltage									
Current I,	or		6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5	-	_	±0.1	-	±1	-	±1	μΑ
	Gnd										& Gnd						<u> </u>			
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	_	_	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current per input pin: 1 unit load Δ lcc*											V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ
3-State Leakage Current	V _{IL} or V _{IH}	V _o = V _{cc} or Gnd	6	_	_	±0.5	_	±5.0	_	±10	V _{IL} or V _{IH}	5.5	-	-	±0.5	-	±5.0	_	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
S0, S1, S2	0.55
10-17	0.5
ŌĒ	2.65


SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ Input } t_r, = t_l = 6 \text{ ns}$)


CHARACTERISTIC	SYMBOL	CL	TYP	ICAL	UNITS
OHAHAOTEMOTIC	STWIBOL	(pF)	HC	HCT	ONITS
Propagation Delay Select to Outputs	t _{PHL}	15	21	18	ns
Data to Outputs		15	12	12	ns
Enable to High-Z and Enable from High-Z	t _{PLZ} , t _{PHZ} t _{PZL} , t _{PZH}	15	11	12	ns
Power Dissipation Capacitance*	C _{PD}	T -	60	60	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per package. PD = $V_{CC}^2 f$, $(C_{PD} + C_L)$ where f_1 = input frequency C_L = output load capacitance V_{CC} = supply voltage

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, input t_r , = $t_f = 6 \text{ ns}$)

				25	°C		-4	0°C to	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	CT	74	нС	74F	ICT	54	нс	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	-	245	_	_	_	305	_	_	_	370	_	_	
Select to Ouputs	t _{PHL}	4.5		49		42		61	_	53	_	74		63	ns
		6		42		_		52	—	-	-	63			
Propagation Delay	t _{PLH}	2	_	175	_	_	_	220	-	_	_	265	_	_	
Data to Outputs	t _{PHL}	4.5	-	35	-	35	-	44	- 1	44	_	53		53	ns
		6	-	30	_		-	37	_		_	45		-	
Propagation Delay		2	_	140	_	-	-	175	_	Γ-	_	210	_	_	
Enable to High Z &	t _{PLZ} , t _{PHZ}	4.5	_	28		30		35		38	_	42		45	ns
Enable From High Z	t _{PZL} , t _{PZH}	6		24	_	_	_	30	-			36	_		
Output Transition	t _{TLH}	2	_	75		-		95		.—	_	110	_	_	
Time	t _{THL}	4.5	l – .	15	_	15		19		19	-	22	_	22	ns
		6	_	13		l —		16		l —		19			
Input Capacitance	Cı		_	10		10		10		10		10		10	pF
3-State Output				4.5		4-		4.5		4.5		1.5		1.5	
Capacitance	Со			15	_	15		15		15	_	15		15	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
V _s	50% V _{cc}	1.3 V

Fig. 1 - Transition times and propagation delay times.

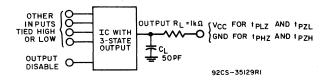
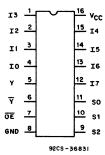
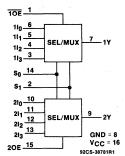




Fig. 2 - Three-state propagation delay test circuit.

TERMINAL ASSIGNMENT

High-Speed CMOS Logic

Dual 4-Input Multiplexer

Type Features:

- Common select inputs
- Separate output-enable inputs
- 3-state outputs

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC253 and CD54/74HCT253 are dual 4-to-1 line selector/multiplexers having 3-state outputs. One of four sources for each section is selected by the common select inputs, S0 and S1. When the output enable (10E or 20E) is HIGH, the output is in the high-impedance state.

The CD54HC253 and CD54HCT253 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC253 and CD74HCT253 are in 16-lead dual-in-line plastic packages (E suffix), also in 16-lead dual-in-line surface mount plastic packages (M suffix). These types are also available in chip form (H suffix).

TRUTH TABLE

1	ect outs		Data	Inputs	Output Enable	Output	
S 1	SO	lo	l ₁	l ₂	l ₃	ŌĒ	Υ
Х	Х	X	Х	Х	X	Н	Z
L	L	L	Х	X	Х	L	L
L	L	Н	Χ	X	Χ	L	Н
L	Н	Х	L	Х	Х	L	L
L	Н	Х	Н	Χ	Х	L	н
Н	L	X	X	L	Х	L	L
Н	L	X	X	Н	Х] L	Н
Н	Н	Х	X	X	L	L	L
H	Н	Х	X	Х	Н	L	н

Select inputs S0 and S1 are common to both sections. H = high level, L = low level, X = irrelevant, Z = high impedance (off).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}=30%, N_{IH}=30% of V_{CC}; @ Vcc=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility VIL=0.8 V max., VIH=2 V min. CMOS input compatibility $I_1 \leq 1 \mu A @ V_{OL}, V_{OH}$

16 VCC 10E 15 20E S₁ 14 S₀ 113 13 2l3 112 12 21₂ 11 211 110 1Y 10 210 GND

TERMINAL ASSIGNMENT

92CS-36832B1

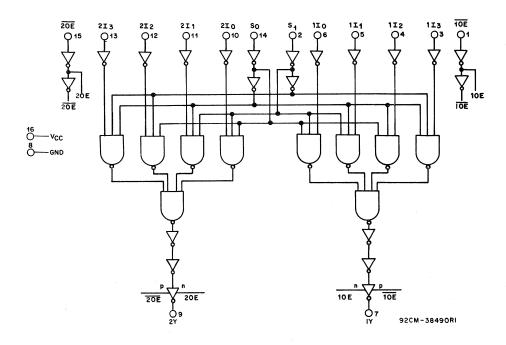


Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} +0.5 \text{ V}$)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Voc +0.5 V)	±35 mA
DC Vcc OR GROUND CURRENT, (Icc)	±70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stq})	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s max.	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C
man extend a comment of the confidence of the co	

STATIC ELECTRICAL CHARACTERISTICS

				CD	74HC	253/0	D54	HC25	3				CD74	4HCT	253/C	D54H	ICT25	i 3			
		TEST CONDITIONS			74HC/54HC 74H TYPES TYP				54I TY		TEST		1	CT/54 TYPE		74F		54H			
CHARACTERISTI	С	V,	lo	Vcc	-	∙25° C		-4 +85		-5 +12		V,	Vcc		+25° C	:	1	0/ i°C	-5 +12		UNITS
		V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	Ξ	_	1.5	_	1.5	_		4.5								
Input Voltage	VIH			4.5	3.15	_	_	3.15	_	3.15	_		to	2	-	-	2	-	2	-	V
		ļ	<u> </u>	6	4.2	_	_	4.2	_	4.2			5.5								
Low-Level				2	_	_	0.5	<u> </u>	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	<u> </u>	_	1.35	_	1.35	_	1.35	^ _	to	-	-	0.8	-	0.8	-	0.8	٧
				6	<u> </u>	_	1.8	_	1.8	_	1.8		5.5			L	<u> </u>	<u> </u>			
High-Level		VIL		2	1.9	<u> </u>	<u> </u>	1.9		1.9	<u> -</u>	VIL									
Output Voltage	V_{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads		ViH	<u> </u>	6	5.9	_	_	5.9		5.9	_	V _{tH}					<u> </u>	ļ			
		VIL										VIL					1				
TTL Loads		or	-6	4.5	3.98	_	_	3.84	_	3.7		or	4.5	3.98	-	-	3.84	-	3.7	-	٧
Bus Driver		V _{IH}	-7.8	6	5.48		_	5.34	_	5.2		ViH				<u> </u>			<u> </u>		
Low-Level		VIL		2	_	_	0.1	_	0.1		0.1	VIL									
Output Voltage	Vol	or	0.02	4.5	_	_	0.1		0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	v
CMOS Loads		V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
		VIL										VIL									
TTL Loads		or	6	4.5	_	_	0.26	_ ;	0.33	_	0.4	or	4.5	-	-	0.26	_	0.33	-	0.4	٧
Bus Driver		V _{IH}	7.8	6	_	_	0.26	_	0.33	_	0.4	ViH									
Input Leakage Current	l,	V _∞ or Gnd		6		_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	_	_	±0.1	-	±1	_	±1	μΑ
Quiescent Device Current	lcc	V _{cc} or Gnd	0	6	_	_	8		80	_	160	V _{cc} or Gnd	5.5	_		8	1-	80		160	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load	Δl _{cc} *											V _{cc} -2.1	4.5 to .5.5	-	100	360	_	450	_	490	μΑ
3-State Leakage Current	loz	V _{IL} or V _{IH}	Vo= Vcc or Gnd	6	_	_	±0.5	-	±5		±10	V _{IL} or V _{IH}	5.5	-	-	±0.5	-	±5	-	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
110-113, 210-213	0.4
1E ₀ , 2E ₀ , S ₀ , S ₁	1

^{*}Unit Load is Δ I_{CC} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIF	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} :*			
CD54/74HC Types	2	6	l v
CD54/74HCT Types	4.5	5.5	\ \ \
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	
Input Rise and Fall Times, t,,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25° C, Input tr,tr=6 ns)

CHARACTERISTIC	CL	SYMBOL	1	ICAL UES	UNITS
	pF		НС	HCT	
Propagation Delay					
Select to Outputs	15	t _{PHL}	14	16	
Data to Outputs		t _{PLH}			ns
Output Enabling Time	15	t _{PZL} , t _{PZH}	9	12	
Output Disabling Time	15	t _{PLZ} , t _{PHZ}	12	12	
Power Dissipation Capacitance*		C _{PD}	46	52	pF

^{*}CPD is used to determine the dynamic power consumption, per multiplexer.

P_D=V_{CC}² fi (C_{PD} + C_L) where: fi=input frequency C_L=load capacitance

V_{cc}=supply voltage

SWITCHING CHARACTERISTICS (C_L=50 pF, Input t_r,t_f=6 ns)

				25	°C		-4	0°C to	o +85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	Н	C	H	СТ	74	НС	74F	ICT	54	нС	54H	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	175		_	_	220		_	_	265	-	_	
Select to Outputs	t _{PHL}	4.5	-	35	_	40	_	44	_	50	_	53		60	
	-	6	_	30	_	_		37	l —		_	45			
Propagation Delay	t _{PLH}	2	_	175	_	_	_	220	_	_		265		_	
Data to Outputs	t _{PHL}	4.5	_	35	_	38	_	44	_	48	_	53		57	
		6		30	_	_	l —	37	_	_		45		-	ns
Disable Delay	t _{PHZ}	2	_	150	_	_		190		T	_	225	-	_	113
Times	t _{PLZ}	4.5		30		30		38	_	38		45	_	45	
		6	-	26	_	_	-	33	_	_	_	38			
Enable Delay	t _{PZH}	2	_	110	_			140	_	_	I —	165	_	T -	1
Times	t _{PZL}	4.5	_	22	_	30		28	_	38	_	33		45	ns
		6		19	_	_	_	24	_	-		28	_	_	
Output Transition	t _{TLH}	2	_	60	_	_		75	_	_	_	90	I	T	
Time	t _{THL}	4.5	_	12	-	12	-	15		15	_	18	_	18	
		6	_	10	_	_	_	13	_	l –	_	15		_	
Input Capacitance	C _I	T —		10	_	10		10		10		10		10	
3-State Output	Co	_	T -	20	_	20	_	20	_	20		20		20	pF
Capacitance															

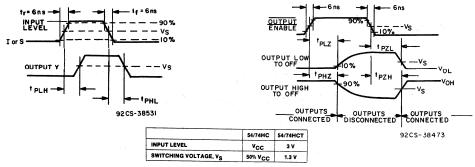


Fig. 2 - Transition and propagation delay times.

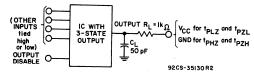
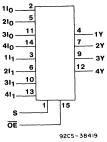
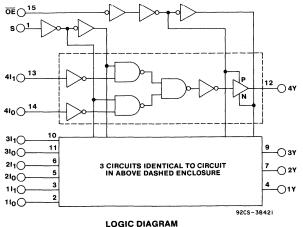



Fig. 3 - Three-state propagation delay test circuit.

High-Speed CMOS Logic

Quad 2-Input Multiplexer with 3-State Non-Inverting Outputs

Type Features:


- Buffered Inputs
- Typical Propagation Delay (In to Output) = 12 ns @ V_{CC} = 5v, C_L = 15pF, T_A = 25° C

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC257 and CD54/74HCT257 are quad 2-input multiplexers which select four bits of data from two sources under the control of a common Select input (S). The Output Enable input (OE) is active LOW. When OE is HIGH, all of the outputs (1Y-4Y) are in the high impedance state regardless of all other input conditions.

Moving data from two groups of registers to four common output busses is a common use of the 257. The state of the Select input determines the particular register from which the data comes. It can also be used as a function generator.

The CD54HC257 and CD54HCT257 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC257 and CD74HCT257 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 - 2 to 6 V Operation
 - High Noise Immunity: $N_{\text{IL}}=30\%$, $N_{\text{IH}}=30\%$ of V_{CC}
 - @ $V_{cc} = 5 V$
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - $V_{\rm IL} = 0.8 \text{ V Max.}, V_{\rm IH} = 2 \text{ V Min.}$
 - CMOS Input Compatibility
 - $I_1 \leq 1 \,\mu A \oplus V_{OL}, V_{OH}$

FUNCTION TABLE

Output Enable	Select Input		ata outs	Output
ŌĒ	S	10	11	Υ
Н	Х	Х	Х	Z
L	L	L	X	L
L	L	H	Х	н
L	н	X	L	L
L	Н	X	Н	Н

H = High level voltage

L = Low level voltage

Z = High impedance (off) state.

X = Don't care

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} + 0.5 \text{V}$)	±20mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±35mA
DC Vcc OR GROUND CURRENT (Icc)	±70mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	NITS	LINUTO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	
Input Rise and Fall Times t _r , t _f			-:-
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

		c	D74H	C257	/CD54	HC2	57			CD74HCT257/CD54HCT257										
		TEST IDITIONS			HC/54 SERIE		74i SER		54I SER		TEST CONDITIO		:	CT/54 ERIE		74H SER		54H SER	ICT IIES	UNITS
CHARACTERISTIC	V,	I _o V _{cc}			+25°C		-40/ +85°C		-5 +12!		V, V _{cc}				+25°C		0/ 5° C	-55/ +125°C		UNITS
	•			Min	Тур	Max	Min	Max	Min	Max			Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	-	1.5	_	1.5	-		4.5				-				
Input Voltage V _{IH}			4.5	3.15	_	T-	3.15	_	3.15	-	-	to	2	-	-	2	-	2	-	٧
			6	4.2	_	-	4.2	_	4.2	_		5.5						İ		
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35		1.35	_	1.35	-	to	-	_	0.8	-	0.8	-	0.8	٧
		j	6	_	-	1.8	_	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	_	1.9	-	1.9	_	V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	<u> </u>	4.4	_	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	-	V _{IH}									
	V _{IL}									-	V _{IL}									/
TTL Loads	or	-6	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	V
(Bus Driver)	V _{IH}	-7.8	6	5.48		_	5.34	_	5.2	_	V _{IH}									
Low-Level	V _{IL}		2	_	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage V _{OL}	or	0.02	4.5		_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	٧
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}										V _{IL}									· .
TTL Loads	or	6	4.5		_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
(Bus Driver)	V _{iH}	7.8	6	_	_	0.26	_	0.33	_	0.4	V _{IH}		<u>.</u>							
Input Leakage	V _{cc}										Any Voltage									
Current I _i	or	-	6	-	-	±0.1	_	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd										& Gnd			<u> </u>	<u> </u>			<u> </u>	L	
Quiescent	V _{cc}										Vcc									
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Current I _{cc}	Gnd				<u> </u>						Gnd									
Additional Quiescent Device Current per input pin: 1 unit load	·										V _{cc} -2.1	4.5 to 5.5	-	100	360	-	450	_	490	μΑ
3-State	V _{IL}	V _o = V _{cc}			<u> </u>	Π					V _{IL}		1							
leakage	or	or	6	_	_	±0.5	_	±5	_	±10	or	5.5	_	_	±0.5	_	±5	_	±10	μΑ
current loz	V _{IH}	Gnd									V _{IH}									

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

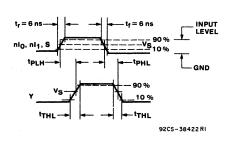
Input	Unit Loads*
Data	0.95
S	3
ŌE	0.6

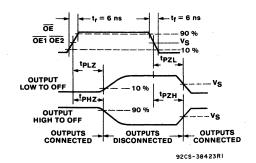
^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t = 6 ns)

CHARACTERISTIC		CL	SYMBOL	TYP	ICAL	UNITS
		(pF)	SIMBOL	HC	HCT	ONTO
nl ₀ , nl ₁ , to Y		15	t _{PHL} t _{PLH}	12	13	ns
ŌĒ to Y		15	t _{PZL} t _{PZH} t _{PLZ} t _{PHZ}	12	12	ns
S to Y		15	t _{PHL}	14	16	ns
Power Dissipation (Capacitance*	_	C _{PD}	45	45	pF

*C_{PO} is used to determine the dynamic power consumption, per multiplexer.

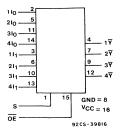

 $PD=V_{CC}^{2}$ fi $(C_{PD}+C_{L})$ where fi=input frequency


C_L = output load capacitance

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, tr = 6 ns)

				25	°C		-4	0°C to	o +85°	,C	-5	5°C to	+125	°C	T
CHARACTERISTIC	SYMBOL	Vcc	Н	IC	Н	CT	74	НС	74F	ICT	54	HC	54F	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		150	_	_	_	190	_		I —	225	—	T	
In to Y	t _{PHL}	4.5	1	30	_	33	—	38	_	41	-	45	_	50	ns
(Fig. 2)		6		26	_	_	_	33	_		_	38	 	_	
Propagation Delay		2	T	175	_	_	—	220	_	_		265	_	_	
S to Y	t _{PLH}	4.5		35		38		44	-	48	_	53		57	ns
(Fig. 2)	t _{PHL}	6	-	30	-			37	l —	_	_	45	_	-	
Propagation Delay	t _{PLZ}	2		150				190				225			
OE to Y	t _{PZL}	4.5	l	30	l _	30		38	_	38	_	45		45	ns
(Fig. 3)	t _{PHZ}	6	_	26	_	_		33	_	-	_	38	_	-	113
	t _{PZH}		ļ	ļ	ļ				ļ			L	ļ	<u> </u>	
Output Transition	t _{TLH}	2	-	60		-	_	75	_	-	_	90		_	
Time	t _{THL}	4.5	-	12	_	12	-	15	—	15	_	18	-	18	ns
(Fig. 2)	TIFLE	6		10	_			13				15			
Input	C _i			10		10		10		10		10		10	pF
Capacitance	Ci			10	-	10	_	10	_	10	_	10		10	PΓ
3-State Output	C。			20		20		20		20		20		20	nE.
Capacitance	U ₀ 1			20	_	20	_	20	_	20	-	20	_	20	pF



	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, Vs	50% V _{CC}	1.3 V

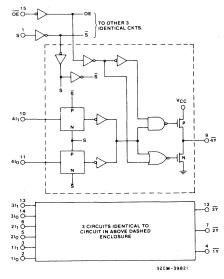
Fig. 2 - Inputs or select to output propagation delays and output transition times.

Fig. 3 - Output Enable to output propagation delays.

High-Speed CMOS Logic

Quad 2-Input Multiplexer with 3-State Inverting Outputs

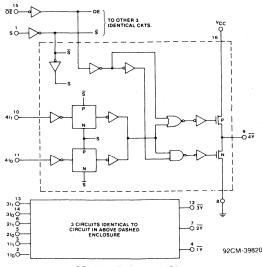
Type Features:


- Buffered inputs
- Typical CD54/74HC258 propagation delay = 7 ns @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC258 and CD54/74HCT258 are quad 2-input multiplexers which select four bits of data from two sources under the control of a common Select input (S). The Output Enable input $(\overline{\text{OE}})$ is active LOW. When $\overline{\text{OE}}$ is HIGH, all of the outputs $(\overline{\text{TY-4Y}})$ are in the high impedance state regardless of all other input conditions.

Moving data from two groups of registers to four common output busses is a common use of the 258. The state of the Select input determines the particular register from which the data comes. It can also be used as a function generator.


The CD54HC/HCT258 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT258 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

CD54/74HC258 Logic Diagram

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/HCU: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:
 - $N_{\rm IL}$ = 30%, $N_{\rm IH}$ = 30% of $V_{\rm CC}$; @ $V_{\rm CC}$ = 5V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL} V_{OH}

CD54/74HCT258 Logic Diagram

MAXIMUM RATINGS, Absolute-Maximum Values:

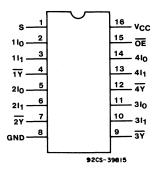
DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±35mA
DC Vcc OR GROUND CURRENT (Icc)	±70mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII	VIITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNIIS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.


FUNCTION TABLE

Output Enable	Select Input		ata outs	Output
ŌĒ	S	lo	11	Ÿ
Н	Х	Х	Х	Z
L	L	L	Х	Н
L	L	Н	х	L
L	н	X	L	Н
L	н	×	н	L

H = High level voltage

L = Low level voltage

X = Don't care.
Z = High impedance (off) state

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

		c	D74H	IC258	/CD5	4HC2	58					CE	74HC	T258	/CD54	нст	258			
CHARACTERISTIC	co	TEST NDITIONS			HC/54		1	HC PE	-			4HCT/54HCT 74HCT TYPES TYPE		54HCT TYPE		UNITS				
CHARACTERISTIC	V, V	I _o	V _{cc}		+25° C	;		0/ 5°C	-5 +12	5/ 5° C	V, V	V _{cc}		+25° C	;		0/ 5° C	-5 +12	5/ 5° C	UNIIS
				Min	Тур	Max	Min	Max	Min	Max		-	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	-	_	3.15	_	3.15	_	-	to	2	-	-	2	_	2	_	v
			6	4.2	_	_	4.2	_	4.2	_]	5.5								
Low-Level			2		_	0.5		0.5		0.5		4.5								
Input Voltage V _{IL}			4.5	-	_	1.35	-	1.35	-	1.35	_	to	-	_	0.8	-	0.8	-	0.8	V.
			6	-	_	1.8	-	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	-	1.9	-	1.9	_	VIL									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	-	or	4.5	4.4	-		4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9		V _{IH}									
	VIL				-						V _{IL}									
TTL Loads	or	-6	4.5	3.98	_	_	3.84	_	3.7	1	or	4.5	3.98	-	-	3.84	-	3.7	- ·	V
(Bus Driver)	V _{IH}	-7.8	6	5.48		_	5.34	_	5.2	_	V _{iH}	, , , , , , , , , , , ,								
Low-Level	V _{IL}		2	_	_	0.1		0.1	_	0.1	V _{IL}									
Output Voltage Vol.	or	0.02	4.5	_	_	0.1	-	0.1	_	0.1	or	4.5	-	-	0.1	_	0.1	-	0.1	V
CMOS Loads	V _{IH}	L	6	_	_	0.1		0.1	_	0.1	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	6	4.5	_	_	0.26	-	0.33	_	0.4	or	4.5	_	-	0.26	_	0.33	-	0.4	٧ ,
(Bus Driver)	V _{IH}	7.8	6	_	_	0.26	-	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any Voltage									٠
Current I,	or		6	_	-	±0.1	_	±1	_	±1	Between	5.5	_	-	±0.1	_	±1	-	±1	μΑ
	Gnd										V _{cc} & Grid									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	-	-	8	_	80	-	160	or	5.5	-	-	8	_	80	-	160	μΑ
Current I _{cc}	Gnd	<u></u>			L		l 		L		Gnd									
Additional Quiescent Device Current per input pin:											V _{cc} -2.1	4.5 to 5.5		100	360	-	450	-	490	μΑ
1 unit load ΔI _{cc} * 3-State	V _{IL}	V _o = V _{cc}									V _{iL}	0.0				-		-		
leakage	or	or	6	_ !	_	±0.5	_	±5	_	±10	or	5.5	_	_	±0.5	_	±5	_	±10	μΑ
current loz	V _{IH}	Gnd	-								V _{IH}	3.0			_5.5					,,,,,
	· • IH	Ju		L							. ¥IH									

^{*}For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{cc} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
Data	0.5
S	1.5
ŌĒ	1.5

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns)

	CHARACTERISTIC				CL	TYP	ICAL	UNITS
	OHA	TAO I ENIOTI	-		(pF)	HC	HCT	UNITS
nl _o , nl _i , to ⁵	₹			t _{PHL} t _{PLH}	15	7	11	ns
				t _{PZL} t _{PZH}				
OE to Y					15	11	11	ns
				t_{PLZ} t_{PHZ}	15	12	12	ns
S to ₹				t _{PHL} t _{PLH}	15	11	14	ns
Power Diss	sipation Capacitance*			C_{PD}	-	49	49	pF

* C_{PD} is used to determine the dynamic power consumption, per multiplexer. $P_D = V_{CC}$ if $(C_{PD} + C_L)$ where: if i input frequency C_L = output load capacitance V_{CC} = supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r, t_f = 6 ns)

		T	T	25	°C			10°C t	0 ±85°		- 5	5°C to	1125	°C	Γ
CHARACTERISTIC		V _{cc}	-	IC		CT		HC		HCT		HC	,	HCT	UNITS
OTTATIA DE LITTO		▼ CC	Min.	_		Max.		Max.	-			Max.			UNITS
Propagation Delay,	t _{PLH}	2	T	95	_	_	_	120		IVICA.	_	145	_	-	
nl_0 , nl_1 , to \overline{Y}	t _{PHL}	4.5	_	19	_	27	_	24		34		29		41	ns
(Fig. 2)		6	_	15	_	l _	_	20	_	_		25	_	_	
Propagation Delay		2	1-	140	_		_	175	_		_	210	_	_	
S to Y	t _{PLH}	4.5	-	28	_	34	_	35	_	43		42	_	51	ns
(Fig. 3)	t _{PHL}	6		24	_	_	_	30	_		_	36	_	-	
Propagation Delay		2	T-	140	_	_	_	175	_	_	_	210	_	_	
OE to Y	t_{PZL}	4.5	-	28	_	28	_	35	_	35	_	42	_	42	ns
(Fig. 4)	t_{PZH}	6	-	24	_	l —	_	30	_	_	_	36	_	_	
Propagation Delay	t _{PLZ}	2		150	_	_		190	_	_	_	225	_	_	
OE to Y		4.5		30	l —	30	_	38	l —	38	_	45	l —	45	ns
(Fig. 4)	t _{PHZ}	6	-	26	l —	l –		33	_	_	l —	38	_		-
Output Transition	t _{TLH}	2	_	60		_	_	75	_	_		90	_	_	
Time	t_{THL}	4.5	_	12	_	12		15	_	15	_	18	_	18	ns
(Fig. 2)		6	_	10	_	_	_	13	_		_	15		_	
Input				10		10		10		10		10		40	
Capacitance	Cı		-	10	_	10	_	10	-	10	_	10	_	10	pF
3-State Output				20		20		20		00		00		00	
Capacitance	Co		_	20	_	20	_	20	_	20	_	20	_	20	pF

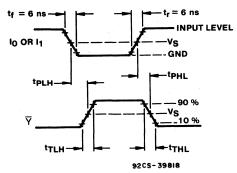


Fig. 2 - Select to output delays.

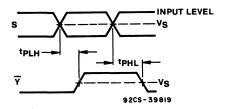


Fig. 3 - Select to output propagation delays.

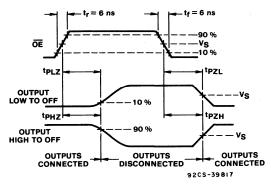
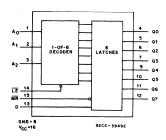



Fig. 4 - Output Enable to output propagation delays.

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, Vs	50% V _{CC}	1.3 V

High-Speed CMOS Logic

8-Bit Addressable Latch

Type Features:

- Buffered inputs and outputs
- Four operating modes
- Typical propagation delay of 15 ns @ $V_{CC} = 5 V$, $C_L = 15 pF$, $T_A = +25^{\circ}C$

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC259 and CD54/74HCT259 Addressable Latch features the low-power consumption associated with CMOS circuitry and has speeds comparable to lowpower Schottky.

This latch has three active modes and one reset mode. When both the Latch Enable (\overline{LE}) and Master Reset (\overline{MR}) inputs are low (8-line Demultiplexer mode) the output of the addressed latch follows the Data input and all other outputs are forced low. When both \overline{MR} and \overline{LE} are high (Memory Mode), all outputs are isolated from the Data input, i.e., all latches hold the last data presented before the \overline{LE} transition from low to high. A condition of \overline{LE} low and \overline{MR} high (Addressable Latch mode) allows the addressed latch's output to follow the data input; all other latches are unaffected. The Reset mode (all outputs low) results when \overline{LE} is high and \overline{MR} is low.

The CD54HC259 and CD54HCT259 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC259 and CD74HCT259 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads
- Bus driver outputs 15 LSTTL loads Wide operating temperature range: CD74HC/HCT: -40 to +85°C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V min. CMOS input compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i $<$ -0.5 V OR V_i $>$ V_{CC} +0.5 V) $\ldots \ldots \ldots$	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC}$ +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT (Icc)	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For $T_A = -40$ to $+70$ °C (PACKAGE TYPE M)	
For $T_A = +70$ to $+125$ °C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE DANGE (T.)	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	265° C
Unit inserted into a PC board (min. thickness 1/16 in., 1.59 mm) with solder contacting	

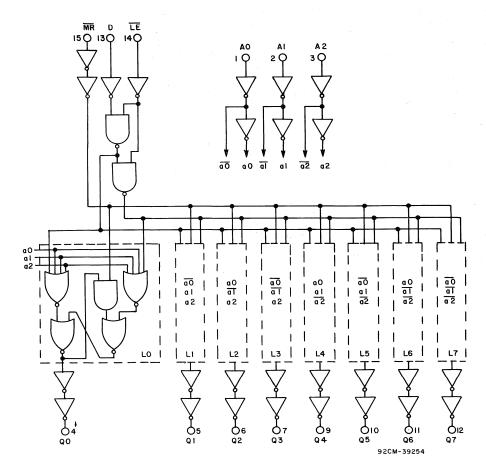


Fig. 1 - Logic diagram.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIM	ITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply Voltage Range (For T _A = Full Package Temperature Range) V _{CC} : *	 		
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A :			7
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t, t			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*} Unless otherwise specified, all voltages are referenced to Ground.

TRUTH TABLE

INP	UTS			_
MR	LE	Output of Address Latch	Each Other Output	Function
Н	L	D	Q_{io}	Addressable Latch
Н	Н	Q _{io}	Q _{io}	Memory
L	L	D	L	8-Line Demultiplexer
L	Н	L	L	Reset

H = High level

L = Low level

LATCH SELECTION TABLE

S	elect Inp	uts	Latch
A2	A1	A0	Addressed
L	L	L	0
L	L	н	1
L	Н	L	2
L	н	н	3
Н	L	L	4
Н	L	Н	5
H	Н	L	6
H	Н	н	7

D = The level at the data input

 $[\]mathbf{Q}_{io}$ = The level of \mathbf{Q}_{i} (i = 0, 1...7, as appropriate) before the indicated steady-state input conditions were established.

STATIC ELECTRICAL CHARACTERISTICS

				CD7	4HC2	59, C	D54H	C259		-			CD7	4нст	259, (CD54	нст2	:59				
3		I	TEST CONDITIONS			74HC/54HC TYPES			74HC 54HC TYPES TYPES			TEST CONDITIONS		74HCT/54HCT TYPES				ICT PES	54HCT TYPES			
CHARACTERIS	TIC	Vı	l _o	Vcc		•25° C	;	-4 +85		-5 +12!	5/ 5°C	V,	V _{cc}		+25° C	;		0/ 5° C	1	5/ 5° C	UNITS	
		V	mA	v	Min	Тур	Max	Min	Max	Min	Max	V	v	Min	Тур	Max	Min	Max	Min	Max		
High-Level				2	1.5	_	-	1.5	_	1.5			4.5									
Input Voltage	V_{IH}	1		4.5	3.15	_		3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	٧	
				6	4.2	_		4.2	_	4.2	_		5.5	<u> </u>								
Low-Level			1	2	_	_	0.5		0.5		0.5		4.5	Ì	İ		l	l	1	1		
Input Voltage	V_{1L}		l	4.5	_	_	1.35		1.35	_	1.35	-	to	-	-	0.8	-	0.8	-	0.8	V	
				6	<u> </u>	_	1.8	_	1.8	_	1.8		5.5	<u> </u>								
High-Level		VIL	1	2	1.9	_	_	1.9	_	1.9	_	VIL	l	1	İ		1	1	(
Output Voltage	VoH	or	-0.02	4.5	4.4	_	<u> -</u>	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	٧	
CMOS Loads		V _{IH}		6	5.9	_	ᄂ	5.9		5.9	_	V _{IH}			<u> </u>		<u>L</u>	<u> </u>				
		VIL							L			VIL							1			
TTL Loads		or	-4	4.5	3.98	_	_	3.84		3.7		or	4.5	3.98	-	-	3.84	-	3.7	-	٧	
		V _{IH}	-5.2	6	5.48	_	_	5.34		5.2	_	V _{iH}		<u> </u>			L	<u> </u>	<u> </u>			
Low-Level		VIL		2	_	-	0.1	_	0.1	_	0.1	VIL					1	ļ	ļ			
Output Voltage	V_{OL}	or	0.02	4.5	_	_	0.1		0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	٧	
CMOS Loads		V _{IH}		6		_	0.1	_	0.1	_	0.1	V _{IH}		<u> </u>			<u> </u>	<u> </u>	<u> </u>			
		V _{IL}					L					VIL				1	ļ	l	}			
TTL Loads		or	4	4.5	<u> </u>	_	0.26		0.33	_	0.4	or	4.5	-	-	0.26		0.33		0.4	٧	
		V _{IH}	5.2	6		_	0.26	_	0.33	_	0.4	V _{IH}		<u> </u>		L	L	<u> </u>				
Input Leakage		Vcc	l									Any					-		ł			
Current	h	or	1	6	_	-	±0.1	_	±1	_	±1	Voltage	5.5	_	_	±0.1	_	±1	_	±1	μΑ	
		Gnd	1									Between		1	1						,	
		 	-	-		<u> </u>		<u> </u>	<u> </u>	<u> </u>	-	V _{cc} & Gnd	<u> </u>	├		-	 	├-	├	├		
Quiescent		Vcc									400	Vcc								100		
Device Current	lcc	or Gnd	0	6	_	-	8	-	80	_	160	or Gnd	5.5	-	-	8	_	80	-	160	μΑ	
Additional		Gnd	Ц			L	<u> </u>	L	Ĺ		L	Gnu		-	-	-	├	-	-	├-		
Quiescent Device													4.5					}			·	
												V _{cc} -2.1	to	-	100	360	—	450	-	490	μΑ	
Current per input pin: 1 unit load	Δlcc*												5.5					}				
pin. I unit load	ΔICC.												L		L	L	L	L	L			

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads *
A0-A2, LE	1.5
D	1.2
MR	0.75

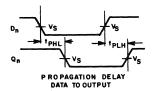
^{*} Unit Load is Δl_{cc} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

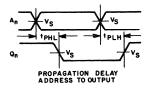
SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input t, ti=6 ns)

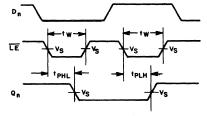
1					C _L	TYP	ICAL	
CHARACTERISTIC					(pF)	HC	нст	UNITS
Propagation Delay D to Q	/			t _{PLH} t _{PHL}	15	15	16	ns
LE to Q		1			1	14	16	ns
A to Q					1	15	17	ns
MR to Q		1 2			15	13	16	ns
Power Dissipation Ca	pacitano	e*		C _{PD}	-	21	22	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD}V_{CC}^2 f_i + \sum C_L V_{CC}^2 f_o$ where f_i = input frequency, f_o = output frequency,

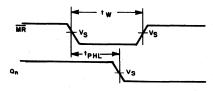

 C_L = output load capacitance, V_{CC} = supply voltage.


PRE-REQUISITE FOR SWITCHING FUNCTION


								LIM	IITS						
CHARACTER	NOTIO	TEST		25	°C		-4	0°C to	o +85°	c	-5	5°C to	+125	°C	UNITS
CHARACTER	astic	CONDITION	Н	C	н	СТ	741	нС	74F	ICT	54	нс	54F	ICT	UNITS
		V _{cc}	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Pulse Width	twL	2	70	_	_	-	90	_	-	-	105	-	_		
LE		4.5	14	-	18	-	18	-	23	_	21	-	27	-	ns
		6	12	_			15	_			18				
		2	70	-	_	_	90	-	-	_	105	-	_	_	
MR	twL	4.5	14	-	18		18	-	23	_	21	-	27	-	ns
		6	12		_		15				18				
Set-up Time	tsu	2	80	-	_	-	100	-	-	_	120	-	_	_	
D to LE		4.5	16	-	17	-	20		21	-	24	-	26	-	ns
		6	14	_			17				20				
		2	80	-	_	-	100	-	_	_	120		_	_	
A to LE	tsu	4.5	16	-	17	-	20	-	21	-	24	-	26	-	ns
		6	14				17	<u> </u>		_	20	_		_	
Hold Time	tн	2	0	_	_	-	0	_	_	_	0	_	_	_	
D to LE		4.5	0	-	0	-	. 0	-	0	-	0	-	0	-	ns
		6	0	<u> </u>		_	0			_	0				
		2	0	-	_	-	0	-	_	-	0	_	_	_	
A to LE	t _H	4.5	0	-	0	_	0	—	0	-	0	-	0	-	ns
100		6	0	l –	,—	_	0	-		-	0	_	l —	L	1

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r , t_f = 6 ns)

			LIMITS													
011474075710	T IO	TEST		25	°C		-4	0°C to	o +85°	,C	-5	UNITS				
CHARACTERIS	TIC	CONDITION	н	C	HCT 74HC 74HCT 54HC 54HC		54HC		ICT	UNITS						
		V _{cc} V	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Propagation	t _{PLH}	2	T-	185	_	_	_	230	_	_	_	280	_	_		
Delay	t _{PHL}	4.5	_	37	_	39	-	46	_	49	_	56		59	ns	
D to Q		6		31		_		39				48				
		2	-	170	-	_	_	215	_			255	_	_		
LE to Q		4.5	_	34	-	38	-	43	-	48	-	51	-	57	ns	
		6	_	29	-		_	37	_	_	-	43	_	<u> </u>		
		2	_	185		_	-	230	_	_	_	280	_	_		
A to Q		4.5	-	37		41	—	46	-	51	_	56		61	ns	
		6		31	_	_	_	39	_	_	_	48	_	_		
		2	_	155	-	_	_	195	_	-	_	235	_	_		
MR to Q		4.5	_	31		39		39	-	49		47		59	ns	
		6	_	26		_	-	33	_	_	_	40	_	_		
Output	t _{TLH}	2	-	75	_	_	-	95	_	_	_	110	_	_		
Transition	t _{THL}	4.5	-	15	_	15		19	-	19	-	22	-	22	ns	
Time		6	_	13		_	_	16	_	_		19	_			
Input	Cı															
Capacitance			_	10	_	10	_	10	-	10	-	10	_	10	pF	



LATCH ENABLE PULSE WIDTH AND LATCH ENABLE TO OUTPUT PROPAGATION DELAY

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, V _s	50% V _{cc}	1.3 V

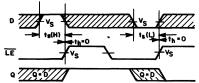

92CM-39256RI

Fig. 2 - AC Waveforms.

MR TO OUTPUT DELAY AND MR PULSE WIDTH

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

DATA SETUP AND HOLD TIMES

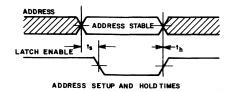
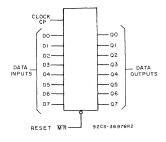



Fig. 3 - AC Waveforms.

92CM-39259RI

High-Speed CMOS Logic

Octal D Flip-Flop with Reset

Type Features:

- Common clock and asynchronous master reset
- Positive-edge triggering
- Buffered inputs
- Typical $f_{\text{max}} = 60 \text{ MHz}$ @ $V_{\text{CC}} = 5 \text{ V}$, $C_{\text{L}} = 15 \text{pF}$, $T_{\text{A}} = 25^{\circ} \text{ C}$

FUNCTIONAL DIAGRAM

The RCA CD54/74HC273 and the CD54/74HCT273 high speed Octal D-Type Filp-Flops with a direct clear input are manufactured with silicon-gate CMOS technology. They possess the low power consumption of standard CMOS integrated circuits.

Information at the D input is transferred to the Q outputs on the positive-going edge of the clock pulse. All eight Flip-Flops are controlled by a common clock (CP) and a common reset (\overline{MR}). Resetting is accomplished by a low voltage level independent of the clock. All eight Q outputs are reset to a logic 0.

The CD54HC273 and CD54HCT273 are supplied in 20-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC273 and CD74HCT273 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH}= 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

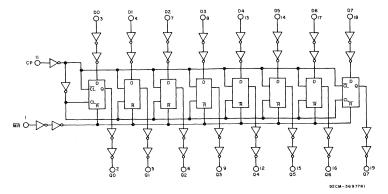


Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

(Voltages referenced to ground)0.5 to +7	7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5 V	nΑ
DC OUTPUT DIODE CURRENT, l_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5 V	nΑ
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Voc +0.5 V)	nA -
DC V _{CC} OR GROUND CURRENT, PER PIN (I _{CC}):	nΑ
POWER DISSIPATION PER PACKAGE (P₀):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	ıW
For T _A = +60 to +85°C (PACKAGE TYPE E)	ıW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	ıW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	ηW
For T _A = -40 to +70°C (PACKAGE TYPE M)	nW
For T _A = +70 to +125°C (PACKAGE TYPE M)	nW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	°C
PACKAGE TYPE E, M	°C
STORAGE TEMPERATURE (T _{sto}) -65 to +150 th	°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s max. +265	°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only +300	°C

TRUTH TABLE (EACH FLIP-FLOP)

	INPUTS		OUTPUT
R <u>ESE</u> T (MR)	CLOCK CP	DATA Dn	Q
L.	х	х	L
н	~	н	н
н	~	L	L
Н	L	X	Qo

H = High Level (Steady State)

L = Low Level (Steady State)

X = Irrelevant

Qo = The Level of Q Before the Indicated Steady-State Input Conditions were Established

Fig. 2 - Flip-Flop detail.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIR	MITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply Voltage Range (For TA = Full Package Temperature Range) VCC:*	·		
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage VI, VO	0	Vcc	V
Operating Temperature TA:			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, tr, tr			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

*Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		С	D74H	C273	CD54	HC2	73					CE	74HC	T273	/CD5	4HC1	273				
	i	TEST IDITIONS		l	IC/54		741 TYF		541 TYI	IC PES	TEST	ons	74HCT/54HCT TYPES			74HCT TYPES		54H TYI	ICT PES	UNITS	
CHARACTERISTIC	V,	lo	V _{cc}		-25° C		-4 +85		-5 +12!		V,	V _{cc}		+25° C	:	}	0/ 5° C	-5 +12	5/ 5°C	UNITS	
	V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	V	Min	Тур	Max	Min	Max	Min	Max		
High-Level			2	1.5		_	1.5	_	1.5	_		4.5									
Input Voltage V _{IH}			4.5	3.15	_	_	3.15		3.15	_	-	to 5.5	2	-	_	2	-	2	-	٧	
*	1		6	4.2		_	4.2	_	4.2	_											
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5				1					
Input Voltage VIL			4.5	_	_	1.35	_	1.35	_	1.35	-	to 5.5	-	-	0.8	-	0.8	-	0.8	V,	
	ļ		6	_	_	1.8	_	1.8	_	1.8								1			
High-Level	VIL		2	1.9	_	_	1.9	_	1.9	_	VIL										
Output Voltage Von	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	V	
CMOS Loads	V _{IH}	ļ	6	5.9	_	_	5.9	_	5.9		ViH				_		-				
	VIL		↓	ļ		<u> </u>	ļ				V _{IL}										
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7		or	4.5	3.98	-		3.84	-	3.7	-	. V	
	V _H	-5.2	6	5.48	_	<u> </u>	5.34	_	5.2		V _{IH}		-						_		
Low-Level	VIL	}	2	느	_	0.1	_	0.1	上	0.1	VıL										
Output Voltage Vol	or	0.02	4.5	<u> </u>		0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V	
CMOS Loads	V _{IH}		6	<u> -</u>	_	0.1	_	0.1	_	0.1	V _{IH}		ļ								
	VIL		<u> </u>	<u> </u>							VIL										
TTL Loads	or	4	4.5	<u> -</u>	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	· V	
	V _{IH}	5.2	6	_	_	0.26	_	0.33	<u> </u>	0.4	V _{IH} Any		<u> </u>				<u> </u>				
Input Leakage	Vcc										Voltage between										
Current I	or		6	-	-	±0.1	-	±1	-	±1	V _{cc} &	5.5	-	1-	±0.1	-	±1	-	±1	μΑ	
	Gnd	-	-		-		_			-	Gnd	<u> </u>	-	-	_	-	-	_			
Quiescent	Vcc			}							V _{cc}										
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ	
Current Icc	Gnd	<u> </u>	<u> </u>	<u> </u>	L		L	L			Gnd	_	<u> </u>	<u> </u>		-	<u> </u>	_	-		
Additional Quiescent Device Current per input pin: 1 unit load	,										V _{cc} -2.1	4.5 to 5.5	-	100	360	-	450		490	μA	

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS#
MR	1.5
Data	0.4
CP	1.5

^{*}Unit Load is Δl_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

MA	ıП		50 AC	r:	
QO	٠.	- 1	19 Q7		
DO	اد	-	18 D7		
D1	4		17 D6		
Q1		г	16 Q6		
Q2	-6	1	15 Q5		
D2		г	14 D5		
D3		г	13 D4		
Q3		- }	12 Q4		
anc	10	- 1	<u>11</u> CP		
	L	 		92CS-3	36834

TERMINAL ASSIGNMENT

PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM	IITS						
CHARACTERIST	· · ·	TEST	25° C				-4	0°C to	o +85°	,C	-55° C to +125° C				UNITS
CHARACTERIST		VCC	Н	C	н	СТ	74	нс	74H	ICT	54	нс	541	ICT	CINITS
		VCC	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6		_		5		_		4		1-		
Frequency	f _{max}	4.5	30		25		25	1	20		20		16		MHz
Fig. 3		6	35		_		29		_		23		-		
		2	60		_		75		_		.90		_		
MR Pulse Width	tw	4.5	12		12		15		15		18		18		ns
Fig. 4		6	10		_		13		_		15				
		2	80		_		100		_		120		I –		
Clock Pulse Width	tw	4.5	16		20		20	l	25		24		30		ns
Fig. 3		6	14		_		17		_		20	<u> </u>			
Set-up Time		2	60,		_		75		_		70		_		
Data to Clock		4.5	12		12		15		15		18		18		ns
Fig. 5	tsu	6	10		_		13		_		15	<u> </u>			
Hold Time		2	3		_		3		_		3		_		
Data to Clock		4.5	3		3		3		3		3		3		ns
Fig. 5	t _H	6	3		_		3		_		3		ļ —	ļ	
Removal Time		2	50		_		65				75		I –		
MR to Clock	t _{REM}	4.5	10		10		13		13		15		15	•	ns
		6	9		_		11		—		13	1.	-		}

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$, input t_t , $t_t = 6 \text{ ns}$)

OLIADA OTEDIOTIO	C	C L	TYPI	CAL	LINUTC
CHARACTERISTIC	р	F	HC	HCT	UNITS
Propagation Delay, t _{Pl} Clock to Q t _{Pl}		5	12	12	ns
Maximum Clock Frequency f _m	_{ax} 1	5	60	50	MHz
Power Dissipation Capacitance* C _F	D -	- [25	25	pF

* C_{PD} is used to determine the dynamic power consumption, per flip-flop. $P_D = C_{PD}V_{Cc}^2 \text{fi} + \Sigma \ C_L V_{Cc}^2 \text{fo} \quad \text{where fi} = \text{input frequency, fo} = \text{output frequency,} \\ C_L = \text{output load capacitance, } V_{CC} = \text{supply voltage.}$

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_n t_f = 6 ns)

								LIN	IITS						
		TEST		25	°C		-4	0°C t	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERIST	iC	CONDITION	Н	С	н	СТ	74	нс	741	ICT	54	нс	54F	ICT	UNITS
		VCC V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2		150		-		190		_		225		-	
Clock to Output	t _{PHL}	4.5		30		30		38		38		45		45	ns
Fig. 3		6		26		_		30		_		38		-	
Propagation Delay		2		150		_		190		-		225		-	
MR to Output	t _{PHL}	4.5		30		32		38		40		45		48	ns
Fig. 4	•	6		26		—		33		-		38		-	- 1
Output Transition	tTLH	2		75		- I		95		T —		110		-	
Time	tTHL	4.5	1	15		15		19		19		22		22	ns
Fig. 6	-	6		13		_		16				19		_	
Input Capacitance	Ci	_		10		10		10		10		10		10	pF

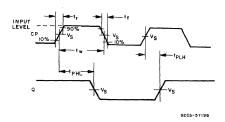


Fig. 3 - Clock to output delays and clock pulse width.

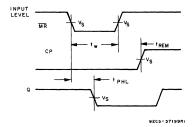


Fig. 4 - Master reset pulse width. Master reset to output delay and master reset to clock recovery time.

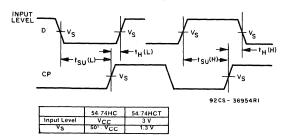


Fig. 5 - Data set-up and hold times.

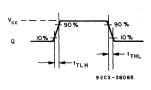
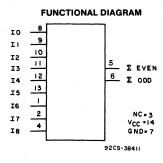



Fig. 6 - Transition times.

High-Speed CMOS Logic

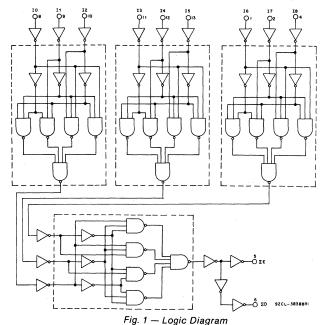
9-Bit Odd/Even Parity Generator/Checker

Type Features:

- Typical propagation delay = 17ns @ V_{CC} = 5 V, C_L = 15pF, T_A = 25° C
- Replaces 74LS180 types
- Easily cascadable

Family Features:

 Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads


- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation

High Noise Immunity: $N_{IL} = 30\%$, V_{CC} , $N_{IH} = 30\%$ of V_{CC} ; @ $V_{CC} = 5 V$

The RCA-CD54/74HC280 and CD54/74HCT280 are 9-bit odd/even parity, generator checker devices. Both even and odd parity outputs are available for checking or generating parity for words up to nine bits long. Even parity is indicated (ΣE output is high) when an even number of data inputs is high. Odd parity is indicated (ΣC output is high) when an odd number of data inputs is high. Parity checking for words larger than 9 bits can be accomplished by tying the

 ΣE output to any input of an additional HC/HCT280 parity checker.

The CD54HC280 and CD54HCT280 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC280 and CD74HCT280 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

347

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5V$ OR $V_o > V_{CC}$ +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H	55 to +125°C
(/	
PACKAGE TYPE F, H	40 to +85° C
PACKAGE TYPE F. H PACKAGE TYPE E, M	40 to +85° C
PACKAGE TYPE F, H PACKAGE TYPE E, M STORAGE TEMPERATURE (Tsig)	40 to +85° C 65 to +150° C
PACKAGE TYPE F, H PACKAGE TYPE E, M STORAGE TEMPERATURE (Tsig) LEAD TEMPERATURE (DURING SOLDERING):	-40 to +85° C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	AITS	LIMITO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage VIN, VOUT	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

				C280	CD54	4HC2	30					CD	74HC	T280	/CD5	4HCT	280				
			TEST IDITIONS		1	IC/54 SERIE			HC RIES		HC	TEST CONDITION			CT/54 ERIE		1	ICT RIES	54H SEF	ICT	
CHARACTERISTIC		V ₁	l _o	Vcc		+25° C	;	(10/ 5° C		5/ 5°C	V _i	Vcc		+25° C		-40 +85°				UNITS
		٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level	T			2	1.5	-	-	1.5	-	1.5	_		4.5								
Input Voltage V _{ii}				4.5	3.15	_	-	3.15	_	3.15	_		to	2	-	-	2	-	2		V
				6	4.2	_	_	4.2	_	4.2	-		5.5								
Low-Level	T			2	-	_	0.5	<u> </u>	0.5	-	0.5		4.5	3.4							
Input Voltage V				4.5	-	-	1.35	-	1.35	_	1.35	· ·	to	-		0.8		0.8	_	0.8	v
				6	_	-	1.8	_	1.8	_	1.8	1	5.5					100		ļ	
High-Level	T	V _{IL}		2	1.9	_	-	1.9		1.9	-	V _{IL}									
Output Voltage Vo		or	-0.02	4.5	4.4	_	_	4.4	-	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	_	v
CMOS Loads		V _{IH}		6	5.9	-	-	5.9	_	5.9	_	V _{IH}	-								
	T	VIL										V _{IL}									
TTL Loads		or	-4	4.5	3.98	_	_	3.84	-	3.7	_	or	4.5	3.98	-	_	3.84	-	3.7	_	v
		Viii	-5.2	6	5.48	_	_	5.34	_	5.2	-	V _{IH}									
Low-Level	T	V _h		2	_	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage Vo		or	0.02	4.5	_		0.1	-	0.1	-	0.1	or	4.5	- 1		0.1	-	0.1	-	0.1	v
CMOS Loads		V _{IH}		6	_	_	0.1	-	0.1	_	0.1	V _{IH}									
		VIL										V _{IL}									
TTL Loads		or	4	4.5	_	_	0.26	_	0.33	-	0.4	or	4.5	-	_	0.26	-	0.33	_	0.4	٧
		V _{IH}	5.2	6	_	-	0.26	_	0.33	-	0.4	V _{IH}									
Input Leakage	T	Vcc										Any									
Current		or		6	-	-	±0.1	-	±1	-	±1	Voltage Between	5.5	-	-	±0.1	-	±1	-	.±1	μΑ
		Gnd										V _{cc} & Gnd									
Quiescent	T	Vcc										V _{cc}									
Device		or	0	6	-	-	8		80	-	160	or	5.5	_	_	8	-	80	l –	160	μΑ
Current I _C	С	Gnd										Gnd								<u> </u>	
Additional													4.5								
Quiescent Device Current												V _{cc} -2.1	to	_	100	360	-	450	-	490	μА
per input pin: 1 unit load Δl_{cc}	.												5.5								

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

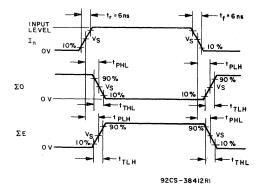
HCT Input Loading Table

Input	Unit Loads*
ALL	1

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

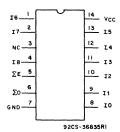
SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r , t_f =6 ns)

CHARACTERISTIC	CL	SYMBOL	TYP	CAL	UNITS
CHARACTERISTIC	(pF)	STRIBOL	HC	HCT	ONITS
Propagation Delay Any Input to ΣΟ	15	t _{PHL} t _{PLH}	17	19	ns
Any Input to ΣΕ	15	t _{РНL} t _{PLH}	17	18	ns
Power Dissipation Capacitance*	_	C _{PD}	58	58	pF


^{*}C_{PD} is used to determine the dynamic power consumption, per package.

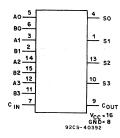
C_L = output load capacitance.

V_{cc} ≈ supply voltage


SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r , t_f =6 ns)

				25	°C		-4	0°C t	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	C	H	CT	74	НС	74F	ICT	54	нС	541	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	 -	200	_	_	_	250	_			300		_	
Any Input to ΣO	t _{PHL}	4.5	-	40	_	45	-	50		56	_	60		68	1
		6		34	_	l —		43				51	_		
	t _{PLH}	2	-	200	_	_	-	250	_	_	_	300	 	_	
Any Input to ΣE	t _{PHL}	4.5		40	_	42	_	50	_	53	_	60	_	63	ns
		6	_	34	_	_		43	_	_	_	51	_	_	
Output Transition	t _{TLH}	2		75	_	_		95	_	_	_	110	_	_	
Time	t _{THL}	4.5	-	15	_	15		19	—	19	-	22	_	22	
		6	_	13	_	_		16				19	_	_	
Input Capacitance	Ci		-	10	_	10	_	10	_	10	_	10		10	pF

	54/74HC	54/74HCT
INPUT LEVEL	vcc	3 V
SWITCHING VOLTAGE, VS	50% V _{CC}	1.3 V


 ${\it Fig.~2-Propagation~delay~and~transition~times}.$

TERMINAL ASSIGNMENT

PD = V_{CC}^2 f_i ($C_{PD} + C_L$) where f_i = input frequency,

High-Speed CMOS Logic

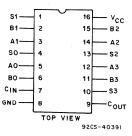
4-Bit Binary Full Adder With Fast Carry

Type Features:

- Adds two binary numbers
- Full internal lookahead
- Fast ripple carry for economical expansion
- Operates with both positive and negative logic

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC283 and CD54/74HCT283 are binary-full adders that add two 4-bit binary numbers and generate a carry-out bit if the sum exceeds 15.


Because of the symmetry of the add function, this device can be used with either all active-High operands (positive logic) or with all active-Low operands (negative logic). When using positive logic the carry-in input must be tied low if there is no carry-in.

The CD54HC/HCT283 are supplied in 16-lead hermetic dual-in-line frit seal ceramic packages (F suffix). The CD74HC/HCT283 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC},
- @ V_{CC} = 5 V

 CD54HCT/CD74HCT Types:
 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility $V_{\rm IL}$ = 0.8 V Max., $V_{\rm IH}$ = 2 V Min. CMOS Input Compatibility $I_{\rm I} \le 1~\mu{\rm A} \ @ V_{\rm OL}$, $V_{\rm OH}$

TERMINAL ASSIGNMENT

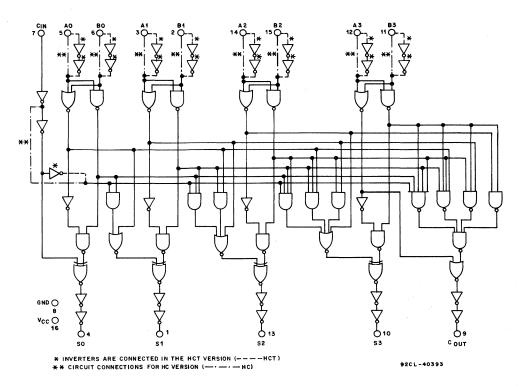


Fig. 1 - Logic diagram for HC/HCT types.

MAXIMUM RATINGS, Absolute-Maximum Values:

C SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
C INPUT DIODE CURRENT, I_{IK} (FOR V_{I} < -0.5 V OR V_{I} $>$ V_{CC} +0.5 V)	±20 mA
C OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
C DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	±25 mA
C Vcc OR GROUND CURRENT, (Icc):	±50 mA
OWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F. H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
PERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
TORAGE TEMPERATURE (T _{stg})	65 to +150° C
EAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300° C

STATIC ELECTRICAL CHARACTERISTICS

				CD	74HC:	283/C	:D54H	IC283	19 P			HALF MITTER	CD7	4НСТ	283/0	:D54H	ICT2	33			
CHARACTERIS*	TEST CONDITIONS		NS	74HC/54HC TYPES				74HC 54H			TEST CONDITIO	NS	74HCT/54HCT TYPES			74HCT TYPES		54HCT TYPES		UNITS	
CHARACTERIS		V ₁	lo	Vcc		+25° C	;		0/ 5°C	-5 +12	5/ 5°C	V ,	Vcc		+25° (;	-40/ +85° C		-55/ +125° C		Olario
		v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	-	· · · · · · · · · · · · · · · · · · ·	4.5								
Input Voltage	ViH			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	-	_	2		2	-	. V .
				6	4.2	_	_	4.2	_	4.2	_		5.5	<u> </u>							
Low-Level				2	_	L	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	<u> </u>	_	1.35		1.35	<u> </u>	1.35	_	to	-	-	0.8	-	0.8	-	8.0	V
				6	_		1.8	_	1.8	L	1.8		5.5	<u> </u>					<u></u>	<u> </u>	
High-Level		VIL		2	1.9	_		1.9	<u> </u>	1.9	_	VIL		1							
Output Voltage	VoH	or	-0.02	4.5	4.4	_	<u> </u>	4.4	<u> </u>	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	V
CMOS Loads		V _{IH}		6	5.9	<u> </u>		5.9		5.9	_	V _{IH}		<u> </u>			<u> </u>			<u> </u>	
		VIL					L	<u> </u>	<u> </u>			VIL		l			l			l	
TTL Loads		or	-4	4.5	3.98		_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	<u> </u>	3.7	-	V
		ViH	-5.2	6	5.48		_	5.34	_	5.2	_	ViH		<u> </u>					_	↓	
Low-Level		VIL		2	<u> </u>	_	0.1	_	0.1	=	0.1	VIL		l			1	1		1	
Output Voltage	V_{OL}	or	0,02	4.5	-	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V
CMOS Loads		V _{IH}		6	-	_	0.1	_	0.1	<u> </u>	0.1	V _{IH}		<u> </u>	_	<u> </u>		<u> </u>	<u> </u>	↓	
		VIL				ļ				<u> </u>		VIL		1					ļ	ļ	
TTL Loads		or	4	4.5		<u> </u>	0.26		0.33	=	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
		ViH	5.2	6	=	<u> </u>	0.26	_	0.33	-	0.4	V _{IH}	-	 	-	Ľ.	_	<u> </u>	<u> </u>	-	
Input Leakage		Vcc		1								Any		1]				
Current	lı .	or		6	_	_	±0.1	_	±1	_	±1	Voltage	5.5	-	_	±0.1	-	±1	-	±1	μΑ
		Gnd										Between Vcc & Gnd									
Quiescent		Vcc	 	-	-		-	 	-	-		V _{CC} & GNO	-	-	-		-	-	├	-	
Device Current	lcc	or	0	6			8	_	80	_	160	or	5.5	l _	_	8	_	80	_	160	μA
DOTION OUTTER	100	Gnd	"			_	١		00	_	100	Gnd	3.3	-		"	ļ	"			, ,
Additional		Gira	L	L	Ь	L	Ц	L	L	<u> </u>	Ц.	and	 	\vdash	 	\vdash	-	<u> </u>	 	1	
Quiescent Device													4.5						1	1	
Current per input												V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ
pin: 1 unit load	Δlcc*												5.5	1		1		1	1		

^{*}For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
Cin	1.5
B1, A1, A0	1
В0	0.4
B3, A3, A2, B2	0.5

^{*} Unit Load is Δlcc limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

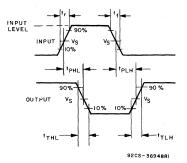
	LIM	Ī	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _i , V _o	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°c
Input Rise and Fall Times, t _r , t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*} Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t = 6 ns)

				TYPICAL	. VALUES	
	CHARACTERISTIC		CL (pF)	нс	нст	UNITS
Pr	opagation Delay,					
	C _{IN} to S0	t _{PLH} , t _{PHL}	15	13	13	
	C _{IN} to S1	t _{PLH} , t _{PHL}	15	15	18	
	C _{IN} to S2	t _{PLH} , t _{PHL}	15	16	19	
	Cin to Cout	t _{PLH} , t _{PHL}	15	16	19	ns
	C _{IN} to S3	t _{PHL} , t _{PLH}	15	19	22	
	A _n , B _n to C _{OUT}	t _{PHL} , t _{PLH}	15	16	20	
	A _n , B _n to S _n	t _{PHL} , t _{PLH}	15	18	21	
Po	ower Dissipation Capacitance *	СРД	_	70	82	pF

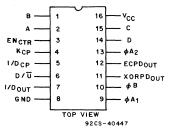
^{*} C_{PD} is used to determine the dynamic power consumption, per package.


 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where: f_i = input frequency

C_L = output load capacitance

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r, t_f = 6 ns)


								LIM	IITS	5 1 7 7					
CHARACTERISTIC		TEST CONDITION		25	°C		-4	0°C te	o +85°	С	-5	5°C to	+125	°C	UNITS
		ti i ka ije ka kati	Н	IC	н	СТ	741	нс	74H	ICT	54	нс	54F	ICT	UNITS
		V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation	t _{PLH}	2	-	160	-	-	_	200	_	_	-	240	_	_	
Delay	t _{PHL}	4.5	-	32	-	31	_	40		39		48	-	47	
Cin to S0		6	_	27	_	-	_	34	_	-		41		-	
	t _{PLH}	2	_	180	_	-	_	225	T -	-	_	270	_	-	
C _{IN} to S1	t _{PHL}	4.5	-	36	-	43	-	45	—	54	_	54	—	65	
		6	-	31		_	_	38	_	_	- ·	46		_	
Cin to S2,	t _{PLH}	2	-	195	_	_	_	245	_	_	_	295	_	-	
Cin to Cour	tehl	4.5	-	39	-	46	_	49	_	58	-	59	—	69	
i		6	-	33	-	_	_	42	_	_		50	_		
	t _{PLH}	2	_	230	-	_	_	290	_	-	_	345	_	I –	
Cin to S3	t _{PHL}	4.5	·-	46	-	53		58	-	66	_	69	—	80	ns
		6	_	39	-	-	_	49	-	-	-	59	-	-	
	t _{PLH}	2	_	195	_	T -	_	245	_	_	_	295	_	_	
A_n , B_n to C_{OUT}	t _{PHL}	4.5	_	39	-	48	_	49	-	60	_	59		72	
		6	-	33	_		_	42	_	_	_	50	_	_	
	t _{PLH}	2	_	210	-	_		265	-	_	_	315	_	_	
A_n , B_n to S_n	t _{PHL}	4.5	_	42		49	-	53	l —	61	+	63	-	74	
		6		36			_	45			-	54	_	_	
Output	t _{TLH}	2	_	75	_	_	_	95	_		_	110	-	-	
Transition	t _{THL}	4.5	-	15	_	15	-	19	-	19	-	22	-	22	
Time		6	L_	13	_	_	_	16			<u> </u>	19	_		
Input Capacitance	Cī	1		10		10		10	_	10	_	10	_	10	pF

2.0	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% Vcc	1.3 V

Fig. 2 - Transition and propagation delay times.

High-Speed CMOS Logic

Digital Phase-Locked-Loop Filter

Type Features:

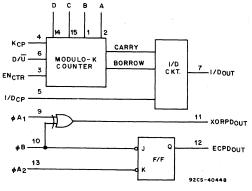
- Digital design avoids analog compensation errors
- Easily cascadable for higher order loops
- Useful frequency range: DC to 55 MHz typical (k-clock) DC to 35 MHz typical (I/D-clock)
- Dynamically variable bandwidth
- Very narrow bandwidth attainable
- Power-on reset
 - Output capability: Standard - XORPDout, ECPDout Bus driver - I/Dout

TERMINAL ASSIGNMENT

The RCA-CD54/74HC/HCT297 are high-speed silicon-gate CMOS devices that are pin-compatible with low power Schottky TTL (LSTTL).

These devices are designed to provide a simple, costeffective solution to high-accuracy, digital, phase-lockedloop applications. They contain all the necessary circuits, with the exception of the divide-by-N counter, to build firstorder phase-locked-loops.

Both EXCLUSIVE-OR (XORPD) and edge-controlled phase detectors (ECPD) are provided for maximum flexibility. The input signals for the EXCLUSIVE-OR phase detector must have a 50% duty factor to obtain the maximum lock-range.


Proper partitioning of the loop function, with many of the building blocks external to the package, makes it easy for the designer to incorporate ripple cancellation (see Fig. 2) or to cascade to higher order phase-locked-loops.

The length of the up/down K-counter is digitally programmable according to the K-counter function table. With A, B, C and D all LOW, the K-counter is disabled. With A HIGH and B, C and D LOW, the K-counter is only three stages long, which widens the bandwidth or capture range and shortens the lock time of the loop. When A, B, C and D are all programmed HIGH, the K-counter becomes seventeen stages long, which narrows the bandwidth or capture range and lengths the lock time. Real-time control of loop bandwidth by manipulating the A to D inputs can maximum the overall performance of the digital phase-locked-loop.

The CD54/74HC/HCT297 can perform the classic firstorder phase-locked-loop function without using analog components. The accuracy of the digital phase-lockedloop (DPLL) is not affected by VCC and temperature variations but depends solely on accuracies of the K-clock and loop propagation delays.

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:
 - $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5$ V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

FUNCTIONAL DIAGRAM

The phase detector generates an error signal waveform that, at zero phase error, is a 50% duty factor square wave. At the limits of linear operation, the phase detector output will be either HIGH or LOW all of the time depending on the direction of the phase error (ϕ IN - ϕ OUT). Within these limits the phase detector output varies linearly with the input phase error according to the gain K_d, which is expressed in terms of phase detector output per cycle or phase error. The phase detector output can be defined to vary between \pm 1 according to the relation:

The output of the phase detector will be $K_d\phi_e$, where the phase error

 $\phi_e = \phi_{IN} - \phi_{OUT}$.

EXCLUSIVE-OR phase detectors (XORPD) and edgecontrolled phase detectors (ECPD) are commonly used digital types. The ECPD is more complex than the XORPD logic function but can be described generally as a circuit that changes states on one of the transitions of its inputs. The gain (K_d) for an XORPD is 4 because its output remains HIGH (XORPD_{OUT} = 1) for a phase error of ½ cycle.

Similarly, K_d for the ECPD is 2 since its output remains HIGH for a phase error of ½ cycle. The type of phase detector will determine the zero-phase-error point, i.e., the phase separation of the phase detector inputs for a ϕ_e defined to be zero. For the basic DPLL system of Fig. 3, ϕ_e = 0 when the phase detector output is a square wave.

The XORPD inputs are % cycle out-of-phase for zero phase error. For the ECPD, ϕ_e = 0 when the inputs are % cycle out of phase.

K COUNTER FUNCTION TABLE (DIGITAL CONTROL)

D	С	В	A	MODULO (K)					
L	L	L	L	Inhibited					
L	L	L	н	2 ³					
L	L	Н.	L	2⁴					
L	L	Н	н	2 ⁵					
L	н	L	L	2 ⁶					
L	н	L	н	27					
L	н	н	L	2 ⁸					
L	Н	Н	Н	2 ⁹					
Н	L	L	L	2 ¹⁰					
н	L	L	н	211					
Н	L	н	L	212					
Η	L	н	н	2 ¹³					
Н	Н	L	L	214					
н	н	L	н	2 ¹⁵					
н	н	н	L	2 ¹⁶					
н	н	н	н	2 ¹⁷					
	1	ı	ı						

The phase detector output controls the up/down input to the K-counter. The counter is clocked by input frequency Mf_c which is a multiple M of the loop center frequency f_c . When the K-counter recycles up, it generates a carry pulse. Recycling while counting down generates a borrow pulse. If the carry and the borrow outputs are conceptually combined into one output that is positive for a carry and negative for a borrow, and if the K-counter is considered as a frequency divider with the ratio Mf_c/K , the output of the K-counter will equal the input frequency multiplied by the division ratio. Thus the output from the K-counter is $(K_d\phi_{\Phi}Mf_c)/K$.

The carry and borrow pulses go to the increment/decrement (I/D) circuit which, in the absence of any carry or borrow pulses has an output that is ½ of the input clock (I/D_{CP}). The input clock is just a multiple, 2N, of the loop center frequency. In response to a carry of borrow pulse, the I/D circuit will either add or delete a pulse at I/Dour. Thus the output of the I/D circuit will be Nf_c + (K_d ϕ_e Mf_c)/2K.

The output of the N-counter (or the output of the phase-locked-loop) is thus:

 $f_o = f_c + (K_d \phi_e M f_c)/2KN$.

If this result is compared to the equation for a first-order analog phase-locked-loop, the digital equivalent of the gain of the VCO is just $Mf_c/2KN$ or f_c/K for M=2N.

Thus, the simple first-order phase-locked-loop with an adjustable K-counter is the equivalent of an analog phase-locked-loop with a programmable VCO gain.

The CD54HC297 and CD54HCT297 are supplied in 16-lead hermetic dual-in-line frit-seal ceramic packages (F suffix). The CD74HC297 and CD74HCT297 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

FUNCTION TABLE EXCLUSIVE-OR PHASE DETECTOR

φA ₁	φВ	XORPD OUT
L	L. L.	L L
L	н	н
н	L	Н
н	н	L

FUNCTION TABLE EDGE-CONTROLLED PHASE DETECTOR

φ A ₂	φВ	ECPD OUT
HorL		Н
	HorL	L.
H or L		No Change
	H or L	No Change

H = steady-state high level

L = steady-state low level

🔪 = transition from high to low

= transition from low to high

STATIC ELECTRICAL CHARACTERISTICS

			С	D74H	C297/	CD5	HC29	97					CD74	нст	297/C	D54F	ICT2	97			
	Č	TEST CONDITIONS				74HC/54HC TYPES			74HC 54HC TYPES TYPES		TEST CONDITIONS		1	CT/54		74HCT TYPES		1	ICT PES	UNITS	
CHARACTERISTIC	V,	1.	0	Vcc	,	∙25° C	;	-4 +85	1.5	-5: +12!		V ₁	Vcc	+25° C		;	-40/ +85° C				UNITS
	٧	m	A	٧	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	-	1.5	_	1.5	1		4.5								
Input Voltage V _{IH}				4.5	3.15		_	3.15	_	3.15	ı	_	to	2	—		2	-	2	-	٧
				6	4.2	_	_	4.2	_	4.2	-		5.5						<u> </u>		
Low-Level				2		_	0.5	_	0.5	_	0.5		4.5						ŀ		
Input Voltage VIL				4.5	_	_	1.35	_	1.35	_	1.35		to	-	-	0.8	-	0.8	-	0.8	٧
				6		_	1.8	_	1.8	_	1.8		5.5								
High-Level	VIL	l		2	1.9	_	<u> _ </u>	1.9		1.9		VIL		1							
Output Voltage Voн	or	-0.	02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4 —		-	4.4	-	4.4	-	V
CMOS Loads	V _{IH}			6	5.9	_		5.9	<u> </u>	5.9		V _{IH}		L_					_		
TTL Loads	VIL	#	I/D	L			<u> </u>	L_				VIL		1					ļ		
Bus Driver and	or	-4	-6	4.5	3.98	_	_	3.84	<u> </u>	3.7		or	4.5	3.98	-	-	3.84	-	3.7	-	V.
Standard Output	ViH	-5.2	-7.8	6	5.48	_	<u> </u>	5.34	_	5.2	_	ViH		L		L	<u> </u>				
Low-Level	VIL			2		느	0.1	_	0.1	_	0.1	VIL		ĺ							
Output Voltage Vol.	or	0.0	02	4.5	<u> </u>	=	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	V
CMOS Loads	VIH			6.	_	_	0.1		0.1	_	0.1	V _{IH}	ļ	ļ	ļ		<u> </u>		ļ	<u> </u>	
TTL Loads	VIL	#	I/D	<u> </u>	L		<u> </u>	<u> </u>	<u> </u>	L	L	VIL	l	l	ļ	ŀ	l				
Bus Driver and	or	4	6.	4.5	<u> </u>	_	0.26	ニ	0.33	-	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V 1
Standard Output	V _{IH}	5.2	7.8	6		_	0.26	_	0.33	<u> </u>	0.4	ViH		↓	<u> </u>		_		_	<u> </u>	
Input Leakage Current I _I	V _{cc} or Gnd			6		_	±0.1	_	±1	_	±1	Any Voltage Between	5.5	-	-	±0.1	_	±1	-	±1	μΑ
Quiescent					-	<u> </u>	├	-	├		ļ	Vcc & Gnd	_	 	ļ	<u> </u>	├	 	├-	├	
Device Current Icc	V _{cc} or Gnd	. ()	6,	-	-	8	-	80	_	160	V _{cc} or Gnd	5.5	-	-	8	-	80	-	160	μΑ
Additional							****									T					
Quiescent Device													4.5	1							
Current per input												V _{cc} -2.1	to 5.5	-	100	360	_	450	-	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
EN _{CTR} , D/U	0.3
A, B, C, D, K_{CP} , ϕA_2	0.6
I/D _{CP} , φA ₁ , φB	1.5

^{*} Unit Load is $\Delta l_{\rm Cc}$ limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

[#] XORPD, ECPD

PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM							
CHARACTERISTIC		.,		25	°C			40°C to	+85°	С	-5	5°C to	+125°	,C	UNITS
CHARACTERISTIC		V _{cc}	Н	IC .	Н	СТ	74	нс	74F	ICT	54	нс	54H	ICT	UNITS
		-	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6	_		-	5	_	_	-	4	_	_	-	
Frequency	f _{MAX}	4.5	30	_ '	30	_	24	-	24	_	20	-	20	-	MHz
K _{CP}	•	6	35	-	_	_	28	-	_	-	24	-	-	-	
		2	4	_	_	_	3	-		_	2	_			
1/D _{CP}		4.5	20	·	20	-	16	l -	16		13	-	13	-	MHz
		6	24			-	19	-		-	15	-	· —	-	
Clock Pulse Width	t _w	2	80		_	_	100	_	_	-	120			_	
		4.5	16	-	16		20	l 1	20	-	24		24	-	ns
K _{CP}		6	14	_		1	17	_		-	20				
		2	125	_	_		155	_	_	_	190	_	_	-	
1/D _{CP}		4.5	25	-	25	-	31	_	31	_	38	-	38	-	ns
		6	21	_	_	_	26	_	l —		32		<u> </u>		
Setup Time		2	100	_	_		125	_			150		-	_	
D/\overline{U} , EN_{CTR} to K_{CP}	t _{su}	4.5	20	_	20		25	_	25	_	30	_	30	-	ns
		6	17	_	_		21			_	26				
Hold Time		2	0		_		0		_	_	0		-	-	
D/\overline{U} , EN_{CTR} to K_{CP}	t _H	4.5	0	_	0		0		0		0	_	0	_	ns
		6	0	_	:	-	0		-	-	0	-	_	-	

SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r , t_f = 6 ns)

								LIM	ITS						
				25	°C			40° C t	+85°	С	-5	5°C to	+125°	,C	UNITS
CHARACTERISTIC		V _{cc}	Н	C	н	СТ	74	нс	74F	ICT	54	нс	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	_	175		_	_	220	_	_	_	265	-	_	
I/DcP to I/Dout	t_{PHL}	4.5	-	35	_	35		44	_	44	_	53	-	53	
		6	-	30	-	-	_	34	-	<u> </u>		43	- "	-	
		2	_	150	_	_	_	190		_	_	225	-	_	
$m{\phi}$ A1, $m{\phi}$ B to XORPD $_{OUT}$		4.5	-	30	-	30	_	38	-	38	_	45	-	45	
		6	-	26	_	-	_	33	-			38	_	-	
		2	_	200	_	_		250	_		_	300	_	_	
ϕ B, ϕ A2 to ECPD _{OUT}		4.5	-	40	-	40	_	50	_	50	-	60	_	60	ns
		6	-	34	_		- 1	43	_	-	_	51	_	_	
Output Transition Time		2		75	_	_	_	95		1-	-	110	_	_	
XORPD _{OUT} ,	t_{TLH}	4.5	-	15	_	15	_	19	_	19		22	-	22	
ECPD _{OUT} .	t_{TLH}	6	-	13	_	-	_	16	-	_	_	19	_	_	
		2	_	60		_	_	75	_	_		90	_	-	
I/D _{OUT}		4.5	-	12	_	12	_	15	_	15	_	18	_	18	
		6		10	_	_		13	_		_	15			
Input Capacitance	Cı	_		10	_	10	_	10	_	10	_	10		10	pF

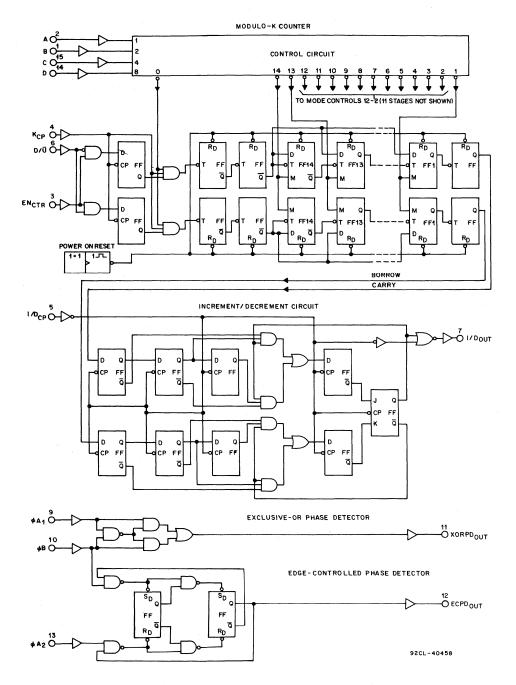
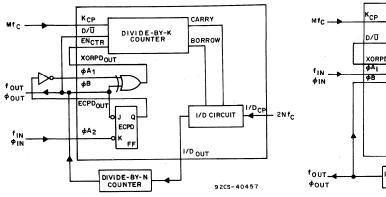



Fig. 1 - Logic diagram.

MfC KCP CARRY
D/U DIVIDE-BY-N
COUNTER BORROW

XORPDOUT

PAI

PAI

POUT

DIVIDE-BY-N
COUNTER

92CS-40456

Fig. 2 - DPLL using both phase detectors in a ripple-cancellation scheme.

Fig. 3 - DPLL using EXCLUSIVE-OR phase detection.

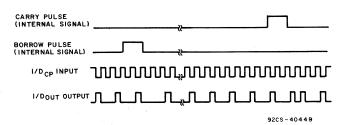
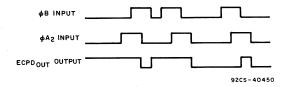



Fig. 4 - Timing diagram: I/Dout in-lock condition.

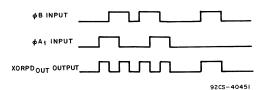


Fig. 5 - Timing diagram: edge-controlled phase comparator waveforms.

Fig. 6 - Timing diagram: EXLUSIVE-OR phase detector waveforms.

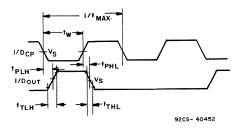


Fig. 7 - Waveforms showing the clock (I/DcP) to output (I/Dout) propagation delays, clock pulse width, output transition times and maximum clock pulse frequency.

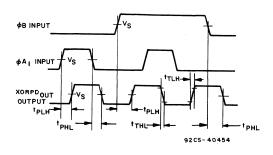


Fig. 8 - Waveforms showing the phase input $(\phi B, \phi A_1)$ to output $(XORPD_{Out})$ propagation delays and output transition times.

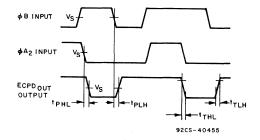
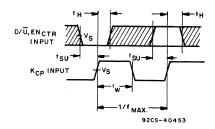
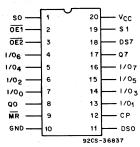



Fig. 9 - Waveforms showing the phase input $(\phi B, \phi A_2)$ to output $(ECPD_{Out})$ propagation delays and output transition times.



NOTE: THE SHADED AREAS INDICATE WHEN THE INPUT IS PERMITTED TO CHANGE FOR PREDICTABLE OUTPUT PERFORMANCE.

Fig. 10 - Waveforms showing the clock (Kc_P) pulse width and maximum clock pulse frequency, and the input $(D/\overline{U}, EN_{CTR})$ to clock (Kc_P) set-up and hold times.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _s	50% V _{cc}	1.3 V

High-Speed CMOS Logic

TERMINAL ASSIGNMENT

8-Bit Universal Shift Register; 3-State

Type Features:

- Four Operation Modes: Shift Left, Shift Right, Load and Store
- Can be cascaded for N-bit word lengths
- I/O₀-I/O₇ bus drive capability and 3-state for bus oriented applications
- Buffered inputs
- Typical f_{MAX}=50 MHz @ V_{CC}=5 V, C_L=15 pF, T_A=25°C

The RCA-CD54/74HC299 and CD54/74HCT299 are 8-bit shift/storage registers with 3-state bus interface capability. The register has four synchronous-operating modes controlled by the two select inputs as shown in the mode select (S0, S1) table. The mode select, the serial data (DS0, DS7) and the parallel data (I/O_0 - I/O_7) respond only to the low-to-high transition of the clock (CP) pulse. S0, S1 and data inputs must be one set-up time prior to the clock positive transition.

The Master Reset $\overline{(MR)}$ is an asynchronous active low input. When MR output is low, the register is cleared regardless of the status of all other inputs. The register can be expanded by cascading same units by tying the serial output (Q0) to the serial data (DS7) input of the preceding register, and tying the serial output (Q7) to the serial data (DS0) input of the following register. Recirculating the (n x 8) bits is accomplished by tying the Q7 of the last stage to the DS0 of the first stage.

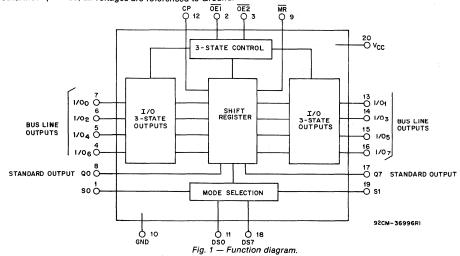
The 3-state input/output I(/O) port has three modes of operation:

- Both output enable (OE1 and OE2) inputs are low and S0 or S1 or both are low, the data in the register is presented at the eight outputs.
- When both S0 and S1 are high, I/O terminals are in the high impedance state but being input ports, ready for parallel data to be loaded into eight registers with one clock transition regardless of the status of OE1 and OE2.
- Either one of the two output enable inputs being high will force I/O terminals to be in the off-state. It is noted that each I/O terminal is a 3-state output and an CMOS buffer input.

The CD54HC299 and CD54HCT299 are supplied in 20-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC299 and CD74HCT299 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL}=30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL}=0.8 V Max., V_{IH}=2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}


MAXIMUM RATINGS, Absolute-Maximum Values:

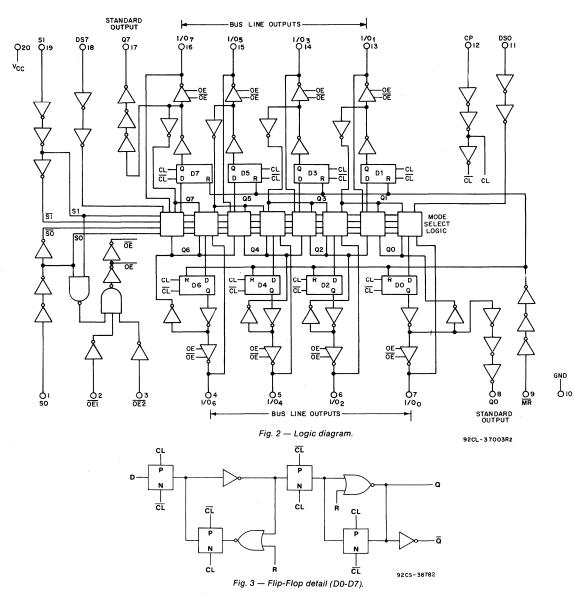
DC SUPPLY-VOLTAGE, (V_{cc}):
(Voltages referenced to ground)0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{cc} + 0.5$ V)
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC} + 0.5$ V)
DC DRAIN CURRENT, PER OUTPUT (I ₀) (FOR -0.5 V $<$ V ₀ $<$ V _{0c} + 0.5V)
For Q Outputs
For I/O Outputs +35mA
DC V _{cc} OR GROUND CURRENT (I _{cc})
POWER DISSIPATION PER PACKAGE (Pp):
For T _A = -40 to +60° C (PACKAGE TYPE E)
For $T_A = +60$ to $+85^{\circ}$ C (PACKAGE TYPE E)
For $T_A = -55$ to $\pm 100^{\circ}$ C (PACKAGE TYPE F. H)
For T _A = +40 to +125°C (PACKAGE TYPE F, H) Denote Linearly at 8 mW/°C to 300 mW
101 TA = -40 to +70 C (PACKAGE TYPE M)
FOR T _A = +70 to +125°C (PACKAGE TYPE M)
OPERATING TEMPERATURE RANGE (T _A)
PACKAGE TYPE F, H55 to +125°C
PACKAGE TYPE E, M40 to +85°C
STORAGE TEMPERATURE (T _{stg})65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. +265°C +265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)
with solder contacting lead tips only +300°C

RECOMMENDED OPERATING CONDITIONS
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	.,
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

*Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS


atri e e e	1		CD	74HC	299/	CD54	HC29	9				CD74	нст2	99/CE)54H	CT299	•		- 1	
0	C	TEST	s	í	IC/54 TYPE		741 TY		54) TY		TEST		74HC	T/54		T 74HCT TYPE		54HCT TYPE		: :
CHARACTERISTIC	V,	lo	V _{cc}		+25° C	;	-4 +85		-5 +12!		V ₁	Vcc		25°C	:	-4 +85		-55/ +125°C		UNITS
	٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5		_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	-		to	2	_	_	2	_	2	-	V
			6	4.2	_	_	4.2	_	4.2	-		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage VIL			4.5	_	_	1.35	_	1.35	_	1.35		to	_		0.8	_	0.8		0.8	٧
			6	_	_	1.8	_	1.8	_	1.8		5.5	1			}				
High-Level	VıL		2	1.9	_	_	1.9	_	1.9	_	VıL									
Output Voltage Von	or	-0.02	4.5	4.4	_	_	4.4		4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	·V
CMOS Loads	VIH		6	5.9	_	_	5.9	_	5.9	_	VIH									
TTL Loads	VIL	Qn I/On									V _{IL}									
Bus Driver and	or	-4 -6	4.5	3.98	_	_	3.84	_	3.7	1	or	4.5	3.98	_	_	3.84	_	3.7	-	٧
Standard Output	ViH	-5.2 -7.8	6	5.48	_	_	5.34		5.2	_	VIH									
Low-Level	VIL		2	_	_	0.1	_	0.1	_	0.1	VIL									
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	1_	_	0.1	_	0.1	_	0.1	V
CMOS Loads	ViH		6	_	_	0.1	_	0.1	_	0.1	VIH	ļ								
TTL Loads	VIL	Qn I/On									VIL									
Bus Driver and	or	4 6	4.5		_	0.26		0.33		0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v
Standard Output	V _{IH}	5.2 7.8	6	_	_	0.26		0.33		0.4	V _{IH}									
Input Leakage Current Ii	V _{cc} or Gnd		6	_	_	±0.1	_	±1		±1	Any Voltage Between V _{CC} and Gnd	5.5	_	_	±0.1	_	±1	-	±1	μА
Quiescent Device Current I _{cc}	V _{cc} or Gnd	0	6	_		8	_	80	_	160	V _{cc} or Gnd	5.5	-	_	8	_	80	_	160	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load Δlcc*					1	:		374	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		V _{cc} -2.1	4:5 to 5.5	-	100	360		450	_	490	μΑ
3-State Leakage Current	V _{IL} or V _{IH}	Vo= Vcc or Gnd	6	-	-	±0.5	-	±5	_	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	-	±5	_	±10	μΑ

*For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

	ouding rapic
Input	Unit Loads*
S1, MR	0.25
1/00-1/07	0.25
DS0, DS7	0.25
S0, CP	0.6
OE1, OE2	0.3

*Unit load is Δ l_{cc} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

MODE SELECT-FUNCTION TABLE

REGISTER OPERATING MODES

FUNCTION			11	NPUT	S			REGISTER OUTPUTS						
PONCTION	MR	CP	S0	S1	DS0	DS7	I/On	Q0	Q1		Q6	Q7		
Reset (Clear)	L	X	X	X	X	X	X	L	L		L	L		
Shift Right	Н	_	h	ı	- 1	X	Х	L	٩o		Q5	Q ₆		
	Н	_	h	1	h	X	Х	н	Q ₀		q ₅	Q6		
Shift Left	Н	_	1	h	Х	I	Х	q1	q2		q 7	L		
	Н		1	h	X	h.	Х	q ₁	Q2		q,	Н		
Hold (do nothing)	Н	_		1	Х	Х	Х	qo.	q ₁		Qв	Q7		
Parallel Load	Н		h	h	Х	Х		L	L		L	L		
	Н		h	h	Х	X	h	н	H		н	Н		

MODE-SELECT FUNCTION TABLE 3-STATE I/O PORT OPERATING MODE

FUNCTION			INPUTS/OUTPUTS			
PUNCTION	OE1	OE2	S0	S1	Qn (Register)	1/00 1/07
Read Register	L	L	L	X	L	L
	L	L	L	X	н	Н
	L	L	X	L	L	L
	L	L	X	L	H H	. н.
Load Register	X	Х	Н	Н	Qn = I/On	I/On = Inputs
Disable I/O	Н	Х	X	X	×	(Z)
	X	Н	Х	Х	×	(Z)

H = Input voltage high level.

X = Voltage level on logic status don't care.

h = Input voltage high one set-up time prior clock transition.

Z = Output in high impedance state.
= Low-to-high clock transition.

L = Input voltage low level.

I = Input voltge low one set-up time prior clock transition.

qn = Lower case letter indicates the state of the referenced output one set-up time prior clock transition.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t = 6 ns)

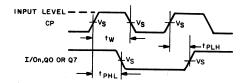
CHAR	ACTERISTIC	SYMBOL	CL	TYPICAL	UNITS	
CHAR	ACTERISTIC	STWBOL	(pF)	HC	HCT	OMITS
Propag	gation Delay	t _{PLH}				
	Clock to I/O Outputs (Fig. 4)	t _{PHL}	15	17	19	
	Clock Q0 or Q7 (Fig. 4)				-	ns
	MR to Outputs (Fig. 5)	t _{PHL}	15	17	19	
	Output Enable and Disable Times (Fig. 6 & 7)	t _{PZL} , t _{PZH} t _{PLZ} , t _{PHZ}	15	10,13,15	10,13,15	
Power	Dissipation Capacitance	C _{PD} *	_	150	170	pF

^{*}CPD is used to determine the dynamic power consumption, per register.

PD=C_{PD} V_{CC}² fi + Σ (C_L V_{CC}² fo) where:

f_i=input frequency f_o=output frequency

C_L=output load capacitance


V_{cc}=supply voltage

Pre-requisite for Switching Function

				25	°C		-4	0°C t	o +85°	°C	-59	°C			
CHARACTERISTIC	SYMBOL	Vcc	Н	С	H	CT	74	HC	74F	ICT	54	HC .	54H	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6	_	_	_	5	_	_	_	4	_	_	_	
Frequency	fmax	4.5	30	_	25	_	25	_	20	l –	20	_	16	_	MHz
		6	35	_	_	_	29	_		_	23	_	l —	 	
MR Pulse Width	tw	2	50	-	_	_	65	_	_	 	75	_	_	_	
(Fig. 5)		4.5	10	_	15		13	_	19	_	15	_	22	l —	
		6	9	_		_	11	_	_	_	13		 —	l –	
Clock Pulse Width	tw	2	80	_	_	1-	100	-	_	_	120	_	 	_	
(Fig. 4)		4.5	16		20	_	20	_	25	_	24	_	30	l —	
		6	14	—	l —	-	17	—	_	—	20		_	_	
Setup Time	tsu	2	100	_	_	T —	125	_	_	_	150	_	_	_	
DS0, DS7, I/On to Clock		4.5	20		20	 –	25	—	25	—	30		30	—	
(Fig. 8)		6	17	—	—	_	21		_	_	26	-	_		ns
Hold Time	t _H	2	0	T —	_	_	0	T —	_	_	0	_	_	_	
DS0, DS7, I/On, S0, S1		4.5	0	l —	0	_	0	l –	0	_	0		0	-	
to Clock (Fig. 8)		6	0	l —	_	-	0	—	—	_	0	l –	- 1	—	
Recovery Time	trec	2	5	_	_	_	5	_	_	—	5	_	_	_	
MR to Clock		4.5	- 5		5	-	5	-	5	—	5	-	5	_	
(Fig. 5)		6	5	_	_	—	5	-	_	l –	5	_	_	_	
Setup Time	tsu	2	120	-	_	_	150	—	_	—	180	_	_	—	
S1, S0 to Clock		4.5	24	_	27	-	30	l –	34	—	36	_	41	—	
		6	20	_	_	-	26	-	—	—	31	-	-	—	

SWITCHING CHARACTERISTICS (C_L=50 pF, Input t_r,t_i=6 ns)

				25	°C		-4	l0°C te	o +85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	СТ	74	HC	74H	ICT	54	НС	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	200	_	_	_	250	_		_	300	_	_	
Clock to I/O Output	t _{PHL}	4.5	-	40	_	45		50	-	56	_	60	-	68	
(Fig. 4)		6		34				43				51		_	
Clock to Q0 and Q7	1	2	_	200		-		250	—			300		-	
(Fig. 4)		4.5	_	40	_	45		50	-	56	-	60	-	68	
		6		34			_	43		_		51	_		1
Propagation Delay	t _{PHL}	2	_	200	_	_		250	_	_	_	300	_	_	
MR to Output	1	4.5	-	40	-	46	_	50	-	58	-	60	- ·	69	
(Fig. 5)		6		34			_	43	_			51	-	-	
Output High-Z to	t _{PZH}	2	_	155	_	_		195	-	_		235	_	_	ns
High Level	}	4.5		31	_	32	-	39		40	_	47		48	
(Fig. 6)		6	l -	26				33		_		40		_	-
Output High Level	t _{PHZ}	2	_	185	_	_	Г <u> —</u>	230	I —	_		280	[-	Ι –	
to High-Z		4.5	-	37		37	-	46		46		56	_	56	
(Fig. 6)		6	_	31	_	_	_	39	_		_	48		_	
Output Low Level	t _{PLZ}	2	T-	155		_	_	195	_	_		235	_	Ī —	
to High-Z		4.5	_	31	_	32	-	39	_	40		47		48	
(Fig. 7)		6	_	26	_		_	33				40	_	_	
Output High-Z	t _{PZL}	2		130	_	I —	-	165	_	_	-	195	_	_	
to Low Level		4.5	_	26		30	_	33	_	38	_	39	_	45	
(Fig. 7)		6	—	22	_			28				33	l —	_	
Output Transition Time	t _{TLH}	2	_	75	_	_		95	_	_	_	110	_	I	
Q0, Q7	t _{THL}	4.5	_	15		15		19		19	_	22	_	22	
(Fig. 9)		6	_	13		_		16		_	-	19	_	_	
I/O ₀ to I/O ₇	1	2		60	_	_		75	_	_		90	_		
(Fig. 9)		4.5	_	12		12	_	15		15	_	18	-	18	
		6		10				13	_	_		15	_	_	
Input Capacitance	Cı	_	_	10	_	10	_	10	_	10	_	10	_	10	
3-State Output	Co	_	_	20	_	20	_	20	_	20		20	_	20	pF
Capacitance	100						1,0								

	74/54 HC	74/54 HCT
INPUT LEVEL	Vcc	3 V
Vs	50% V _{CC}	1.3 V

Fig. 4 — Clock pre-requisite and propagation delays.

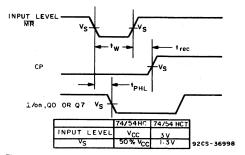
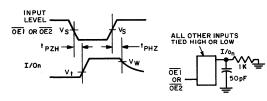
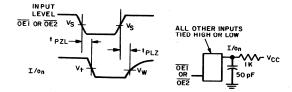




Fig. 5 — Master Reset pre-requisite and propagation delays.

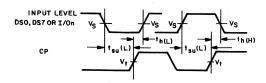

	74/54 HC	74/54 HC
NPUT LEVEL	Vcc	3 V
Vs	50% V _{CC}	1.3 V
V _t	50 % V _{CC}	1.3 V
٧w	90% VCC	90 % V _{CC}

Fig. 6 — 3-state propagation delays.

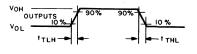

	74/54 HC	74 / 54 HCT
INPUT LEVEL	Vcc	3 V
٧s	50 % V _{CC}	1.3 V
V _t	50 % VCC	1.37
V _W	10% VCC	10% VCC

Fig. 7 — 3-state propagation delays.

	74/54 HC	74/54 HCT
INPUT LEVEL	Vcc	3 V
٧ _S	50 % V _{CC}	1.3 V
٧,	50 % V _{CC}	1,37

Fig. 8 — Data pre-requisite times.

	74/54 HC	74/54 H CT
INPUT LEVEL	Vcc	3V
		9205 - 37002

Fig. 9 — Output transition times.

High-Speed CMOS Logic

8-Input Multiplexer/Register, 3-State

CD54/74HC/HCT354 — Transparent Data & Select Latches CD54/74HC/HCT356 — Edge-Triggered Data Flip-Flops Transparent Select Latches

Type Features:

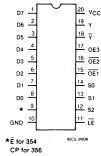
- Buffered inputs
- 3-State Complementary Outputs
- Bus Line Driving Capability
- Typical propagation delay: V_{CC} = 5V, C_L = 15 pF, T_A = 25° C Data to Output (354) = 18 ns Clock to Output (356) = 22 ns

The RCA-CD54/74HC/HCT354 and CD54/74HC/HCT356 are data selectors/multiplexers that select one of eight sources. In both the HC/HCT354 and HC/HCT356 the data select bits S0, S1, and S2 are stored in transparent latches that are enabled by a low latch enable input, LE.

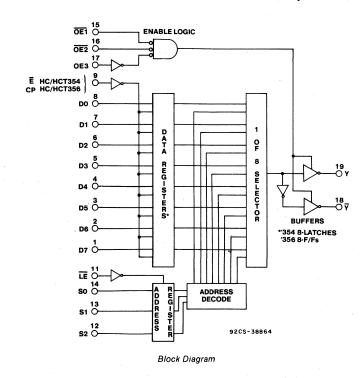
In the HC/HCT354 the data enable input, \overline{E} , controls transparent latches that pass data to the outputs when \overline{E} is high and latches in new data when \overline{E} is low.

In the HC/HCT356 the data is stored in edge-triggered flipflops that are triggered by a low-to-high clock transition.

In both types the three-state outputs are controlled by three output-enable inputs $\overline{OE1}$, $\overline{OE2}$, and OE3.


The CD54HC/HCT354/356 are supplied in 20-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT354/356 are supplied in 20-lead plastic dual-in-line plastic packages (E suffix). The CD54/74HC/HCT354/356 are also supplied in chip form (H suffix). The CD74HC/HCT354/356 are also available in plastic surface mounted packages (M suffix).

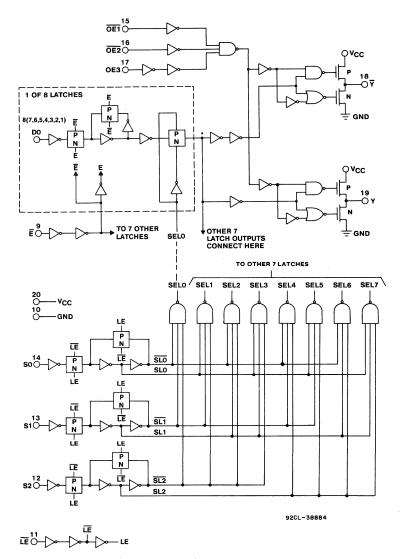
Family Features:


- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 2 to 6 V Operation
 High Noise Immunity:

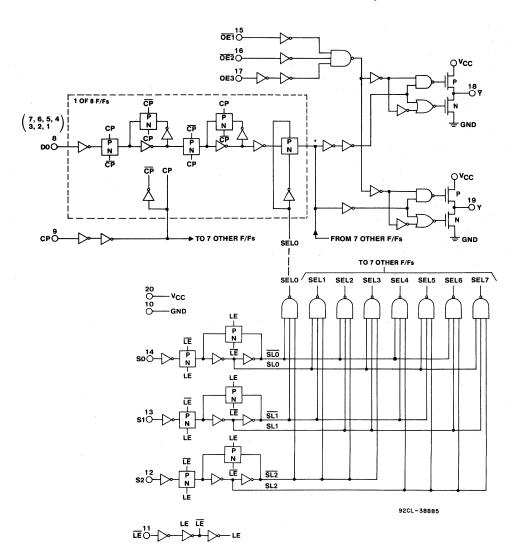
 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5 \ V$

■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 µA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT



TRUTH TABLE


s	elect	#	Enable Data 'HC354 'HCT354	Clock 'HC356 'HCT356	Output Enables			Out	outs
S2	S1	SO	E	СР	ŌE1	OE2	OE3	Y	Υ
Х	X	Х	X	Х	Н	Х	Х	Z	Z
Х	Х	Х	×	×	X	Н	Х	Z	Z
Х	Х	Х	X	Х	Х	Х	L	z	Z
L	L	L	L		L	L	Н	DO	D0
L	L	L	н	HorL	L	L	Н	DO _n	D0 _n
L	L	Н	L	~	L	L	Н	D1	D1
L	L	Н	Н	HorL	L	L	Н	D1 _n	D1 _n
L	Н	L	L	_~	L	L	Н	D2	D2
L	Н	L	н	HorL	L	L	Н	D2 _n	D2 _n
L	Н	Н	L	<i></i>	L	L	Н	D3	D3
L	Н	Н	Н	HorL	L	L	Н	D3 _n	D3 _n
Η.	L	L	- L		L	L	Н	D4	D4
Н	L	L	н	HorL	L	L	Н	D4 _n	D4 _n
Н	L	Н	L	~	L	L	Н	D5	D5
Н	L	Н	Н	HorL	L	L	Н	D5 _n	D5 _n
Н	Н	L	L		L	L	Н	D6	D6
н	Н	L	н	HorL	L	L	Н	D6 _n	D6 _n
Н	Н	Н	L		L	L	Н	D7	D7
н	Н	Н	н	HorL	Ĺ	L	Н	D7₀	D7 _n

- Notes
 H = high level (steady state)
 L = low level (steady state)
 X = irrelevant (any input, including transitions)
 Z = high-impedance state (off state)
- D0 ... D7 = the level of steady-state inputs at inputs D0 through D7, respectively, at the time of the low-to-high clock transition in the case of HC356

 D0₀ ... D7_n = the level of steady state inputs D0 through D7, respectively,
- before the most recent low-to-high transition of data control
- or clock
 # This column shows the input address setup with LE low

HC/HCT354 Logic Diagram

HC/HCT356 Logic Diagram

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc)	
(Voltages referenced to ground)	-0.5 to +7V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} + 0.5 \text{V})$	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_i < -0.5$ V OR $V_i > 0.5$ V $+V_{CC}$)	±20mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vcc $+$ 0.5V)	±35mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±70mA
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -40 \text{ to } +60^{\circ}\text{C}$ (PACKAGE TYPE E)	500 mW
For $T_A = +60$ to $+85^{\circ}$ C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For $T_A = -55$ to $+100$ °C (PACKAGE TYPE F, H)	500 mW
For $T_A = +100$ to $+125$ °C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. $$	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	IITS	LINUTO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range)			
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	\ \ \
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			1
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times t _r , t _f		1	
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		CD74	D74HC354/356/CD54HC354/356 CD74HCT354/356/CD54HCT354/356																	
	1	TEST NDITIONS		1	IC/54		ı	HC PE		HC PE	TEST CONDITION			CT/54 TYPE		1	ICT PE	54H TY		
CHARACTERISTIC	V,	I _o	V _{cc}		+25° C	;	ı	10/ 5° C	1 -	5/ 5° C	V,	V _{cc}		+25° C	;		10/ 5° C		5/ 5° C	UNITS
		I IIIA	•	Min	Тур	Max	Min	Max	Min	Max	V	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5		1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	-	3.15		-	to	2	-	_	2	_	2	_	v
·			6	4.2	_	_	4.2	_	4.2	1_		5.5		,						et ye
Low-Level			2		_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	-	_	1.35	_	1.35	-	1.35		to	-	-	0.8	_	0.8	-	0.8	٧
			6	_	_	1.8	_	1.8	-	1.8		5.5					-	1		
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
	V _{IL}									-	VIL									
TTL Loads	or or	-6	4.5	3.98	-	_	3.84		3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v ·
(Bus Driver)	V _{IH}	-7.8	6	5.48	_	-	5.34	-	5.2		V _{IH}					1				177
Low-Level	V _{IL}		2	_	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage VoL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	_	0.1		0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	6	4.5	_	_	0.26	_	0.33	-	0.4	or	4.5	-	-	0.26	-	0.33		0.4	٧
(Bus Driver)	V _{IH}	7.8	6	-	_	0.26	-	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any									
Current I	or		6	— r	_	±0.1	-	±1	-	±1	Voltage Between	5.5	_	_	±0.1	-	±1	-	±1	μΑ
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	-	_	8	-	80		160	or	5.5	_	-	8	-	80		160	μА
Current I _{cc}	Gnd	-									Gnd					1				
Additional						-						4.5								
Quiescent Device Current per input pin: 1 unit load \(\Delta \) lcc*											V _{cc} -2.1	to 5.5	-	100	360	-	450	-	490	μΑ
3-State Leakage Current I _{oz}	V _{IL} or V _{IH}	V _o = V _{cc} or Gnd	6	-	_	±0.5	_	±5.0	-	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	-	±5.0	_	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT354 Input Loading Table

Input	Unit Loads*
D0-D7	0.50
S0, S1, S3	0.70
OE1, OE2	0.80
OE3	0.25
ĪĒ.	0.25
Ē	0.60

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

HCT356 Input Loading Table

Input	Unit Loads*
D0-D7	0.50
S0, S1, S3	0.70
OE1, OE2	0.80
OE3	0.25
Œ	0.25
СР	0.60

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25°C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r, t_i = 6 ns) — HC/HCT354

CHARACTERISTIC	CL	SYMBOL	TYP	UNITS	
CHARACTERISTIC	(pF)	STINDOL	54/74HC 54/74HC		ONTS
Propagation Delay Dn → Y, Y	15	t _{PLH} , t _{PHL}	18	20	ns
Ē → Y, Ÿ	15	t _{PLH} , t _{PHL}	21	23	ns
Sn→ Y, \(\overline{Y} \)	15	t _{PLH} , t _{PHL}	22	25	ns
ĪĒ →Y, Ῡ	15	t _{PLH} , t _{PHL}	24	25	ns
Output Disabling Time	15	t _{PLZ} , t _{PHZ}	13	13, 16	ns
Output Enabling Time	. 15	t _{PZL} , t _{PZH}	12, 13	14	ns
Power Dissipation Capacitance*	_	C _{PD}	90	92	рF

^{*}CPD is used to determine the dynamic power consumption, per device.

PREREQUISITE FOR SWITCHING FUNCTION — HC/HCT354

			T .	25	°C		-4	0°C to	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	C	Н	CT	741	НС	74F	ICT	54	НС	54H	ICT	UNITS
	}		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
E pulse width		2	80	_	_	_	100	_	_	_	120	_	_		
	t _{PLH}	4.5	16	-	16	_	20	_	20	-	24	_	24	-	ns
	t _{PHL}	6	14			_	17			_	20		l —_	_	
LE pulse width		2	80		_	_	100	_	. —	_	120	_	_	_	
	t _{PLH}	4.5	16	-	16	 	20		20	_	24	_	24	-	ns
,	t _{PHL}	6	14		_		17	_			20	_		_	
Set Up Times		2	50	I —	_	I —	65	_	<u> </u>	_	75	_	_	_	
Dn → Ē	tsu	4.5	10	—	10		13		13	_	15		15	-	ns
		6	9	_	_		11			_	13				
		2	50	T —	_	_	65	_	T	_	75	-	_		
Sn → LE	tsu	4.5	10	-	10	 -	13	_	13	-	15	_	15	-	ns
		6	9		_		11	_			13			<u> </u>	<u> </u>
Hold Times		2	45	l —	_	_	55	_	l –	_	70	_	-	_	
Dn → Ē	tн	4.5	9	—	9		11	_	11	l – .	14	_	14	-	ns
		6	8	_	_		9	_			12				
		2	45	_		_	55	_	-	_	70	_	-	_	
Sn → LE	t _H	4.5	9	-	9	_	11		11	_	14		14		ns
		6	8		<u> </u>		9	<u> </u>	<u> </u>		12		<u></u>		

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where:

f_i = input frequency,

C_L = output load capacitance.

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r, t_l = 6 ns) -- HC/HCT354

				25	°C		-4	0°C t	o +85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	IC .	H	CT	74	нС	74F	ICT	54	HC	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	_	210		_	_	265	_	_	_	315	_	_	
Dn → Y, ₹	t _{PHL}	4.5	_	42		47	_	53	_	59	_	63	-	71	ns
		6		36			l	45			<u> </u>	54	_	-	
		2		250	_	_	_	315	_	_	_	375	_		
Ē→Y, Ÿ	t _{PLH}	4.5	_	50	_	54	_	63	-	68	_	75	-	81	ns
	t _{PHL}	6		43				54			_	64			
		2	_	260		_	_	325	-	_		390	_	_	
Sn → Y, 🏹	t _{PLH}	4.5	_	52	-	59	-	65	-	74		78		89	ns
	t _{PHL}	6		44			_	55				66	-	_	
		2	_	290	_	-	-	365	-	-	_	435	-	T	
LE -Y, Y	t _{PLH}	4.5	-	58	_	63	-	73	-	79	_	87	_	94	ns
	t _{PHL}	6	-	49		_	_	62				74		-	
Output Disabling		2	T -	155	_	-	_	195	— ·	_	T -	235	-	T	
Time		4.5	_	31		33	_	39	_	41	-	47		50	
OEn to Y, Y	t _{PLZ}	6	_	26	_	L —	_	33	<u> </u>			40			ns
		2	_	155	-	_	-	195	-	-		235	-	_	115
OE3 to Y, \overline{Y}		4.5	_	31	-	39		39	-	49		47	-	59	
		6		26		L-		33				40	<u> </u>		
Output Enabling		2		150		:	_	190		_		225	_	_	
Time		4.5		30		34		38	-	43	-	45		51	
OEn to Y, Y	t _{PZL}	6	-	26		<u> </u>		33				38			ns
	t _{PZH}	2	_	160		_	_	200	-	-	-	240		-	113
OE3 to Y, \overline{Y}		4.5	-	32	-	34		40	-	43	-	48	-	51	
		6		27				34				41	_		
Outrest		2	T -	60	_	-	_	75	-	-	-	90	-	_	1
Output	t _{TLH}	4.5	-	12	_	12	-	15	-	15	-	18		18	ns
Transition Time	t _{THL}	6	<u> </u>	10	_			13		<u></u>	<u></u>	15	_		
Input												1.0		10	-
Capacitance	Cı			10	-	10	-	10	-	10	-	10	-	10	pF
	1		<u> </u>	-			ļ	 	 	<u> </u>		-		├	
3-state												00	1	000	
Output	Co			20	_	20	_	20	_	20	-	20	_	20	pF
Capacitance	1 .		1						1	[1	1	1 -

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns) — HC/HCT356

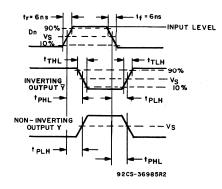
CHARACTERISTIC	CL	SYMBOL	TYP	UNITS	
CHARACTERISTIC	(pF)	STWBOL	54/74HC	54/74HCT	UNITS
Propagation Delay CP → Y, Y	15	t _{PLH} , t _{PHL}	22	22	ns
Sn→Y, ▼	15	t _{PLH} , t _{PHL}	22	25	ns
LE → Y, ♥	15	t _{PLH} , t _{PHL}	24	25	ņs
Output Disabling Time	15	t _{PLZ} , t _{PHZ}	13	13, 15	ns
Output Enabling Time	15	t _{PZL} , t _{PZH}	12, 13	14	ns
Power Dissipation Capacitance*		C _{PD}	51	52	pF

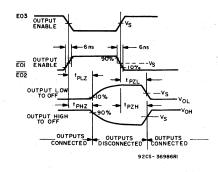
 $^{{}^{\}star}C_{\text{PD}}$ is used to determine the dynamic power consumption, per device.

 $P_D = V_{CC}^2 f_i(C_{PD} + C_L)$ where:

 f_i = input frequency.

C_L = output load capacitance.


V_{cc} = supply voltage.


PREREQUISITE FOR SWITCHING FUNCTION - HC/HCT356

				25	°C		-4	0°C t	o +85°	C	-5	5°C to	+125	°C	-
CHARACTERISTIC	SYMBOL	Vcc	Н	C	Н	СТ	74	HC	74F	ICT	54	нс	541	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	}
CP Pulse Width		2	80	_	_	_	100	_	_		120	_	_		
	t _{PLH}	4.5	16	_	20	_	20	_	25	_	24		30	-	ns
	t _{PHL}	6.	14		_		17		-	_	20		_	_	
LE Pulse Width		2	80	_			100	_	_	_ :	120	_	_	_	
	t _{PLH}	4.5	16	_	20		20		25	_	24		30		ns
	t _{PHL}	6	14	_	_	_	17			_	20		l —	-	
Set Up Times		2	5	_	_		5		_	_	5	Ī —		_	
Dn → CP	t _{su}	4.5	5	_	7	_	5	-	9	_	5	—	11	l —	ns
		6	5	_		_	5	_		_	5		l —	_	
		2	5			_	5		_		5	_	_	_	
Sn → LE	t _{su}	4.5	5	_	7	-	5	_	9	—	5	_	11	 —	ńs
		6	5	_	_		5		_	_	5			_	
Hold Times		2	45	_	_	_	55		_		70	_			F 200
Dn → CP	t _n	4.5	9		9	_	11	_	11	-	14	-	14	_	ns
		6	8	_	l 1	_	9		_	l —	12	_		l –	
		2	60		_	_	75		I —	_	90	_	_	I —	
Sn →LE	t _h	4.5	12	_	12		15	_	15	·	18	_	18	_	ns
		6	10	_	_	_	13		-	_	15	_		l –	

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r, t_f = 6 ns) — HC/HCT356

t _{PLH}	V _{cc}	H Min.	С	н	`T	741							-	l
t _{PLH}		88:			<i>,</i> ,	/41	HC	74H	ICT	541	нС	54HCT		UNITS
t _{PLH}		MIN.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
	2	_	255		_	_	320	_		_	385	_	_	
t _{PHL}	4.5 6	_	51 43	_	51 —	_	64 54	_	64	_	77 65	_	77	ns
	2	_	260		_	_	325	_	_	_	390	_	_	
	4.5	_	52	_	59	_	65	-	74	-	78	-	89	ns
		 												
t _{PLH}					l			_	l		1	_	94	ns
t _{PHL}										_	1		_	110
		_	155		_		195	_	_	 	235	_	_	
	0	_	31	_	33	_	39	_	41	_	47		50	
t _{PLZ}			26				33			_	40			ns
t _{PHZ}		_	155	_	_	-	195		_	-	i	-	_	- "
	Ū	'		_	37	-		_	46			_	56	
		 								 				
		ļ			24			_	42	j		1	1	
ton	2				34			_	-		1			
		_				<u> </u>	200	_	_	=	240			ns
	6	_	32	_	34	_	40		43	-	48	_	51	
			27	_		<u> </u>	34				41		_	
true		<u> </u>	1	-	_	-	1	-	_	-	1	-	_	
t _{THL}		1		_	12	_	1	-	15	_	1	1-	18	ns
		├─	10				13	-	 -	<u> </u>	113	 		l ——
C ₁		_	10		10	_	10	_	10		10	_	10	pF
Co		-	20	_	20	-	20	-	20	_	20	-	20	pF
	tplH tpHL tpHL tpLH tpHL tpHL tpHL tpHZ tpHZ tpHZ	tphil 6 tplh 2 tphil 6 tphil 6 tphil 4.5 tphil 6 tplh 4.5 tphil 6 tpli 2 tphil 6 tpli 4.5 tprin 6 tpli 4.5 tprin 6 trin 2 trin 6 C1 6	tphil 6 — tplh 2 — tphil 6 — tphil 6 — tphil 4.5 — tphil 6 — tphil 2 — tphil 6 — tphil 6 — tphil 4.5 — tphil 4.5 — tphil 4.5 — tphil 4.5 — tphil 4.5 — tphil 4.5 — tphil 4.5 — trinh 6 — C1 — —	tphil 6 — 43 tplh 2 — 260 tphil 6 — 44 tphil 2 — 290 tphil 4.5 — 58 6 — 49 — 155 — 31 — 26 tphiz 6 — 155 — 31 — 26 — 150 — 30 — 26 — 150 — 30 — 26 — 160 — 32 — 26 — 160 — 32 — 26 — 160 — 32 — 26 — 160 — 32 — 27 — 60 — 32 — 26 — 12 6 — 12 6 — 12 6 — 12 6 — 12 6 — 10	t _{PHL} 6 — 43 — t _{PLH} 2 — 260 — t _{PHL} 6 — 44 — t _{PLH} 2 — 290 — t _{PLH} 4.5 — 58 — t _{PHL} 6 — 49 — 155 — — 26 — t _{PLZ} 4.5 — 155 — — 2 — 26 — — 26 — — t _{PZL} 4.5 — 150 — — 26 — — — t _{PZL} 4.5 — 160 — — 2 — 26 — — 2 — 26 — — 2 — 26 — — 2 — 26 — — 2	tphil 6 — 43 — — tplh 2 — 260 — — tphil 6 — 44 — — tphil 2 — 290 — — tphil 6 — 49 — — 1phil 6 — 49 — — 2 — 31 — 33 31 — 33 — — 4.5 — 26 — — — — 30 — 34 — 2 — 26 — — 1pzh 4.5 — 160 — — 1pzh 4.5 — 160 — — 2 — — 27 — — 4.5 — 12 — 12 — 12 4.5 —<	tphL 6 — 43 — — — tplH 2 — 260 — — — tphL 6 — 44 — — — tplH 2 — 290 — — — tphL 6 — 49 — — — 155 — — — — — — 151 —	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tphL 6 — 43 — — 54 — tplH 2 — 260 — — 325 — tphL 6 — 44 — — 55 — tplH 6 — 44 — — 365 — tplH 4.5 — 58 — 63 — 73 — 4.5 — 58 — 63 — 73 — — 155 — — — 62 — — 155 — — 195 — — 2 — 26 — — 33 — 4-5 — 155 — — — 195 — 6 — 31 — 37 — 39 — 2 — 31 — 37 — 39	tphil 6 — 43 — — 54 — — tplн 2 — 260 — — — 325 — — tphil 4.5 — 52 — 59 — 65 — 74 tphil 6 — 44 — — 555 — — tphil 6 — 44 — — 365 — — tphil 6 — 49 — — 62 — — 155 — — 195 — — — — 2 — 31 — 33 — — — — — 4 — — 26 — — 33 — — 4 — — — — — 190 — — 4 —	tphil 6 — 43 — — 54 —<	tphil 6 — 43 — — 54 — — — 65 tpl.H 2 — 260 — — — 325 — — 390 tphil 4.5 — 52 — 59 — 65 — 74 — 78 tphil 6 — 44 — — — 55 — — — 66 tphil 4.5 — 58 — 63 — 73 — 79 — 87 tphil 6 — 49 — — — 62 — — 79 — 87 tphil 6 — 49 — — — 62 — — 79 — 87 tplic — — 155 — — — 195 — — — 235 <	tphIL 6 — 43 — — 54 — — — 65 — tplH 4.5 — 52 — 59 — 65 — 74 — 78 — tpHL 6 — 444 — — — 55 — — — 66 — tpLH 4.5 — 58 — 63 — 79 — 87 — tpHL 6 — 49 — — 62 — — 74 — tpLZ — — 49 — — 62 — — 74 — tpLZ — — 31 — 33 — 99 — 41 — 47 — tpLZ — — 26 — — 33 — — 40 — 47 — <td>tphIL 6 — 43 — — 54 — — — 65 — — tplH 4.5 — 52 — 59 — 65 — 74 — 78 — 89 tpHL 6 — 44 — — — 55 — — — 66 — — 89 tpLH 2 — 290 — — — 365 — — — 435 — — 94 tpHL 6 — 49 — — 62 — — 74 — — 94 tpLZ 2 — 26 — — 195 — — 235 — — tpLZ 4.5 — 155 — — — 195 — — 235 — — tpLL 4</td>	tphIL 6 — 43 — — 54 — — — 65 — — tplH 4.5 — 52 — 59 — 65 — 74 — 78 — 89 tpHL 6 — 44 — — — 55 — — — 66 — — 89 tpLH 2 — 290 — — — 365 — — — 435 — — 94 tpHL 6 — 49 — — 62 — — 74 — — 94 tpLZ 2 — 26 — — 195 — — 235 — — tpLZ 4.5 — 155 — — — 195 — — 235 — — tpLL 4

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Vs	50% V _{cc}	1.3 V

Fig. 1 — Transition times and propagation delay times.

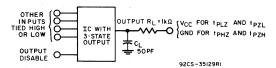
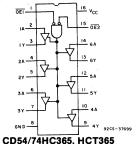



Fig. 2 — Three-state propagation delay test circuit.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT

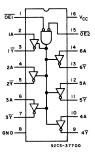
Hex Buffer/Line Driver, 3-State Non-Inverting and Inverting

Type Features:

- Buffered Inputs
- High Current Bus Driver Outputs
- Typical Propagation Delay t_{PLH}, t_{PHL} = 8 ns @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C

The RCA-CD54/74HC365/366 and CD54/74HCT365/366 silicon gate CMOS 3-STATE buffers are general purpose high speed non-inverting and inverting buffers. They have high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits. Both circuits are capable of driving up to 15 low power Schottky inputs.

The CD54/74HC, HCT365 are non-inverting buffers, whereas the CD54/74HC, HCT366 are inverting buffers. These devices have two 3-State control inputs (OE1 and OE2) which are NORed together to control all six gates.


The CD54/74HCT365 and CD54/74HCT366 logic families are speed, function, and pin compatible with the standard 54LS/74LS logic family.

The CD54HC365/366 and CD54HCT365/366 are supplied in 16-lead hermetic dual-in-line packages (F suffix). The CD74HC365/366 and CD74HCT365/366 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30%; @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

FUNCTIONAL DIAGRAM AND TERMINAL ASSIGNMENT

CD54/74HC366, HCT366

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, lik (FOR Vi < -0.5 V OR Vi > Vcc +0.5 V)	±20 mA
DC OUTPUT CURRENT, lok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	
DC Vcc OR GROUND CURRENT, PER PIN (Icc):	±70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For TA = -40 to +60° C (PACKAGE TYPE E)	500 mW
For TA = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For TA = -55 to +100°C (PACKAGE TYPE F, H)	
For TA = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

TRUTH TABLES

	Inputs		Outputs
OE ₁	OE ₂	A	Y
L	L	L	L
L	L	Н	н
X	н	X	Z
н	X	Х	Z

CD54/74HC, HCT365

	Inputs		Outputs
OE ₁	OE ₂	A	Y
L	L	L	н
L	L	Н	L
X	H	X	Z
Н	Х	X	Z

CD54/74HC, HCT366

L = LOW voltage level

H = HIGH voltage level

X = Don't Care

Z = High impedance (off) state

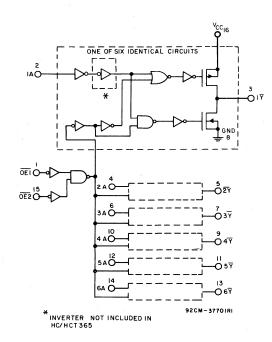


Fig. 1 - Logic diagram for the HC/HCT365 and HC/HCT366. (Outputs for HC/HCT365 are complements of those shown, i.e., 1Y, 2Y etc.)

STATIC ELECTRICAL CHARACTERISTICS

		CD74	HC36	5/366/	CD54	HC36	55/366	1			С	D74H	CT36	5/366/	/CD54	нст	365/3	56		
		TEST NDITIONS			IC/54 TYPE		741 TY		54I TY		TEST CONDITION			CT/54			ICT PE	54H TY	ICT PE	
CHARACTERISTIC	Vi	I _o	V _{cc}		+25° C	;	-4 +85		-5 +12		V,	V _{cc}		+25° C	.	Į.	10/ 5°C		5/ 5° C	UNITS
	V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2		_	2	-	2	- I	. V
			6	4.2	_	_	4.2	_	4.2	_	l	5.5								
Low-Level			2	_	-	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	_	to	-		0.8	-	0.8		0.8	v v
			6	_	_	1.8	_	1.8	_	1.8		5.5			-					
High-Level	VıL		2	1.9	_	_	1.9	_	1.9	_	V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	-	or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	-	5.9	_	5.9	_	V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	-6	4.5	3.98	_	_	3.84	_	3.7	-	or	4.5	3.98	-	_	3.84	-	3.7	_	v
(Bus Driver)	V _{IH}	-7.8	6	5.48	_	_	5.34		5.2	_	V _{IH}									
Low-Level	V _{IL}		2	-	_	0.1	_	0.1	_	0.1	VIL									
Output Voltage Vo.	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V
CMOS Loads	VIH		6	_	-	0.1	_	0.1	_	0.1	V _{IH}									Ì
	V _{IL}										V _{IL}									
TTL Loads	or	6	4.5	-	_	0.26	-	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
(Bus Driver)	V _{IH}	7.8	6	_	_	0.26	-	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any Voltage									
Current I	or		6	-	-	±0.1	-	±1	-	±1	Between	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd		L			L					V _{cc} & Gnd			<u> </u>						
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	-	_	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μА
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current per input pin: 1 unit load						-					V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ
3-State Leakage Current loz	V _{IL} or V _{IH}	V _o = V _{cc} or Gnd	6	-	_	±0.5	_	±5.0	_	±10	V _{IL} or V _{IH}	5.5	_		±0.5	_	±5.0	-	±10	μА

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads *
ŌE1	0.6
All Others	0.55

^{*}Unit Load is Δ Icc limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

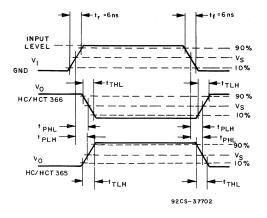
RECOMMENDED OPERATING CONDITIONS:

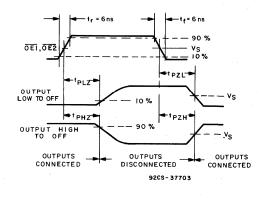
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	IITS	LINUTO
CHANACIENISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	·
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	20
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS (VCC = 5 V, CL = 15 pF, TA = 25°C, Input tr, tr = 6 ns)


011010770710	avana		TYP				
CHARACTERISTIC	SYMBOL	3	65	3	66	UNITS	
		нс	нст	нс	нст		
Propagation Delay	t _{PHL}		9				
Data to Output	t _{PLH}	8		9	11	ns	
Output Enable and Disable to Outputs	t _{PZH} , t _{PZL} , t _{PHZ} , t _{PLZ}	12	14	12	14	ns	
Power Dissipation Capacitance *	C _{PD}	40	42	40	42	ρF	


^{*} CPD is used to determine the dynamic power consumption, per buffer.

PD = VCC²fi (CPD + CL) where: fi = input frequency. CL = output load capacitance. VCC = supply voltage.

SWITCHING CHARACTERISTICS (CL = 50 pF, input tr, tr = 6 ns)

			25	°C		-4	0°C t	o +85°	,C	-5				
SYMBOL	Vcc	нс		нст		74HC		74HCT		54HC		54HCT		UNITS
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	2	_	105	_	_	_	130	_	_	_	160	_	_	
t _{PHL}	4.5	_	21	_	25	_	26	— .	31	—	32	-	38	ns
	6	_	18	_	_	_	22	_	_	_	27	_	—	
t _{PLH}	2	_	110	-	_	_	140	_	_	_	165	_	-	
t _{PHL}	4.5	_	22	_	27		28		34	_	33	_	41	ns
	6	_	19	_	_	_	24	_		_	28	_	_	
toru toru	2	_	150	_	_	_	190	_		_	225	_	_	
	4.5	_	30		35	_	38	_	44	l –	45	l –	53	ns
IPHZ, IPLZ	6	_	26	_	_	_	33	_		_	38	l —		İ
t _{TLH}	2	_	60	_	_	_	75	_	_	_	90	_	Ī —	
t _{THL}	4.5		12	_	12	_	15		15	_	18	_	18	ns
	6		10	_		_	13			_	15	_		
cī		_	10	_	10	_	10		10	_	10	<u> </u>	10	pF
C _o		_	20	_	20	_	20	_	20	_	20	_	20	pF
	tPLH tPHL tPHL tPHL tPHL tPHL tPHZ, tPLZ tTLH tTHL	tplh 2 tphl 4.5 6 tplh 2 tphl 4.5 6 tplh 4.5 6 tpzh, tpzl, 4.5 tphz, tplz 6 tthl 2 tthl 2 tthl 4.5 6	трын 2 — трын 2 — трын 2 — трын 2 — трын 2 — трын 4.5 — трын трын трын трын трын трын трын трын	SYMBOL HC Min. Max. tphh 2 — 105 tphh 4.5 — 21 6 — 18 tphh 2 — 110 tphh 4.5 — 22 6 — 19 tpzh, tpzl, tplz 4.5 — 30 tphz, tplz 6 — 26 ttlh 2 — 60 ttlh 4.5 — 12 6 — 10 Ci — 10	Min. Max. Min. tplh 2 — 105 — tphl 4.5 — 21 — 6 — 18 — tplh 2 — 110 — tphl 4.5 — 22 — 6 — 19 — tpzh, tpzl, tplz 6 — 26 — ttlh 2 — 60 — ttlh 2 — 60 — ttlh 2 — 60 — ttlh 4.5 — 12 — 6 — 10 —	SYMBOL Vcc HC HCT Min. Max. Min. Max. tphl 2 — 105 — — tphl 4.5 — 21 — 25 6 — 18 — — tphl 2 — 110 — — tphl 4.5 — 22 — 27 6 — 19 — — tpzh, tpzl, tpzl, tplz, tplz 2 — 150 — — tphlx, tplz 6 — 26 — — tplx, tplz 6 — 26 — — trlh 2 — 60 — — trlh 4.5 — 12 — 12 trlh — 6 — 10 — —	SYMBOL HC HCT 74 Min. Max. Min. Max. Min. tphl 2 — 105 — — — tphl 4.5 — 21 — 25 — tplh 2 — 110 — — — tphl 4.5 — 22 — 27 — tpzh, tpzl, tpzl, tplz 2 — 150 — — — tphz, tplz 6 — 26 — — — tplx, tplz 6 — 26 — — — tplx, tplz 6 — 26 — — — ttll 2 — 60 — — — ttll 4.5 — 12 — — ttll — — — — ttll —	SYMBOL VCC HC HCT 74HC Min. Max. Min. Max. Min. Max. tphl 2 — 105 — — — 130 tphl 4.5 — 21 — 25 — 26 6 — 18 — — — 22 tphl 4.5 — 22 — 27 — 28 6 — 19 — — — 24 tpzh, tpzl, tpzl, tplz, tplz 2 — 150 — — — 190 4.5 — 30 — 35 — 38 6 — 26 — — — 75 tpll 4.5 — 60 — — — 75 tpll 4.5 — 12 — — — 75	SYMBOL HC HCT 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC 74HC Min. tPLH 2 — 100 — — — 26 — — 22 — 27 — 28 — — — 24 — — — 24 — — — 24 — — — 24 — — — 24 — — — 24 — — — 24 — — — 24 — — — 24 — — — 24 — — — 38 — — — — 33 — —	SYMBOL HC HCT 74HC 74HCT Min. Max. Image: Color of the part o	SYMBOL HC HCT 74HCT 54 Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Min. Min. Min. <th< td=""><td>SYMBOL VCC HCT 74HCT 54HCT Min. Max.<!--</td--><td>SYMBOL HC HCT 74HCT 54HC 60 — 160 — — — — — 160 —</td><td>SYMBOL VCC HCT 74HCT 54HC 54HCT Min. Max. Min.</td></td></th<>	SYMBOL VCC HCT 74HCT 54HCT Min. Max. </td <td>SYMBOL HC HCT 74HCT 54HC 60 — 160 — — — — — 160 —</td> <td>SYMBOL VCC HCT 74HCT 54HC 54HCT Min. Max. Min.</td>	SYMBOL HC HCT 74HCT 54HC 60 — 160 — — — — — 160 —	SYMBOL VCC HCT 74HCT 54HC 54HCT Min. Max. Min.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% Vcc	1.3 V

Fig. 2 - Transition times and propagation delay times.

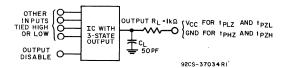
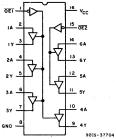


Fig. 3 - Three-stage propagation delay test circuit.


File Number 1538

Advance Information/ **Preliminary Data**

CD54/74HC367, CD54/74HCT367 CD54/74HC368, CD54/74HCT368

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

CD54/74HC367, HCT367

Hex Buffer/Line Driver, 3-State

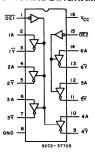
Non-Inverting and Inverting

Type Features:

- **Buffered inputs**
- High current bus driver outputs
- Two independent 3-state enable controls
- Typical propagation delay t_{PHL} , $t_{PLH} = 8$ ns @ $V_{cc} = 5$ V, $C_{L} = 15$ pF

The RCA-CD54/74HC367, 368 and CD54/74HCT367, 368 silicon gate CMOS 3-state buffers are general-purpose high-speed non-inverting and inverting buffers. They have high drive current outputs which enable high-speed operation even when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits. Both circuits are capable of driving up to 15 low power Schottky inputs.

The CD54/74HC, HCT367 are non-inverting buffers, whereas the CD54/74HC, HCT368 are inverting buffers. These devices have two output enables, one enable (OE1) controls 4 gates and the other (OE2) controls the remaining 2 gates.


The CD54/74HCT367 and CD54/74HCT368 logic families are speed, function, and pin compatible with the standard 54LS/74LS logic family.

The CD54HC367 and CD54HCT367 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC367 and CD74HCT367 are in 16-lead dual-in-line plastic packages (E suffix), also in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
 - CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:
 - N_{IL} = 30%, N_{IH} = 30%; @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility VIL = 0.8 V Max., VIH = 2 V Min. CMOS Input Compatibility
 - $I_{\rm IL}$, $I_{\rm IH} \leq 1 \,\mu A$ @ $V_{\rm OL}$, $V_{\rm OH}$

FUNCTIONAL DIAGRAM

CD54/74HC368, HCT368

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{ik} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{cc} + 0.5 \text{V}$)	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±35mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±70mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to -125°C (PACKAGE TYPE F. H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING TEMPERATURE RANGE (T _A)	
PACKAGE TYPE F. H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead	

TRUTH TABLES

Inp	uts	Outputs	
ŌĒ	Α	Y	
L	L	L	
L	H	Н	
Н	X	(Z)	

CD54/74HC, HCT367

Inp	uts	Outputs
ŌE	Α	Y
L	L	Н
L	, н	L
н	X	(Z)
	CD54/74H	L

L = LOW voltage level.

H = HIGH voltage level.

X = Don't care.

(Z) = High impedance (off) state.

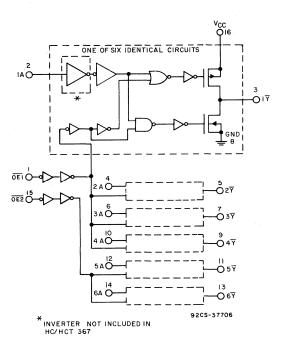


Fig. 1 - Logic diagram for HC/HCT367 and HC/HCT368. (Outputs for HC/HCT367 are complements of those shown, i.e., 1Y, 2Y, etc.).

STATIC ELECTRICAL CHARACTERISTICS

		CD	74HC	367/3	58/CE)54HC	367/3	368			CI	D74HC	T367/3	368/C	D54H	CT36	7/368	. 6,7		
CHARACTERISTICS	COI	TEST NDITIO	NS	1	IC/54		741 TY	HC PE	ı	HC PE	TEST			CT/54	нст	1	ICT PE		ICT PE	
CHARACTERISTICS	V _i	lo	Vcc		+25° (;	-4 +85	0/ 5° C	-5 +12	5/ 5°C	V i	Vcc		+25°C		-40/ +85° (5/ 5°C	UNITS
	V.	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	. V	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_		1.5	_	1.5			4.5								
Input Voltage V _{IH}		-	4.5	3.15	_	_	3.15	_	3.15	_		to	2	_	-	2		2	_	V
and the same of th			6	4.2	_	L_	4.2		4.2	_		5.5								
Low-Level			2	<u> </u>	_	0.5	<u> </u>	0.5	_	0.5		4.5								
Input Voltage V _{IL}	1		4.5	<u> </u>		1.35	_	1.35	_	1.35	_	to	-	_	0.8	_	0.8	-	0.8	v
			6	_	_	1.8	_	1.8	_	1.8		5.5			l					
High-Level	VIL		2	1.9	_	_	1.9	_	1.9	_	ViL									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	_	4.4	_	4.4	_	v
CMOS Loads	VIH		6	5.9	_	_	5.9	_	5.9	_	VIH									
	ViL										ViL									
TTL Loads	or	-6	4.5	3.98	_	_	3.84		3.7	_	or	4.5	3.98	-	_	3.84	_	3.7	_	٧
(Bus Driver)	VIH	-7.8	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	VIL		2	_	_	0.1	_	0.1	-	0.1	VıL									
Output Voltage Vol	or	0.02	4.5		_	0.1		0.1	_	0.1	or	4.5	_	_	0.1		0.1	-	0.1	v
CMOS Loads	VIH		6	-	_	0.1	_	0.1	_	0.1	ViH									
	VIL										VıL									
TTL Loads	or	6	4.5	_	_	0.26	-	0.33	_	0.4	or	4.5	1	_	0.26	_	0.33	_	0.4	v
(Bus Driver)	VIH	7.8	6	_	_	0.26		0.33	_	0.4	ViH									
Input Leakage Current I,	V _{cc} or Gnd		6	-	_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	_	_	±0.1	_	±1	_	±1	μΑ
Quiescent Device Current Icc	V _{cc} or Gnd	0	6	_	_	8	_	80	-	160	V _{cc} or Gnd	5.5	1	_	8	_	80		160	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load ΔI_{cc}^*											V _{cc} -2.1	4.5 to 5.5	_	100	360		450	-	490	μΑ
3-State Leakage Current loz	V _{IL} or V _{IH}	V _o = V _{cc} or Gnd	6	-	_	±0.5	- 1	±5	_	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	-	±5	-	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS*
ŌE1	0.6
ALL OTHERS	0.55

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LII	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For TA=Full Package Temperature Range)			
V _{cc} :*			
CD54/74HC Types	2	6	v
CD54/74HCT Types	4.5	5.5	•
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	
Input Rise and Fall Times t _r ,t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

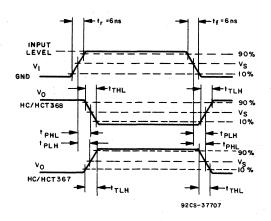
^{*}Unless otherwise specified, all voltages are referenced to Ground.

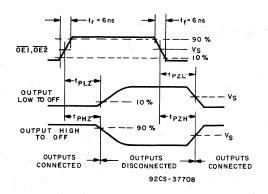
SWITCHING CHARACTERISTICS (Vcc=5 V, CL=15 pF, TA=25°C, Input trt=6 ns)

			TYP	TYPICAL					
CHARACTERISTIC	SYMBOL	3	67	3	UNITS				
		нс	нст	нс	нст				
Propagation Delay	t _{PHL}								
Data to Output	t _{PLH}	8	9	9	11	ns			
Output Enable and Disable to Outputs	t _{PZH} , t _{PZL} , t _{PHZ} , t _{PLZ}	12	14	12	14	ns			
Power Dissipation Capacitance *	C _{PD}	40	42	40	42	pF			

^{*}C_{PD} is used to determine the dynamic power consumption, per buffer.

SWITCHING CHARACTERISTICS (CL=50 pF, Input t,t=6 ns)


				25	°C		-4	0°C to	o +85°	C	-5				
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	CT	74	НС	74H	ICT	54	нС	54F	ICT	UNITS
·			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	lin. Max.	
Propagation Delay	telH	2	_	105		_	_	130		_	_	160	_	_	
Data to Outputs	tpHL	4.5] —	21	—	25	l —	26	_	31	—	32	—	38	ns
HC/HCT367		6	—	18			—	24	—		l —	27			
Propagation Delay	t _{PLH}	2	_	105	_	-	—	130	_		T —	160	_	_	
Data to Outputs	tpHL	4.5	l —	21	_	30	_	26	—	38	-	32		45	ns
НС/НСТ368		6	-	18	_	-		24	l –	_	l —	27	_	-	4
Propagation Delay	t _{PZH} , t _{PZL} ,	2	_	150	_	_	-	190	_	_	_	225	[- T	_	
Output Enable & Disable	t _{PHZ} , t _{PLZ}	4.5	_	30	_	35	_	38	_	44	_	45	-	53	ns
to Outputs	IPHZ, IPLZ	6		26	_	_		33	 —		 —	38	_	_	
Output Transition	ttlH	2		60		_	_	75	_	_	_	90	_	_	
Time	tTHL	4.5	_	12	_	12	- <u>-</u>	15	_	15	—	18	-	18	ns
	1	6	_	10	_	-		13	_	_	—	15	_	_	
Input Capacitance	Cı		_	10	_	10	_	10	_	10	_	10	_	10	pF
3-State Output				20		20		20		20		20		20	pF
Capacitance	C _o			20		20		20		20			<u> </u>	20	Pr


PD = V_{CC}^2 f_i ($C_{PD} + C_L$) where:

f_i = input frequency

C_L = output load capacitance

V_{cc} = supply voltage

Input Level	54/74HC	54/74HCT
input Level	VCC	3 V
Switching Voltage, V _S	50% VCC	1.3 V

Fig. 2 - Transition times and propagation delay times.

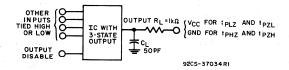
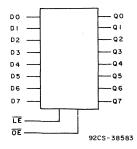
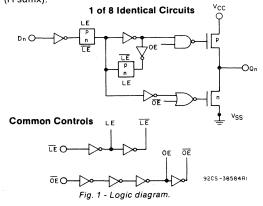



Fig. 3 - Three-state propagation delay test circuit.

High-Speed CMOS Logic

Octal Transparent Latch, 3-State Output

Type Features:


- Common latch enable control
- Common 3-state output enable control
- Buffered inputs
- 3-State outputs
- Bus line driving capacity
- Typical propagation delay = 12 ns @ V_{CC} = 5V, C_L = 15 pF, T_A = 25° C (Data to Output for HC373)

FUNCTIONAL DIAGRAM

The RCA CD54/74HC373/573 and CD54/74HCT373/573 are high speed Octal Transparent Latches manufactured with silicon gate CMOS technology. They possess the low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LSTTL devices. The CD54/74HCT373/573 are functionally as well as pin compatible with the standard 54/74LS373 and 573.

The outputs are transparent to the inputs when the latch enable (LE) is high. When the latch enable (LE) goes low the data is latched. The output enable (OE) controls the 3-state outputs. When the output enable (OE) is high the outputs are in the high impedance state. The latch operation is independent to the state of the output enable. The 373 and 573 are identical in function and differ only in their pinout arrangements.

The CD54HC/HCT373/573 are supplied in 20 lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT373/573 are supplied in a 20-lead plastic dual-in-line plastic package (E suffix) and in 20-lead surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
 - CD54HC/CD74HC Types:
 - 2 to 6 V Operation
 - High Noise Immunity: N_{1L} = 30%, N_{1H} = 30% of V_{CC} ; @ $V_{cc} = 5 V$
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility VIL = 0.8 V Max., VIH = 2 V Min.
 - CMOS Input Compatibility

 - $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

TRUTH TABLE

Output Enable	Latch Enable	Data	Output
L	Н	Н	Н
L	н	L	L
L	L	I	L
L	L	h	н
Н	х	X	Z .

Note:

L = Low voltage level

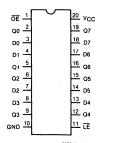
X = Don't Care

Z = High Impedance State H = High voltage level

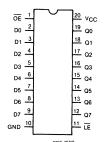
I = Low voltage level one set-up time prior to the high to low latch enable transition

h = High voltage level one set-up time prior to the high to low latch enable transition

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{cc} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, l_{OK} (FOR $V_0 < -0.5$ V OR $V_0 > V_{CC} + 0.5$ V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V $<$ V _o $<$ V _{cc} +0.5 V)	±35 mA
DC Vcc OR GROUND CURRENT, (Icc):	±70 mA
POWER DISSIPATION PER PACKAGE (Po):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (Ta):	
PACKAGE TYPE F, H	-55 to +125° C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIA			
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*		2 6 4.5 5.5 0 V _{cc} -40 +85 -55 +125 0 1000		
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	, v	
DC Input or Output Voltage V _I , V _O	0	Vcc	V	
Operating Temperature T _A :				
CD74 Types	-40	+85	°C	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times, t _r , t _f				
at 2 V	0	1000	ns	
at 4.5 V	o	500	ns	
at 6 V	0	400	ns	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

CD54/74HC373, CD54/74HCT373 TERMINAL ASSIGNMENT

CD54/74HC573, CD54/74HCT573 TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

			CD74HC373/CD54HC373 CD74HCT373/CD54HCT373 CD74HC573/CD54HC573 CD74HCT573/CD54HCT573																	
	c	TES ONDIT		74	HC/54		741 TY	HC PE	54I TY		TEST CONDITIO	ONS		TYPE		74HCT 54HCT TYPE TYPE		-		
CHARACTERISTICS	v	lo	Vc		+25°(:	-4 +85	0/ 5°C		5/ 5°C	V _i	Vcc		25°C	:		0/ 5°C		5/ 5°C	UNITS
	٧	m	A V	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	1-	-	1.5	Ī-	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	T-	Ī-	3.15	Ī-	3.15	Ī —	_	to	2	_	_	2	-	2	_	v
			6	4.2	T-	T-	4.2	Ī _	4.2	_		5.5								
Low-Level			2	T-	-	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	<u> </u>	1.35	_	1.35	_	1.35	<u>-</u>	to	-	_	0.8	_	0.8	_	0.8	V
			6	_	L	1.8	_	1.8	_	1.8		5.5								
High-Level	Vii		2	1.9	_		1.9	_	1.9	_	VIL									
Output Voltage Von	01	-0.0	2 4.5	4.4	T-	_	4.4	_	4.4	_	or -	4.5	4.4	-	-	4.4	-	4.4	-	٧
CMOS Loads	V _{II}		6	5.9	I -	Ī-	5.9	-	5.9	_	V _{iH}				2.1					4.5
	VII	.									VIL		I			ľ				
TTL Loads	0	· -6	4.5	3.98	T-	Ī-	3.84	_	3.7	Ī-	or	4.5	3.98		-	3.84	_	3.7	-	V
(Bus Driver)	V _{II}	-7.	8 6	5.48	T-	Ī.—	5.34	_	5.2	T-	V _{IH}									
Low-Level	Vii		2	T-	<u> </u>	0.1	<u> </u>	0.1	_	0.1	VIL									
Output Voltage Vol	0	0.0	2 4.5	T-	T-	0.1	<u> </u>	0.1		0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	·V
CMOS Loads	\ v,,	.	6	1_	T-	0.1	_	0.1	_	0.1	ViH									,
	Vii				T						V _{IL}									
TTL Loads	0	· 6	4.5		T-	0.26	Ī-	0.33	I –	0.4	or -	4.5	-	_	0.26	-	0.33	-	0.4	V
(Bus Driver)	V _{II}	, 7.	3 6	1_	T-	0.26	_	0.33	_	0.4	ViH									
Input Leakage Current I,	V _{cc} o Gr	-	6	_	_	±0.1	-	±1		±1	Any Voltage Between V _{cc} and Gnd	5.5	-	_	±0.1	_	±1	_	±1	μΑ
Quiescent Device Current Icc	V _{cc} o Gr	r 0	6	_	_	8	_	80	_	160	V _{cc} or Gnd	5.5	_		8	_	80	_	160	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load ΔΙο	•									1.	V _{cc} -2.1	4.5 to 5.5		100	360	-	450	_	490	μΑ
3-State Leakage Current	V ₁₁	r jo		-	-	±0.5	5 -	±5	-	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	5 -	±5	_	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA. **HCT INPUT LOADING TABLE**

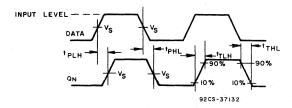
^{*} Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25° C, input $t_{\rm f}$, $t_{\rm f}$ = 6 ns)

			TYPICAL	VALUES		
CHARACTERISTIC		C∟ (pF)	нс	нст	UNITS	
Propagation Delay			·			
Data to Qn Output (HC/HCT373)	t _{PLH}	15	12	13	ns	
(Fig. 3)	t _{PHL}					
Data to Qn Output (HC/HCT573)	t _{PLH}	15	4.4	17		
(Fig. 3)	t _{PHL}	15	14	. 17	ns	
LE to Qn Output	t _{PLH}	15	4.4	14		
(Fig. 4)	t _{PHL}	15	14	14	ns	
Output Enabling Time	t _{PZL}	15	12	14		
(Fig. 6, 7)	t _{PZH}	15	12	14	ns	
Output Disabling Time	t _{PLZ}	15	12	14	ns	
(Fig. 6, 7)	t _{PHZ}	10	12	14	118	
Power Dissipation Capacitance (HC/HCT573, 373)	C _{PD} *	_	51	53	pF	

^{*}C_{PD} determines the no-load dynamic power consumption per latch. It is obtained by the following relationship;

PRE-REQUISITE FOR SWITCHING FUNCTION

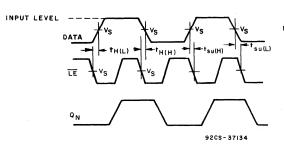

			LIMITS												
CHARACTERISTIC		TEST		25	°C		-4	0°C to	+85°	C	-5]			
		CONDITIONS	н	С	н	СТ	74	нС	74F	ICT	54	нс	541	HCT	UNITS
		V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
LE Pulse Width	tw	2	80	_	_	_	100	_	_	_	120	_	_	_	
(Fig. 3)		4.5	16	_	16	-	20	_	20	_	24	-	24	-	ns
	****	6	14		_		17		_	<u> </u>	20				
Set-up Time	tsu	2	50	-	_	-	65	—	-	-	75	—	_		
Data to LE	573	4.5	10	-	13	-	13	—	16	—	15	-	20	-	ns
(Fig. 4)		6	9	_	_		11	_		_	13		<u> </u>		
Set-up Time	tsu	2	50	-	_	-	65	-	—	—	75	_	-		
Data to LE	373	4.5	10	-	13		13	_	16	—	15	_	20	-	ns
(Fig. 4)		6	9		_		11	_	_		13	_	<u> </u>		
Hold Time	t _H	2	40	—	-	-	50	-	—	-	60	_	-·	-	
Data to LE	573	4.5	8	-	10	-	10	—	13	—	12	-	15	-	ns
(Fig. 4)		6	7			_	9				10	_		_	
Hold Time	t _H	2	5	<u> </u>	-	-	5	-	-	_	5	-	-	-	
Data to LE	373	4.5	5	_	10	-	5	-	13	—	5	-	15	-	ns
(Fig. 4)		6	5_		<u> </u>		5	<u> </u>	<u> </u>		5		<u> </u>	<u></u>	

 P_D (total power per latch) = $V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = input frequency,

 C_L = output load capacitance, V_{CC} = supply voltage

SWITCHING CHARACTERISTICS (Input t_r , t_t = 6 ns, C_L = 50 pF)

			LIMITS												
		TEST		25	°C		-4	0°C te	+85°	С	-5	5°C to	+125	°C	UNITS
CHARACTERISTIC	;	CONDITIONS	н	С	н	T	741	НС	74H	ІСТ	54	нс	54 F	ICT	UNITS
		V _{cc} V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	150	_	_	_	190	_	_	_	225	_	_	
Data to Qn	t _{PHL}	4.5	-	30	-	32	-	38	—	40	_	45	—	48	ns
(Fig. 2) HC/HCT37	73	6		26			<u> </u>	33	_			38	_	_	
Data to Qn	t _{PLH}	2	_	175	_	—	_	220	_		l –	265	_	_	
(Fig. 2)	t _{PHL}	4.5	_	35	-	35	-	44	-	44	—	53	_	53	ns
HC/HCT573		6		30	—	_	_	37				45	_	<u> </u>	
LE to Qn	t _{PLH}	2	_	175	_	-	_	220	I –	_	-	265	-		
	t _{PHL}	4.5	_	35	-	35	_	44	-	44	_	53	-	53	ns
(Fig. 3)		6		30	_	-	_	37				45	<u> </u>	<u> </u>	
Output Enabling	t _{PZL}	2	_	150	_	_	-	190	-	-	—	225	-	-	
Time	t _{PZH}	4.5	_	30	-	35	—	38		44	_	45	-	53	ns
(Figs. 5 & 6)		6	_	26	_	_		33		<u> </u>	<u> </u>	38		<u> </u>	
Output Disabling	t _{PLZ}	2	_	150	_	_	_	190	-	-	-	225	-	-	
Time	t _{PHZ}	4.5	_	30		35	—	38	_	44	-	45		53	ns
(Figs. 5 & 6)		6	_	26	_			33				38		<u> </u>	
Output Transition	tTLH	2	_	60	 -	_	_	75	_		_	90	-	-	
Time	t _{THL}	4.5	-	12	-	12		15	-	15	-	18	-	18	ns
(Fig. 2)		6	L_	10	_	_		13	_	_	_	15		<u> </u>	
Input Capacitance	Cı	_	_	10	_	10	_	·10		10	_	10		10	pF
3-State Output Capacitance	Со	_	_	20	_	20	_	20	_	20	_	20		20	pF



	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V

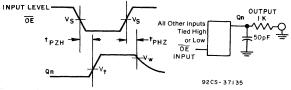

Fig. 2 - Data to Q_n output propagation delays and output transition times.

Fig. 3 - Latch enable propagation delays.

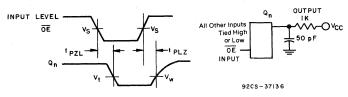
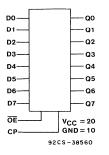

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V

Fig. 4 - Latch enable prerequisite times.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V
Vt	50% V _{cc}	1.3 V
V _w	90% V _{cc}	90% V _{cc}


Fig. 5 - Three-state propagation delays.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V
Vt	50% V _{cc}	1.3 V
Vw	10% V _{cc}	10% V _{cc}

Fig. 6 - Three-state propagation delays.

High-Speed CMOS Logic

Octal D-Type Flip-Flop, 3-State Positive-Edge Triggered

Type Features:

- Common 3-State Output Enable Control
- Buffered Inputs
- 3-State Outputs
- Bus Line Driving Capability
- Typical Propagation Delay (Clock to Q) = 15 ns @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C

FUNCTIONAL DIAGRAM

The RCA CD54/74HC374/574 and CD54/74HCT374/574 are Octal D-Type Flip-Flops with 3-State Outputs and the capability to drive 15 LSTTL loads. The eight edge-triggered flip-flops enter data into their registers on the LOW to HIGH transition of clock (CP). The Output Enable $(\overline{\text{OE}})$ controls the 3-state outputs and is independent of the register operation. When Output Enable ($\overline{\text{OE}})$ is HIGH the outputs will be in the high impedance state. The 374 and 574 are identical in function and differ only in their pinout arrangements.

The CD54HC/HCT374/574 are supplied in 20-lead ceramic dúal-in-line packages (F suffix). The CD54HC/HCT374/574 are supplied in a 20-lead plastic dual-in-line plastic package (E suffix) and in 20-lead plastic dual-in-line surface mount plastic packages (M suffix). The CD54HC/HCT374/574 are also supplied in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 2 to 6 V Operation
 High Noise Immunity:
- N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V ■ CD54HCT/CD74HCT Types:
- 4.5 to 5.5 V Operation

 Direct LSTTL Input Logic Compatibility

 V_{IL} = 0.8 V Max., V_{IH} = 2 V Min.

 CMOS Input Compatibility

 I_I ≤ 1 μA @ V_{OL}, V_{OH}

Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	±20mA
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V $<$ V _o $<$ V _{cc} $+$ 0.5V)	±35mA
DC V _{CC} OR GROUND CURRENT, PER PIN (I _{CC})	±70mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For $T_A = +60$ to $+85^{\circ}$ C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = 4 100 to 3 125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LIMITS				
CHARACTERISTIC	MIN.	MAX.	UNITS			
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :*						
CD54/74HC Types	2	6	v			
CD54/74HCT Types	4.5	5.5	V .			
DC Input or Output Voltage V _i , V _o	0	V _{cc}	V			
Operating Temperature T _A :						
CD74 Types	-40	+85	°c			
CD54 Types	-55	+125	'			
Input Rise and Fall Times t _r , t _f						
at 2 V	0	1000				
at 4.5 V	0	500	ns			
at 6 V	0	400				

^{*}Unless otherwise specified, all voltages are referenced to Ground.

	TRUTH TABLE											
11	NPUT	OUTPUTS										
ŌĒ	CP	Dn	Qn									
L	~	Н	Н									
L	~	L	L									
L	L	Х	Q0									
Н	X	Х	Z									

HC/HCT374,574

- H = high level (steady state)
- L = low level (steady state)
- X = don't care
 = transition from low to high level Q0 = the level of Q before the
- indicated steady-state input conditions were established.
- Z = high impedance

STATIC ELECTRICAL CHARACTERISTICS

	CD74HC374/CD54HC374 CD74HC574/CD54HC574							CD74HCT374/CD54HCT374 CD74HCT574/CD54HCT574												
	co	TEST NDITIONS			HC/54			HC RIES	54 SEF	HC NES	TEST CONDITION			74HCT/54HCT 74HCT 54HCT SERIES SERIES SERIES						
CHARACTERISTIC	V,	I _o	V _{cc}		+25° (;	1	10/ 5° C	-5 +12	5/ 5° C	V,	V _{cc}		+25° C	;	-4 +85	0/ 6°C		5/ 5°C	UNITS
	v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5		-	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	-	3.15	_	-	to	2	-	-	2	-	2	-	v
			6	4.2	-	-	4.2	-	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	_	to	_	_	8.0	-	0.8	_	0.8	v
			6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	-	V _{IL}									
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	_	4.4		4.4	-	or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	-6	4.5	3.98	_		3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v
(Bus Driver)	V _{IH}	-7.8	6	5.48	_	_	5.34	_	5.2	_	V _{IH}						1			
Low-Level	V _{IL}		2	_	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage V _{OL}	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V
CMOS Loads	VIH		6	-		0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	6	4.5	_	_	0.26	-	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
(Bus Driver)	VIIH	7.8	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any									
Current I,	or		6	-	_	±0.1	-	±1	-	±1	Voltage Between	5.5	-	_	±0.1	_	±1	-	±1	μΑ
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6		_	8	_	80	_	160	or	5.5	_	-	8	-	80	-	160	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current per input pin:											V _{cc} -2.1	4.5 to	_	100	360	_	450	-	490	μΑ
1 unit load Δlcc*		Γ.		Γ					Γ			5.5	-	<u> </u>	├			├	-	-
3-State	VIL	V _o = V _{CC}									V _{IL}									
Leakage Current	or	or	6	-	-	±0.5	-	±5.0	-	±10	or	5.5	-	_	±0.5	-	±5.0	-	±10	μΑ
	٧	Gnd							<u> </u>		V _{IH}				L					<u> </u>

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

In most	Unit Loads*							
Input	HCT374	HCT574						
D0-D7	0.3	0.4						
CP	0.9	0.75						
ŌĒ	1.3	0.6						

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25°C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{ C}$, Input t_B $t_f = 6 \text{ ns}$)

CHARACTERISTIC	,	CL	TYF	UNITS	
CHARACTERISTIC		(pF)	HC	HCT	UNITS
Propagation Delay Clock to Q	t _{PLH} t _{PHL}	15	15	15	ns
Propagation Delay Output Disable to Q	t _{PLZ} t _{PHZ}	15	11	11	ns
Propagation Delay Output Enable to Q	t _{PZL} t _{PZH}	15	12	12	ns
Max Clock Frequency	f _{max}	15	60	60	MHz
Power Dissipation Capacitance	C _{PD} *	_	39	47	pF

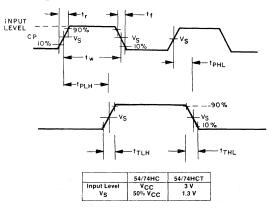
^{*}C_{PD} is used to determine the dynamic power consumption, per package.

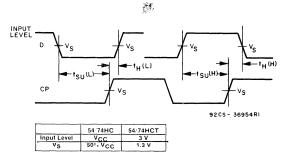
 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma V_{CC}^2 f_o C_L$ where

f_i = input frequency,

fo = output frequency,

C_L = output load capacitance

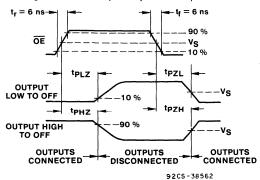

V_{cc} = supply voltage


PREREQUISITE FOR SWITCHING FUNCTION

				25	°C		-4	0°C to	o +85°	C	-5]]			
CHARACTERISTIC		V_{cc}	Н	С	Н	CT	74	НС	74F	ICT	54	нс	54H	1CT	UNITS
		V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6	_	_	_	5	_	_	_	4	_	_	-	
Frequency	f _{MAX}	4.5	30	—	30	_	25	_	25	-	20	-	20	_	MHz
		6	35	_	 -		29				23		_		
		2	80		_	_	100	_		_	120	 -	_	—	
Clock Pulse Width	tw	4.5	16	_	16	_	20	-	20	_	24		24	l – .	ns
Fig. 2		6	14	_			17	_	_		20	_	_		
Set-up Time		2	60	_	_	_	75	_	_	_	90	_	_	_	
Data to Clock		4.5	12	_	12	_	15		15	-	18	-	18	-	ns
Fig. 3	t _{SU}	6	10	_	_		13	_		_	15	_	_		
Hold Time		2	5	_	_	_	5	_	_	—	5	_	-		
Data to Clock		4.5	5	-	5	-	5	-	5	-	5	_	5	_	ns
Fig. 3	tн	6	5	_			5				5	L-		<u> </u>	

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, tr = 6 ns)

				25	°C		-4	0°C to	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC		Vcc	Н	С	Н	CT	74	НС	74F	ICT	54	НС	54F	ICT	UNITS
**		V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2		165	_	_		205	_	-	_	250	_	_	
Clock to Output	t _{PHL}	4.5		33	_	33	-	41	_	41	—	50	_	50	ns
Fig. 2		6	_	28		_		35		_		43			
Propagation Delay	t _{PLZ}	2	_	135	_		_	170	_		_	205	_	_	
Output Disable to Q	t_{PHZ}	4.5	-	27		28	_	34	-	35	_	41		42	ns
Fig. 4		6	_	23	_			29	_	_	_	35	_	_	
Propagation Delay	t _{PZL}	2	_	150		_	_	190	_	_	_	225	_		
Output Enable to Q	t _{PZH}	4.5	_	30	_	30		38	_	38		45		45	ns
Fig. 4		6	-	26	_	_	_	33	_	_	_	38		_	
Output Transition	tTLH	2		60	_	-	_	75	_	I —	_	90			
Time	t _{THL}	4.5	_	12		12	_	15	_	15	_	18		18	ns
Fig. 2		6	_	10	_	_	_	13	_	_	_	15	-	_	
Input Capacitance	Cı	_	J -	10	_	10	_	10	_	10	_	10	_	10	pF
3-State Output Capacitance	Co	_	_	20		20	_	20	_	20	_	20	_	20	pF

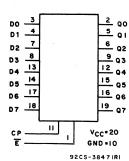


92CS-38404

Fig. 3 — Data set-up and hold times.

Fig. 2 - Clock to output delays and clock pulse width.

OE 1	20 V _{CC}	OE 1	20 VCC
Q0 2 D0 3	18 D7	D0 -3	18 Q1
D1	17 D6 16 Q6	D2 4 D3 5	17 Q2 16 Q3
Q2 6 D2 7	15 Q5 14 D5	D4 6 D5 7	15 Q4 14 Q5
D3 8 Q3 9	13 D4 12 Q4	D6 8	13 Q6
GND 10	11 CP	D7	11 CP
92	CS-36840	92CS-367	56


TERMINAL ASSIGNMENT

CD54/74HC, HCT374 Types CD54/74HC, HCT574 Types TERMINAL ASSIGNMENT

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, VS	50% V _{CC}	1.3 V

Fig. 4 — Transition times and propagation delay times.

High-Speed CMOS Logic

Octal D-Type Flip-Flop with Data Enable

Type Features:

- Buffered common clock
- Buffered inputs
- Typical propagation delay = 17ns @ $C_L = 15pF$, $V_{CC} = 5 V$, $T_A = 25^{\circ} C$
- 60 MHz typical maximum clock frequency @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C

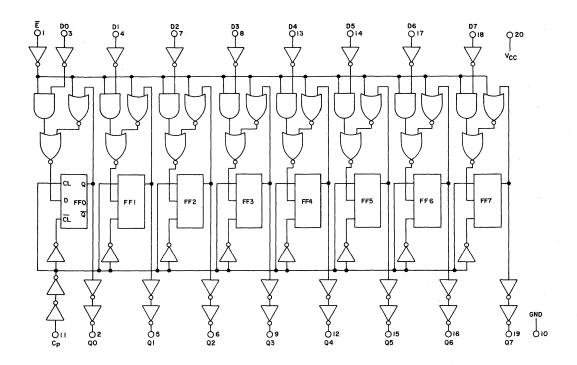
FUNCTIONAL DIAGRAM

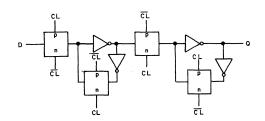
The RCA-CD54/74HC377 and CD54/74HCT377 are octal D-type flip-flops with a buffered clock (CP) common to all eight flip-flops. All the flip-flops are loaded simultaneously on the positive edge of the clock (CP) when the Data Enable (E) is LOW.

The CD54HC377 and CD54HCT377 are supplied in 20-lead ceramic dual-in-line packages (F suffix). The CD74HC377 and CD74HCT377 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}= 30%, N_{IH}=30% of V_{CC} @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I₁≤1 µA @ V_{OL}, V_{OH}


19 Q7 Q0 18 D7 DO 17 D6 D1 16 Q6 Q1 15 Q5 Q2 14 D5 D2 D3 8 13 D4 12 Q4 Q3 11 CP GND 92CS-36841


TERMINAL ASSIGNMENT

TRUTH TABLE

OPERATING MODE		OUTPUTS		
OPERATING MODE	CP	Ē	Dn	Qn
Load "1"		1	h	Н
Load "0"	~	ı	1	L
Hold (do nothing)	->-	h	Х	no change
riola (ao fiothing)	Х	Н	Х	no change

- H = HIGH voltage level steady state.
- h = HIGH voltage level one setup time prior to the LOW
 - to-HIGH clock transition.
- L = LOW voltage level steady state
- I = LOW voltage level one setup time prior to the LOWto-HIGH clock transition.
- X = Don't care.
- ✓= LOW-to-HIGH clock transition.

Flip-Flop Detail

Fig. 1 - Logic diagram.

92CL-38576R1

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	±20m/
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC} + 0.5$ V)	±20m/
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vcc + 0.5V)	
DC V _{CC} OR GROUND CURRENT (I _{CC})	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For T _A = +60 to +85° C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mV
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
CDEDATING TELEPERATURE DAVIGE TO	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
PACKAGE TYPE E, M	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300° C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHADACTERISTIC	LIM	LIMITS				
CHARACTERISTIC	MIN.	MAX.	UNITS			
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*						
CD54/74HC Types	2	6	V			
CD54/74HCT Types	4.5	5.5	V			
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V			
Operating Temperature T _A :						
CD74 Types	-40	+85	°C			
CD54 Types	-55	+125				
Input Rise and Fall Times t _r , t _f						
at 2 V	0	1000				
at 4.5 V	0	500	ns			
at 6 V	. 0	400				

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		c	D74F	IC377	/CD5	4HC3	77				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CD	74HC	T377	/CD5	4НСТ	377					
CHARACTERISTIC	ŧ	TEST IDITIONS		l.	IC/54		741 TY		541 TY		TEST		i	CT/54			ICT /PE	l	ICT PE	HAUTE		
CHARACTERISTIC	V,	I _o	V _{cc}		+25° C	;	-4 +85	0/ 5° C	-5 +12		V _I V _{cc}		1 1			+25° C	;	-40/ +85° C		-55/ +125°C		UNITS
		mA	ľ	Min	Тур	Max	Min	Max	Min	Max		٧	Min	Тур	Max	Min	Max	Min	Max			
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5										
Input Voltage V _{IH}			4.5	3.15	-	_	3.15	_	3.15	_		to	2	_	-	2	-	2	-	v		
			6	4.2	_	_	4.2	_	4.2	_		5.5										
Low-Level			2	_	_	0.5	_	0.5		0.5		4.5										
Input Voltage V _{IL}			4.5	_	_	1.35	-	1.35	-	1.35	-	to	-	-	0.8	-	0.8	-	0.8	v		
			6	-	_	1.8	-	1.8	_	1.8		5.5										
High-Level	V _{IL}		2	1.9	_	_	1.9	-	1.9	_	VIL											
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	-	4.4	-	4.4		or	4.5	4.4		-	4.4	-	4.4	-	v		
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH} .						<u> </u>					
	V _{IL}										Vil				ŀ							
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	 -, .	V		
	V _{IH}	-5.2	6	5.48			5.34	_	5.2	_	V _{IH}					-	<u> </u>					
Low-Level	V _{IL}		2	_		0.1	_	0.1	_	0.1	V _{IL}											
Output Voltage V _{GL}	or	0.02	4.5	_		0.1		0.1		0.1	or	4.5	-		0.1	-	0.1	-	0.1	v		
CMOS Loads	V _{IH}		6	_		0.1		0.1		0.1	V _{IH}							<u> </u>				
	VIL										V _{IL}											
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4,5	-	-	0.26	-	0.33	-	0.4	V		
	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}					<u> </u>		<u> </u>	_			
Input Leakage	V _{cc}										Any Voltage								-			
Current I,	or		6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ		
	Gnd										& Gnd					<u> </u>			<u> </u>			
Quiescent	V _{cc}										V _{cc}											
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ		
Current I _{cc}	Gnd								L		Gnd						_			ļ .		
Additional Quiescent											•	4.5										
Device Current per input pin: 1 unit load Δl_{cc}^*	-										V _{cc} -2.1	to 5.5	-	100	360	-	450	-	490	μА		

^{*}For dual-supply systems theoretical worst case (V $_{\rm i}$ = 2.4 V, V $_{\rm CC}$ = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
Ē	1.5
СР	0.5
All Dn Inputs	0.25

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns)

CHARACTERISTIC	CL	SYMBOL	TYP	ICAL	UNITS
CHARACTERISTIC	(pF)	STMBOL	HC	нст	UNITS
Maximum Clock Frequency	15	f _{max}	60	50	MHz
Propagation Delay CP ——— Q	15	t _{PLH}	14	16	ns
Power Dissipation Capacitance*	_	C _{PD}	31	35	pF

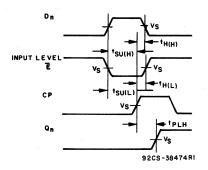
^{*}C_{PD} is used to determine the dynamic power consumption, per flip flop.

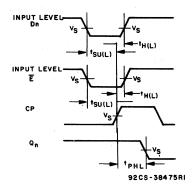
 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{cc}^2 f_0)$ where:

f_i = input frequency

fo = output frequency

 C_L = output load capacitance.

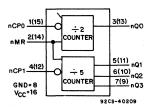

V_{cc} = supply voltage.


PREREQUISITE FOR SWITCHING FUNCTION

				25	°C		-4	l0°C to	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERISTIC		Vcc	c HC		HCT		74HC		74HCT		54	НС	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6	_	_	_	5	_	_	-	4	T	-	_	
Frequency	f_{max}	4.5	30	_	25	_	25	_	20	_	20	-	16		MHz
		6	35	_	l —	_	29	_	_	_	23	-	l — .		
Clock Pulse		2	80	_	_	—	100	T -	_	T -	120	T -	_	 -	
width	tw	4.5	16	_	20	_	20	—	25	—	24	-	30	_	ns
		6	14	_	l —	<u> </u>	17			_	20	<u> </u>			
Set-up Time		2	60	_	_	I —	75	l –	_	_	90	_	_	_	
E, Data to CP	tsu	4.5	12	_	12	_	15	-	15	-	18	-	18	-	ns
		6	10	_	l —	_	13	l —	l —	_	15			_	
Hold Time,		2	3	_	_	_	3	Γ-		_	3	_	_	_	
Data to CP	tH	4.5	3		3	 	3	_	3	_	3	-	3		ns
		6	3				3	_			3	_			L
Hold Time		2	5	_	_	_	5	-		_	5	-		I —	
E to CP	t _H	4.5	5	l —	5	_	5	_	5	_	5	-	5	_	ns
		6	5	—		-	5	-			5	-	<u> </u>		

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input $t_{\rm f}$ $t_{\rm f}$ = 6 ns)

				25	°C		-4	0°C to	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC		Vcc	Н	С	Н	CT	74	НС	74F	ICT	54	нс	54H	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	T-	175	_	-	_	220	_	_	_	265	_	_	
CP to Q	t _{PHL}	4.5	_	35	_	38	_	44	_	48		53	_	57	ns
		6		30				37			_	45			L
Output		2	-	75	_	_	_	95	_	-	_	110	_		
Transition Time	t _{TLH}	4.5	-	15	_	15	_	19	l —	19		22	—	22	ns
	t _{THL}	6	_	13	_	_	_	16	_	_	_	19	-		
Input															
Capacitance	Cı		-	10	—	10	-	10	_	10	_	10	_	10	pF



	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, Vs	50% V _{CC}	1.3 V

Fig. 2 - Setup and hold times and propagation delay times.

High-Speed CMOS Logic

Dual Decade Ripple Counter

Type Features:

- Two BCD decade or bi-quinary counters
- One package can be configured to divide-by-2, 4, 5, 10, 20, 25, 50 or 100
- Two master reset inputs to clear each decade counter individually

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC390 and CD54/74HCT390 dual 4-bit decade ripple counters are high-speed silicon-gate CMOS devices and are pin compatible with low-power Schottky TTL (LSTTL). These devices are divided into four separately clocked sections. The counters have two divide-by-2 sections and two divide-by-5 sections. These sections are normally used in a BCD decade or bi-quinary configuration, since they share a common master reset (nMR). If the two master reset inputs (1MR and 2MR) are used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clock inputs (nCP0 and nCP1) of each section allow ripple counter or frequency division applications of divide-by-2, 4, 5, 10, 20, 25, 50 or 100. Each section is triggered by the HIGH-to-LOW transition of the input pulses (nCP0 and nCP1)

For BCD decade operation, the nQ0 output is connected to the nCP1 input of the divide-by-5 section. For bi-quinary decade operation, the nQ3 output is connected to the nCP0 input and nQ0 becomes the decade output.

The master reset inputs (1MR and 2MR) are active-HIGH asynchronous inputs to each decade counter which operates on the portion of the counter identified by the "1" and "2" prefixes in the pin configuration. A HIGH level on the nMR input overrides the clock and sets the four outputs LOW.

The CD54HC390 and CD54HCT390 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC390 and CD74HCT390 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}, @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 µA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V).	+20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc + 0.5	V)
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{CC} + 0.5 V	/)
DC Vcc OR GROUND CURRENT (Icc)	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	O to ro min
PACKAGE TYPE F, H	-55 to +125° C
PACKAGE TYPE E, M	-40 to ±85° C
PACKAGE TYPE E, M	-65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	30 10 100 0
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s max.	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	200 0
with solder contacting lead tips only	

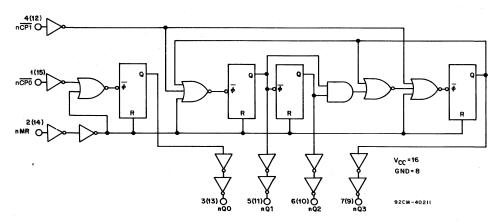


Fig. 1 - Logic diagram, one-half of HC/HCT390.

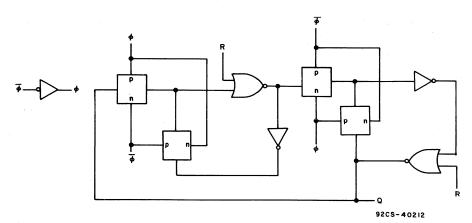


Fig. 2 - Flip-flop logic detail.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LI	MITS	LIMITO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	1
CD54/74HCT Types	4.5	5.5	\ \ \
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	0.0
CD54 Types	-55	+125	°C •
Input Rise and Fall Times, t, tr:			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TRUTH TABLE

INI	PUTS	
СР	MR	ACTION
	L	NO CHANGE
	t Li	COUNT
x	Н	ALL Qs LOW

H = HIGH voltage level

L = LOW voltage level

X = Don't Care

 \mathcal{L} = LOW-to-HIGH ϕ transition

= HIGH-to-LOW ϕ transition

BCD COUNT SEQUENCE FOR 1/2 THE "390"

COUNT		OUT	PUTS	
COUNT	Q0	Q1	Q2	Q3
0	L	L	L	L
1	H	L	L	L
2	L	Н	L	L
3	н	н	L	L
4	L	L	Н	L
5	Н	L	H	L
6	L	Н	Н	L
7	н	Н	н	L
8	L	L	· · L	H
9	н	L	L	Н

Note:

Output nQ0 connected to nCP1 with counter input on nCP0.

BI-QUINARY COUNT SEQUENCE FOR 1/2 THE "390"

COUNT		OUT	PUTS	
COOM	Q0	Q1	Q2	Q3
0	L	L	L	L
1	L	Н	L	L
2	L	j L	н	L
3	L	н	н	L
4	L	L	L	н
5	н	L	L	L
6	н	н	L	L
7	н	L	н	L
8	н	н	н	L
9	н	L	L	н

Note:

Output nQ3 connected to nCP0 with counter input on nCP1.

STATIC ELECTRICAL CHARACTERISTICS

				CD	74HC	3 9 0/C	:D54F	C390)				CD7	нст	390/C	:D54F	ICT3	90				
		l .	TEST IDITIO	NS	1	IC/54		741 TYF		541 TYF		TEST CONDITIO	NS	1	CT/54		74F TYI	ICT PES	I	ICT PES	1	
CHARACTERIS	TIC .	Vı	lo	Vcc		+25° C	;	-4 +85		-5 +12		V ı	Vcc		+25° C	;		0/ i°C		5/ 5°C	UNITS	
		v	mA	v	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max		
High-Level				2	1.5	=	_	1.5	=	1.5	_		4.5									
Input Voltage	VIH			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	-	-	2	-	2	-	V	
		<u> </u>	ļ	6	4.2	_	_	4.2	_	4.2	_		5.5			<u> </u>						
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5									
Input Voltage	VIL			4.5	<u> </u>	_	1.35	=	1.35	_	1.35	_	to	-	-	0.8	_	8.0	-	0.8	V,	
		ļ	<u> </u>	6	_	_	1.8		1.8	=	1.8		5.5	ļ	_	 			_			
High-Level		VIL		2	1.9		ᅳ	1.9	<u> </u>	1.9	_	VIL		١		1	١		١			
Output Voltage CMOS Loads	V _{OH}	or	-0.02	4.5 6	5.9	느	=	4.4 5.9		5.9	_	or	4.5	4.4	_	-	4.4	-	4.4	-	V	
CMOS LOAUS		VIH		l °	5.9	-	├	5.9	=	5.9	_	V _{IH}	_	├		-	-	-	-	-		
TTL Loads		or	-4	4.5	3.98	 _ 	 	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_	3.7		v	
TTE Educa		VIH	-5.2	6	5.48	_	┢═╌	5.34		5.2	<u> </u>	ViH	4.5	3.30			3.04	_	3.7		•	
Low-Level		VIL	0.2	2	_	-	0.1	-	0.1	-	0.1	VIL		<u> </u>		╁	 	-	-	 		
Output Voltage	Vol	or	0.02	4.5	=	_	0.1		0.1	_	0.1	or	4.5	l_	_	0.1	_	0.1	_	0.1	v	
CMOS Loads	-	VIH		6	_		0.1	_	0.1	_	0.1	V _{IH}										
		VIL		<u> </u>			m					ViL				\vdash						
TTL Loads		or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v	
		VIH	5.2	6	_	_	0.26	_	0.33	_	0.4	ViH										
Input Leakage		Ī.,										Any										
Current	łı	Vcc		6			±0.1	_	±1		±1	Voltage	5.5			±0.1	_	±1		±1	μА	
		Gnd		0	-	-	Ε0.1	_	Ξ'	-	Ξ'	Between	5.5	_	_	±0.1	-	T.	_	Ξ'	μΑ	
		J 33				L						V _{cc} & Gnd							L			
Quiescent		Vcc										Vcc										
Device Current	lcc	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ	
Additional		Gnd	L	L			L					Gnd						<u> </u>		_		
Additional													4.5									
Quiescent Device		1										Vcc -2.1	to	_	100	360	_	450		490	μΑ	
Current per input	41 -												5.5									
pin: 1 unit load	Δl _{cc} *	<u> </u>																L	L			

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
nCP0	0.45
nCP1, MR	0.6

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r , t_f = 6 ns)

CHARACTERISTIC	CL	TYP	ICAL	UNITS	
ONANAO I ENIGITO	(pF)	HC	HCT	UNIIS	
Propagation Delay t _{PLH}					
nCP0 to Q0 Output		14	17		
nCP1 to Q3	15	15	18	ns	
MR to Qn Output tent		16	18	4, 4	
Power Dissipation Capacitance* CPD	_	28	32	pF	

*CPD is used to determine the dynamic power consumption, per counter.

PD = $C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where: f_i = input frequency

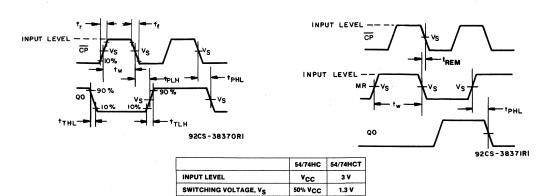
fo = output frequency

CL = output load capacitance

Vcc = supply voltage

PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM	IITS						
1.9		TEST		25	°C	17	-4	0°C t	o +85°	°C	-5	5°C to	+125	°C]
CHARACTERISTI	C	CONDITIONS	Н	нс нст		74HC		74HCT		54	нС	54HCT		UNITS	
		V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.]
Maximum Clock	f MAX	2	6	_	_	—	5	_	_	_	4	T —	_		
Frequency		4.5	30	- ,	27	 	24	—	22	_	20	l —	18	_	
		6	35	_	_		28	_	_	_	24	_	_	_]
Clock Pulse Width	tw	2	80	_	_	_	100	_		_	120	_	1	_	
nCP0, nCP1		4.5	16	-	19	-	20	_	24	l —	24	_	29	_	
		6	14	-	_	_	17	_	_	-	20	-	l —	 	
Reset Removal Time	t _{REM}	2	70	_	_	_	90	_	_	_	105	_	_	_	ns
		4.5	14		15	—	18	_	19	l —	21		22	_	
		6	12	<u> </u>	_	l —	15	_	_	—	18	—	-	l —	
Reset Pulse Width	tw	2	50	_	_	_	65	_	_	T —	75	T-	T —	_	1.
		4.5	10	-	13	—	13	_	16		15	-	20	-	
		6	9	_	_	_	11	_	_		13	_	—	—	



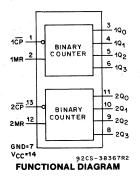

Fig. 3 - Input pulse pre-requisite, propagation-delay, and output-transition times.

Fig. 4 - Master-Reset pre-requisite and propagation-delay times.

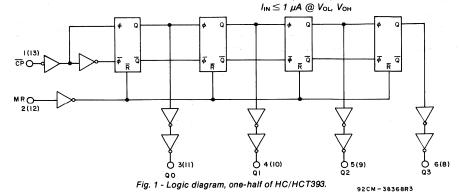
SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t, = 6 ns)

		l					LIN	IITS		14				
CHARACTERISTIC	VCC		25	°C		-4	0°C t	o +85	°C	-5	5°C to	+125	°C	UNITS
GIIANAG I EMIGNIO	(v)	Н	C		CT		HC .		ICT		НС		ICT	UNITS
	(*)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay, t _{PLH}	2	-	175	_	_	_	220	_	_	_	265	_	_	
Time: t _{PHL}	4.5	-	35	-	40	_	44	-	50	—	53	_	60	
nCP0 to nQ0	6		30	_	-	_	37		_		45	_	<u> </u>	
	2	-	185	-	_	_	230	_	_	_	280	_	-	
nCP1 to nQ1	4.5	l —	37	_	43	-	46		51		56	—	65	
	6	-	31	 -	_	_	39	_	_		48		-	
	2	_	245	_	_	_	305	_	_	_	370	_	_	
nCP1 to nQ2	4.5	_	49	—	55	-	61	-	69	_	74	-	83	
	6		42	_	—		52	_	_	_	63	l —	_	
	2	_	180	-	_	_	225	_	_	_	270	_	_	
nCP1 to nQ3	4.5		36	l —	42	_	45	_	53		54	l –	63	ns
	6	_	31	_	_		38	_	_		46	l —	_	
nCP0 to nQ2	2	 	365	_	_	_	455	_		_	550	_	_	
(nQ0 connected to nCP1)	4.5	 	73		84	 —	91	l —	105	l —	110	l —	126	
	6	-	62	l — .	_	 	77	_	_	_	94	l —	 	
	2		190	_	_	_	240	-	_	-	285	_	_	
MR to Qn	4.5	_ "	38	<u> </u>	42	_	48		53	_	57	_	63	
	6	_	32		_	_	41		 	_	48	_	_	
Output Transition t _{THL}	2	 	75		_	_	95	_	_	_	110	_	_	
Time t _{TLH}	4.5	'	15	l —	15		19	_	19	_	22	_	22	
	6	_	13	_	_	_	16	_		_	19		l —	
Input Capacitance C ₁	1 –	T —	10	_	10		10	_	10	_	10		10	pF

High-Speed CMOS Logic

Dual 4-Stage Binary Counter

Type Features:


- Fully static operation
- Buffered inputs
- Common reset
- Negative-edge clocking
- Typical $f_{MAX} = 60 \text{ MHz}$ @ $V_{cc} = 5V$, $C_L = 15 \text{ pF}$, $T_A = 25^{\circ} \text{ C}$

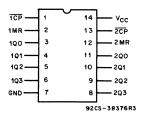
The RCA-CD54/74HC393 and CD54/74HCT393 are 4-stage ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of the stage advances one count on the negative transition of each clock pulse; a high voltage level on the MR line resets all counters to their zero state. All inputs and outputs are buffered.

The CD54HC393 and CD54HCT393 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC393 and CD74HCT393 are supplied in 14-lead dual-in-line plastic package (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}=30%, N_{IH}=30% of V_{CC} @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc): (Voltages referenced to ground)-0.5 to +7 V POWER DISSIPATION PER PACKAGE (PD): For T_A = -40 to +70°C (PACKAGE TYPE M) 400 mW For T_A = +70 to +125°C (PACKAGE TYPE M) Derate Linearly at 6 mW/°C to 70 mW OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE F, H-55 to +125°C PACKAGE TYPE E, M.....-40 to +85°C STORAGE TEMPERATURE (Tstg)....-65 to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max. +265°C Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead tips only+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIF	MITS	LINUTO
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range) Vcc:*			
CD54/74HC Types	2	6	.,
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC						CD74HC393/CD54HC393													CD74HCT393/CD54HCT393									
CHARACTERISTIC		TEST CONDITIONS			74HC/54HC TYPE			74HC 54HC TYPE TYPE		TEST CONDITIONS			TYPE		74HCT TYPE		54HCT TYPE											
	V _i	lo	Vcc	,	·25° C	;	-40 +85		-5: +12!		Vı	V _{cc}	,	+25° C		i	-40/ +85°C		5/ 5°C	UNITS								
	٧	mA	v	Min	Тур	Max	Min	Max	Min	Max	٧	v	Min	Тур	Max	Min	Max	Min	Max									
High-Level			2	1.5	_		1.5	_	1.5	_		4.5																
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_		to	2	_		2	-	2		v v								
			6	4.2	_	-	4.2	_	4.2	-		5.5				-												
Low-Level			2	_	_	0.5	-	0.5	_	0.5		4.5																
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35		to	_	_	0.8	_	0.8	_ '	0.8	v								
			6	_	_	1.8	_	1.8		1.8		5.5																
High-Level	VIL		2	1.9	_	_	1.9	_	1.9	_	Vil																	
Output Voltage Von	or	-0.02	4.5	4.4	_	_	4.4		4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	v								
CMOS Loads	VIH		6	5.9	_	_	5.9	_	5.9	_	ViH																	
	VIL										Vil			<u> </u>			İ											
	or	-4	4.5	3.98		_	3.84	_	3.7		or	4.5	3.98	_	_	3.84	_	3.7	_	l v								
	VIH	-5.2	6	5.48	_	-	5.34	_	5.2	_	ViH																	
	VIL		2		_	0.1	_	0.1	_	0.1	VIL																	
	or	0.02	4.5	-	_	0.1	_	0.1	_	0.1	or	4.5	_		0.1	_	0.1	_	0.1	V								
	ViH		6			0.1		0.1	_	0.1	V _{IH}							İ										
	VIL		Ť		-						ViL						<u> </u>	<u> </u>	1									
	or	4	4.5	_	_	0.26		0.33		0.4	or	4.5		-	0.26		0.33		0.4	V								
	V _{IH}	5.2	6			0.26		0.33		0.4	ViH	4.0			0.20		0.00		0.,									
Input Leakage	V _{CC}	5.2	Ü			0.20		0.00		0.4	Any Voltage																	
	or Gnd		6	-	- -	±0.1	_	±1	-	±1	Between V _{cc} and Gnd	5.5	-	_	±0.1	-	±1	-	±1	μΑ								
Quiescent Device			-		-						3.13			-		-	†		-									
•	Vcc										Vcc						1											
j.	or Gnd	0	6	_	-	8		80	-	160	or Gnd	5.5	-	-	8	-	80	-	160	μΑ								
Additional				L		L			L			-	11			-	†											
Quiescent Device										1		4.5																
Current per Input Pin: 1 Unit Load ΔI_{cc}^*											Vcc -2.1	to 5.5	-	100	360	-	450	-	490	μΑ								

^{*}For dual-supply systems theoretical worst case (V $_1$ = 2.4 V, V $_{\infty}$ = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
nCP	0.4
nMR	1

^{*}Unit load is Δ I_{cc} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

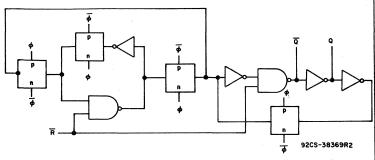


Fig. 2 - Flip-flop logic detail.

TRUTH TABLES

1	CP		OUTF	PUTS	
i	COUNT	Q0	Q1	Q2	Q3
	0	L	L	Г	L
	- 1	Н	L	L	L
	2	L	Н	L	L
	3	Н	Н	L	L
	4	L	L	н	L
	5	н	L	н	L
	6	L	н	н	L
	7	н	Н	Н	L
	8	L	L	L	Н
1	9	Н	L	L	Н
ľ	10	L	н	L	н
I	11	Н	Н.	L	н
J	12	L	L	Н.	н
	13	Н	L	н	.H
	14	L	Н	Н	Н
	15	Н	Н	н	н

CP	MR	OUTPUT
	L	NO CHANGE
1	L	COUNT
Х	Н	LLLL

X = Don't Care

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, Input t_r, t_t = 6 \text{ ns}$)

_		C.	Typical							
CHARACTERISTIC	SYMBOL	pF	нс	HCT	Units					
Propagation Delay nCP to nQ0 Output	t _{PLH} t _{PHL}	15	12	13	V					
Propagation Delay Qn to Qn + 1	t _{PLH}	15	4	4	ns					
Propagation Delay MR to Qn Output	t _{PHL}	15	11	13						
Power Dissipation Capacitance*	C _{PD}	-	20	21	pF					

^{*}C_{PD} is used to determine the power consumption.

C_L=output load capacitance

fi=input frequency

Pre-requisite for Switching Function

				25°C -40°C to +85°C							-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	H	С	H	CT	741	НС	74h	ICT	54	HC	541	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Maximum Clock		2	6	_	_	-	5	-	_	_	4	-	_	_	
Frequency	f _{MAX}	4.5	30	_	27	 	24	_	22	_	20		18	l -	MHz
		6	35	_	-	_	28	_	-	_	24	_		-	
Clock Pulse Width	tw	2	80		 	_	100	_	_	_	120			 	
		4.5	16	-	19	_	20	_	24	_	24		29	—	
		6	14	—	-	- ,	17	_	_		20	_	_	-	
Reset Recovery Time	trec	2	5	-	T-	_	5	T-	-	_	5		_	İ —	
		4.5	5	_	5	_	5	-	5		5	_	5	_	ns
		6	5	_	-	_	5		-	_	5	-	—		
Reset Pulse Width	tw	2	80		! =	—	100	-	_	-	120	Γ-	_	T —	1
1,		4.5	16	-	16	-	20	-	20	_	24	-	24	 -	
		6	14	_	_	-	17	l —	_	 	20		_	-	

PD= $C_{PD} V_{CC}^2 fi + \Sigma (C_L V_{CC}^2 fi/M)$ where: $M=2^1,2^2,2^3,2^4$

SWITCHING CHARACTERISTICS (CL=50 pF, Input t,t=6 ns)

	· · · · · · · · · · · · · · · · · · ·			25	°C		-4	0°C to	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	Н	C	H	CT	74	HC	74F	ICT	54	HC	54F	ICT	UNITS
]	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	tpLH	2	T =	45	_	—	_	55	_	_	_	70		_	
Time:	t _{PHL}	4.5	-	9	-	12		11	-	15	_	14	_	18	
Qn to Qn+1		6		8	_	-	-	9	-	-	— ·	12	_	—	
	tpLH	2	_	150	_	-		190	_		_	225		_	
nCP to nQ0	t _{PHL}	4.5	l —	30	-	32	-	38	-	40	—	45	_	48	
		6		26	_	-		33	_		_	38	_	_	
	t _{PLH}	2	_	190	_	-	_	245		Ι=	_	295	_	_	
nCP to nQ1	t₽HL	4.5		38	-	32	-	49	-	55	_	59	_	66	
		6		33	_	l —	-	42		—		50	_	-	
	tpLH	2		240	_	_	-	300	_	_	_	360	_	_	
nCP to nQ2	t _{PHL}	4.5		48	_	50	<u>-</u>	60	—·	70	 —	72	_	84	ns
		6	l —	41	-	-	l –	51	-	—	-	61	_	-	
	tpLH	2	T -	285	_	_	T —	355	_	_	_	430	_	_	
nCP to nQ3	t _{PHL}	4.5	-	57	-	62	 	71		85	—	86	_	102	
		6	-	48	 -	_	_	60	l —	-	—	73		_	-
MD 4- O-	t _{PLH}	2	_	135	_	_	_	170	_		-	205	_	_	
MR to Qn	t _{PHL}	4.5	_	27		32	-	34	-	40		41	_	48	•
		6	-	23	 	-	—	29	— ·	-	—	35	-	_	
Output Transition	t _{THL}	2	_	75	_		_	95	_	_		110	_		
Time	t _{TLH}	4.5	—	15	-	15	—	19	-	19	-	22	_	22	1
,"		6	-	13	-	-	-	16	_	—	-	19	_	_	
Input Capacitance	Cı		T —	10	_	10	_	10	_	10	_	10	_	10	pF

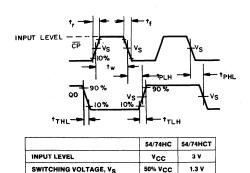


Fig. 3 - Clock pre-requisite, propagation-delay, and output-transition times.

92CS-38370R2

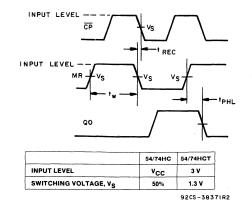
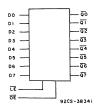



Fig. 4 - Master-Reset pre-requisite and propagation-delay times.

High-Speed CMOS Logic

Octal Inverting Transparent Latch, 3-State Outputs

Type Features:

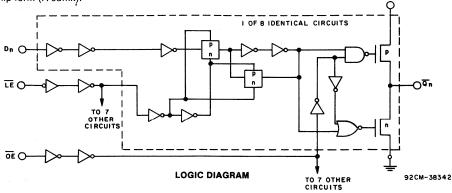
- Common latch-enable control
- Common 3-state output-enable control
- Buffered inputs
- 3-State outputs
- Bus line driving capacity

FUNCTIONAL DIAGRAM

Typical propagation delay = 13 ns @ $V_{CC} = 5 V$, $C_L = 15 pF$, $T_A = 25^{\circ} C$ (Data to Output)

The RCA CD54/74HC/HCT533/563 are high-speed Octal Transparent Latches manufactured with silicon gate CMOS technology. They possess the low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LSTTL devices.

The outputs are transparent to the inputs when the latch enable (LE) is high. When the latch enable (LE) goes low the data is latched. The output enable (OE) controls the 3-state outputs. When the output enable (OE) is high the outputs will be in the high impedance state. The latch operation is independent of the state of the output enable.

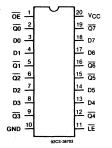

The CD54/74HC533 and CD54/74HCT533 are identical in function to the CD54/74HC563 and CD54/74HCT563 but have different pinouts. The CD54/74HC533 and CD54/ 74HCT533 are similar to the CD54/74HC373 and CD54/ 74HCT373; the latter are non-inverting types.

The CD54HC/HCT533/563 are supplied in 20-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT533/563 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

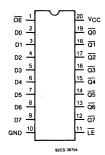
Family Features

- Fanout (Over Temperature Range): Standard Outputs — 10 LSTTL Loads Bus Driver Outputs — 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$: @ $V_{cc} = 5 V$
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility $V_{\rm IL} = 0.8 \ V \ Max., \ V_{\rm IH} = 2 \ V \ Min.$ CMOS Input Compatibility $I_1 \le 1 \mu A$ @ V_{OL} , V_{OH}

v_{cc}


MAXIMUM RATINGS, Absolute-Maximum Values:

The state of the s	
DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{1K} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} + 0.5$ V)	± 20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} + 0.5$ V)	± 20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vcc $+$ 0.5 V)	± 35 mA
DC V _{CC} OR GROUND CURRENT (I _{CC}):	\pm 70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	-55 to +125°C
PACKAGE TYPE E, M	-40 to +85°C
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder co	
RECOMMENDED OPERATING CONDITIONS:	


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	NITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{IN} , V _{OUT}	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r , t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

CD54/74HC533, CD54/74HCT533 TERMINAL ASSIGNMENT

CD54/74HC563, CD54/74HCT563 **TERMINAL ASSIGNMENT**

STATIC ELECTRICAL CHARACTERISTICS

			CD74HC533/CD54HC533 CD74HC563/CD54HC563											CD74							
		TEST CONDITIONS		ŀ	IC/54		741 TY		ı	HC PE	TEST CONDITION			CT/54 TYPE		74HCT TYPE			ICT PE		
CHARACTERIST	ric	V,	l _o	Vcc	-	+25°C	;	-4 +85		ı	55/ 25°C	V,	Vcc	-	+25°C	;	ı	10/ 5°C		5/ :5°C	UNITS
		V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_		1.5	_	1.5	_		4.5								
Input Voltage	ViH			4.5	3.15		_	3.15	_	3.15	_	_	to	2	_	_	2	_	2	_	v
		-		6	4.2		_	4.2	_	4.2	_		5.5					<u> </u>			
Low-Level				2	1	-	0.5	-	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_		1.35	-	1.35		1.35	_	to	_		0.8	-	0.8	_	0.8	v ·
				6	_		1.8		1.8		1.8		5.5								
High-Level		VIL		2	1.9	_		1.9	_	1.9		VIL						1			
Output Voltage	V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	_	4.4	-	4.4	_	v
CMOS Loads		Vін		6	5.9			5.9	_	5.9	_	Vін									
		VIL										VıL									
TTL Loads		or	-6	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	_	v
(Bus Driver)		V _{IH}	-7.8	6	5.48	_	_	5.34	_	5.2	_	V _{IH}					ļ				
Low-Level		VIL		2	_	_	0.1		0.1	_	0.1	VIL									
Output Voltage	Vol	or	0.02	4.5		_	0.1		0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	_	0.1	v
CMOS Loads		V _{IH}		6			0.1	_	0.1	_	0.1	V _{IH}					<u></u>				
		VIL					<u> </u>					V _{IL}						İ			
TTL Loads		or	6	4.5	_	_	0.26		0.33		0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
(Bus Driver)		Vін	7.8	6			0.26		0.33	_	0.4	V _{IH}					<u> </u>		_		
Input Leakage		Vcc										Any Voltage									
Current	l _i	or		6	_	-	±0.1		±1	-	±1	Between V _{cc} &	5.5	-	-	±0.1	-	±1	-	±1	μА
		Gnd		<u> </u>	<u> </u>							Gnd		<u> </u>		<u> </u>		<u> </u>	_	<u> </u>	
Quiescent		Vcc										Vcc									
Device		or	0	6	-	-	8	-	80	-	160	or Gnd	5.5	-	-	8	-	80	-	160	μΑ
Current	lcc	Gnd											_	<u> </u>			_		L	<u> </u>	
Additional Quiescent Device Current per input pin: 1 unit load Δlcc*												V _{cc} -2.1	4.5 to 5.5	-	100	360	-	450	-	490	μΑ
3-State Leakage Current	loz	V _{IL} or V _{IH}	V _o =V _{cc} or Gnd	6	_	-	±0.5		±5.0	_	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	-	±5.0	_	±10	μА

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
DO — D7	0.15
l Œ	0.30
ŌĒ	0.55

^{*}Unit load is Δl_{cc} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25°C.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, input t,t=6 ns)

			T	PICAL	VALU	ES	
CHARACTERISTIC		C _L	Н	С	Н	CT	UNITS
		(pF)	533	563	533	563	1
Propagation Delay Data to Qn Output Fig. 3	t _{PLH} t _{PHL}	15	13	12	14	12	
Propagation Delay LE to Qn Output Fig. 4	t _{PLH}	15	14	13	16	14	
Output High Z to High Level, Fig. 6	t _{PZH}	15	12	12	14	14	ns
Output High Z to Low Level, Fig.7	tpzL	15	12	12	14	14	1
Output High Level to High Z, Fig. 6	t _{PHZ}	15	12	12	12	14	1
Output Low Level to High Z, Fig. 7	t _{PLZ}	15	12	12	12	14	1
Power Dissipation Capacitance	C _{PD} *		42	42	42	42	pF

^{*} C_{PD} determines the no-load dynamic power consumption per latch. It is obtained by the following relationship: P_D (total power per latch) = $C_{PD} V_{CC}^2 f_1 + \Sigma C_L V_{CC}^2 f_0$ where f_1 = input frequency

fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage.

PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM	IITS						
		TEST		25	°C		-4	10°C to	o +85°	С	-55° to +125°C				
CHARACTERI	STIC	CONDITION	НС		нст		74	74HC		74HCT		НС	54HCT		UNITS
		V CC	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	
LE Pulse Width	tw	2	80	-	_		100	-	_	_	120	_		_	
(Fig. 4)	-	4.5	16	-	16	_	20	-	20		24	-	24		ns
		6	14				17				20			_	
Set-up Time	tsu	2	50	l —	_	_	65	_	_	_	75	_		_	
Data to LE		4.5	10	—	10	-	13	—	13	_	15	-	15		ns
(Fig. 5)		6	9	_	_	_	11	_	_		13	-	_		
Hold Time	t _H	2	35	_	_	_	45		_	_	55	_	_		
Data to LE	533	4.5	7	—	8	_	9	_	10	l. —	11	_	12	_	ns
(Fig. 5)		6	6	-	-	_	8	_	-	-	7	-	_	_	
		2	4	_	_	_	4	-	_	_	4	_	_		
	563	4.5	4	-	5	-	4	_	5		4	_	5	_	ns
		6	4	-	_	-	4	_	_	-	4	-		-	

TRUTH TABLE

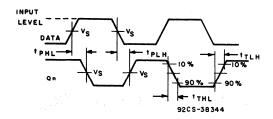
Output Enable						
L	Н	н	L			
L	н	L	н			
L	L	1	н			
L	L	h	L			
н	х	x	z			

Note:

L = Low voltage level

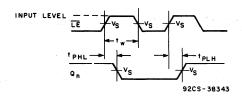
 $\mathsf{H} = \mathsf{High} \; \mathsf{voltage} \; \mathsf{level}$

I = Low voltage level one set-up time prior to the high to low latch enable transition


h = High voltage level one set-up time prior to the high to low latch enable transition

X = Don't care

Z = High impedance state


SWITCHING CHARACTERISTICS (CL = 50 pF, input t_f,t_f = 6 ns)

	``							LIM	IITS						
				+25	°C		-4	0°C t	o +85°	,C	-5	5°C to	+125	°C	1
CHARACTERI	STIC	CONDITIONS	Н	C	H	CT	74	HC	74F	ICT	54	HC	54F	ICT	UNITS
4 1		VCC (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay	/ t _{PLH}	2	T —	165	_	_	_	205	_	_	_	250	_	T-	
Data to Qn	t _{PHL}	4.5	—	33		34		41		43		50	_	51	ns
4 **	533	6	 -	28		_	_	35	_	_		43	_	-	
-	t _{PLH}	2	_	175	_	_	_	220	Γ-	_	_	265	_	_	
LE to Qn	t _{PHL}	4.5	 -	35	-	38	_	44	'	48	_	53	-	57	ns
	533	6	_	30	_	_	_	37			_	45	_		
Enable Times	t _{PZH}	2	_	150	_	_	_	190	_	_	_	225	_	_	
	tezL	4.5	 –	30	l —	35	_	38		44	-	45		53	ns
	533	6	_	26		_	_	33	 	 —	_	38		-	1
Disable Times	t _{PHZ}	2	_	150	_	_	_	190	_	_	_	225	_	_	
	t _{PLZ}	4.5	_	30	_	30		38	_	38	_	45	_	45	ns
	533	6	l —	26		_	_	33		—	_	38	_	_	
Propagation Delay	/ t _{PLH}	2	_	150	_	_	_	190		_	_	225	_	_	
Data to Qn	t _{PHL}	4.5	l —	30	_	30	_	38	_	38	_	45	l –	45	ns
	563	6	_	26	_	_	_	33	_	_		38	—	_	
	t _{PLH}	2	_	165	T-	_	_	205	_	_	_	250	_	Ī —	
LEto Qn	t _{PHL}	4.5	 —	33	_	35	_	41		44		50	—	53	ns
	563	6	—·	28	l –	_	-	35	_	 	_	43	_	-	
Enable and	t _{PZH} , t _{PZL}	2	_	150	_	_	_	190	_	_	_	225	_	_	
Disable Times	t _{PHZ} , t _{PLZ}	4.5		30	l —	35	_	38	-	44		45	—	53	ns
	563	6	_	26	_	-		33	_	—	_	38	-	-	
Input Capacitance	C _i		_	10	<u> </u>	10	_	10		10	_	10	_	10	pF
3-State Output Capacitance	Со		_	20	_	20		20		20	_	20		20	pF

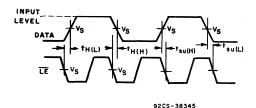
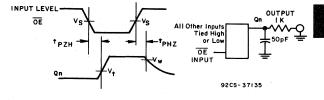
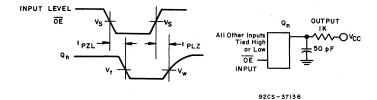

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V

Fig. 3 — Data to Q_n output propagation delays and output transition times.



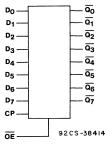
	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V

Fig. 4 — Latch enable propagation delays.


	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V

	54/74HC	54/74HCT			
Input Level	Vcc	3 V			
Vs	50% V _{cc}	1.3 V			
V,	50% V _{cc}	1.3 V			
٧,,	90% V _{cc}	4.15 V			

Fig. 5 — Latch enable pre-requisite times.


Fig. 6 - 3-state propagation delays.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
٧s	50% V _{cc}	1.3 V
V _t	50% V _{cc}	1.3 V
V _w	10% V _{cc}	0.45 V

Fig. 7 — 3-state propagation delays.

High-Speed CMOS Logic

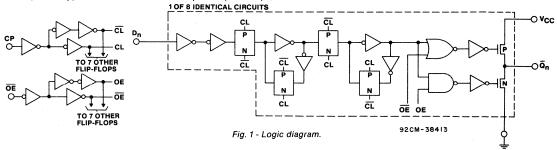
Octal D-Type Flip-Flop, 3-State, Inverting Positive-Edge Triggered

Type Features:

- Common 3-state output-enable control
- Buffered inputs
- 3-State outputs
- Bus line driving capability
- Typical propagation delay = 13 ns @ V_{cc} = 5V, C_L = 15 pF, T_A = 25°C (clock to output)

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC534, 564 and CD54/74HCT534, 564 are high speed OCTAL D-TYPE FLIP-FLOPS manufactured with silicon gate CMOS technology. They possess the low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LSTTL loads. Due to the large output drive capability and the 3-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system. The two types are functionally identical and differ only in their pinout arrangements.


The CD54/74HC534, 564 and CD54/74HCT534, 564 are positive edge triggered flip-flops. Data at the D inputs, meeting the setup and hold time requirements, are inverted and transferred to the Q outputs on the positive going transition of the CLOCK input. When a high logic level is applied to the OUTPUT ENABLE input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The CD54/74HCT logic family is speed, function, and pin compatible with the standard 54LS/74LS logic family.

The CD54HC and CD54HCT devices are supplied in 20-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC and CD74HCT devices are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

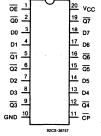
Family Features:

- Fanout (Over Temperature Range):
 Standard Outputs 10 LSTTL Loads
 Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL}=30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL}=0.8 V Max., V_{IH}=2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} + 0.5$ V)	± 20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	± 35 mA
DC V _{CC} OR GROUND CURRENT (I _{CC}):	
POWER DISSIPATION PER PACKAGE (Pp):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85 °C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LIMITS				
CHARACTERISTIC	MIN.	MAX.	UNITS			
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{CC} :*						
CD54/74HC Types	2	6	V			
CD54/74HCT Types	4.5	5.5	V			
DC Input or Output Voltage V _I , V _O	0	Vcc	V			
Operating Temperature T _A :						
CD74 Types	-40	+85	°c			
CD54 Types	-55	+125	°C			
Input Rise and Fall Times, t, tr						
at 2V	0	1000	ns			
at 4.5 V	0	500	ns			
at 6V	0	400	ns			

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TRUTH TABLE

	Inputs							
ŌĒ	СР	Dn	Qn					
L	_~	Н	L					
L		L	н					
L	L	X	No Change					
Н	X	X	Z					

Top View CD54/74HC, HCT534 Types TERMINAL ASSIGNMENT

Top View CD54/74HC,HCT564 Types TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

				74HC													1CT5			
	1	TEST CONDITIONS		ı	74HC/54HC 74HC 54HC TEST 74HCT/54HCT 74HCT 54HC TYPE TYPE TYPE CONDITIONS TYPE TYPE TYPE		74HC/54HC TYPE			1 . 1										
CHARACTERISTIC	V,	l _o	Vcc	-	+25°0	;	-4 +8		l	i5/ !5°C	V _i	Vcc	-	+25°C		-4 +85		-55/ +125°C		UNITS
	V	mA .	·V	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_		3.15	_	3.15	_	_	to	2	_	-	2	_	2	-	v
			6	4.2			4.2		4.2	_		5.5								
Low-Level			2	_		0.5	_	0.5	_	0.5		4.5			-					
Input Voltage V _{IL}			4.5	_		1.35	_	1.35	_	1.35	-	to	1	-	0.8	-	8.0	-	0.8	V
	ļ		6	_		1.8	_	1.8		1.8		5.5				_				
High-Level	VIL		2	1.9		_	1.9	_	1.9	_	VIL		ľ	-						
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}				_					
	VIL										VIL									
TTL Loads	or	-6	4.5	3.98	_		3.84	_	3.7	_	or	4.5	3.98		-	3.84	-	3.7	-	v
(Bus Driver)	V _{IH}	-7.8	6	5.48	_	_	5.34		5.2	_	ViH							ļ		<u></u>
Low-Level	VıL		2	_	· _	0.1		0.1	_	0.1	V _{IL}									
Output Voltage VoL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	_	0.1	-	0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	VIL							<u></u>			VIL									
TTL Loads	or	6	4.5		_	0.26		0.33	_	0.4	or	4.5	-	_	0.26	_	0.33	-	0.4	V
(Bus Driver)	V _{IH}	7.8	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage Current I ₁	V _{cc} or		6	-	-	±0.1	_	±1	-	±1	Any Voltage Between V _{cc} &	5.5	-	_	±0.1	-	±1.	_	±1	μΑ
	Gnd		ļ	<u> </u>	<u> </u>						Gnd									
Quiescent	Vcc										Vcc						Ī			
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	_	8	-	80	-	160	μΑ
Current Icc	Gnd	l· .			<u> </u>			<u> </u>	<u> </u>	L	Gnd	<u> </u>			<u> </u>			L		
Additional Quiescent Device Current per input pin: 1 unit load											V _{cc} -2.1	4.5 to 5.5	-	100	360		450	_	490	μΑ
3-State Leakage Current loz	V _{IL} or V _{IH}	V _o =V _{ee} or Gnd	6	_		±0.5	_	±5.0	_	±10	V _{IL} or V _{IH}	5.5	_	_	±0.5	_	±5.0	-	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

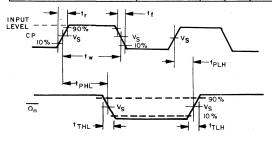
Input	Unit Loads*
D ₀ — D ₇	0.15
CP	0.30
ŌĒ	0.55

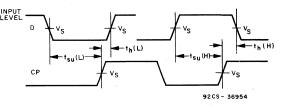
^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, Input t_s , $t_t = 6 \text{ ns}$)

	• -	C _L	TYP	ICAL	14 Y 18
CHARACTERISTIC		(pF)	нс	нст	UNITS
Propagation Delay Clock to Q	t _{PLH}	.15	13	14	ns
Propagation Delay Output Disable to Q	t _{PLZ}	15	12	12	ns
Propagation Delay Output Enable to Q	t _{PZL}	15	12	14	ns
Maximum Clock Frequency	f _{max}	15	60	50	MHz
Power Dissipation Capacitance*	CPD	_	32	36	pF

* C_{PD} is used to determine the dynamic power consumption, per package. $P_D = C_{PD} \; V_{Cc}^2 f_i + \Sigma \; C_L \; V_{Cc}^2 f_o \;$ where: $F_i =$ input frequency $f_o =$ output frequency,


 C_L = output load capacitance, V_{CC} = supply voltage.


PREREQUISITE FOR SWITCHING FUNCTION

							LIM	IITS			-			
	TEST		25	° C		-4	0° C t	o +85°	C	-55	5° C to	+125	° C	
CHARACTERISTIC	CONDITION	Н	C	Н	СТ	74	нС	741	1CT	54	нс	54H	нст	UNITS
	VCC	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock	2	6	I —	-	_	5	_	_	_	4	_	_	_	i.
Frequency f _{max}	4.5	30	_	25	_	25	 -	20	-	20	1-	16	-	MHz
	6	35	-	-		29			-	23	_	-	_	Į
Clock Pulse Width tw	2	80	-	_		100	_	_	_	120	T =	_		
Fig. 2	4.5	16	-	20	-	20	-	25	 -	24		30	-	ns
rig z	6	14	_	-		17	-	-	-	20		-	-	
Set-up Time	2	60		_	_	75	_	_	_	90	-	_	T	
Data to Clock	4.5	12	-	20	-	15	-	25		18	-	30	-	ns
Fig. 3 tsu	6	10	_	_		13	_	_	-	15	-	_	-	1
Hold Time	2	5	_	_	— T	5	_	_	_	5	_	_	I	
Data to Clock 534	4.5	5	_	5	_	5	-	5	-	5	l —	5	-	ns
Fig. 3 tн	6	5	·		_	5		,	-	5	_	-	-	
	2	5		_		5	_	. —	_	5	_	_	_	
564	4.5	5	—	3	-	5	-	3	_	5	-	3		ns
t _H	6	5	_	_		5				5	_		_	

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_f = 6 \text{ ns}$)

		TEST		25	°C		4	0°C to	+85	°C	-5	5°C to	+125	°C	
CHARACTERIST	IC .	CONDITION	Н	C	Н	СТ	74	нс	741	ICT	54	нс	54H	ICT	UNITS
127 - K		V _{cc}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay Clock to Output Fig. 2	t _{PLH} t _{PHL}	2 4.5 6		165 33 28	_	_ 35 _	_ 	205 41 35	- - -	- 44 -	_ 	250 50 43	_ 	53 —	ns
Propagation Delay Output Disable to Q Fig. 4 534	t _{PLZ}	2 4.5 6	_	150 30 26		- 30 -	_ _ _	190 38 33	- - -	38 —		225 45 38	_	45 —	ns
Propagation Delay Output Disable to Q Fig. 4 564	t _{PLZ}	2 4.5 6		135 27 23	_ _ 	30 —	_ _ _	170 34 29	_	38 —	_	205 41 35	_	45 —	ns
Propagation Delay Output Enable to Q Fig. 4	t _{PZL}	2 4.5 6	_	150 30 26	- -	35 —	= 1	190 38 33	_	44		225 45 38	_	 53 	ns
Output Transition Time Fig. 2	t _{TLH} t _{THL}	2 4.5 6	_ _	60 12 10	_ _ _	_ 12 _	-	75 15 13	-	15 —	_ _ _	90 18 15	_ _ _	18 —	ns
Input Capacitance	Сі	_	_	10	_	10	_	10	_	10	_	10	_	10	pF
3-State Output Capacitance	Co	- ·	_	20		20	_	20	_	20	_	20		20	pF

92CS-38442

	54/74HC	54/74HCT
Input Level	Vcc	3 V
V _s	50% V _{cc}	1.3 V

Fig. 2-Clock to output delays and clock pulse width.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{cc}	1.3 V


Fig. 3 — Data set-up and hold times.

t _r = 6 ns	→ t _f = 6 ns
ŌĒ	90 % Vs 10 %
OUTPUT LOW TO OFF	- 10 %
OUTPUT HIGH TO OFF	90 %
OUTPUTS CONNECTED	OUTPUTS DISCONNECTED 92CS-38407

	54/74HĊ	54/74HCT
Input Level	Vcc	3 V
Vs	50% V _{CC}	1.3 V

Fig. 4 — Transition times and propagation delay times.

High-Speed CMOS Logic

Octal Buffer and Line Drivers, 3-State

Type Features:

- 540 Inverting
- 541 Non-Inverting
- Buffered Inputs
- 3-State Outputs
- Bus Line Driving Capability
- Typical Propagation Delay = 9 ns
- @ $V_{CC} = 5 V$, $C_L = 15pF$, $T_A = 25^{\circ} C$

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC540 and CD54/74HCT540 are Inverting Octal Buffers and Line Drivers with 3-State Outputs and the capability to drive 15 LSTTL loads. The RCA-CD54/74HC541 and CD54/74HCT541 are Non-Inverting Octal Buffers and Line Drivers with 3-State Outputs that can drive 15 LSTTL loads. The Output Enables $\overline{(OE1)}$ and $\overline{(OE2)}$ control the 3-State Outputs. If either $\overline{OE1}$ or $\overline{OE2}$ is HIGH the outputs will be in the high impedance state. For data output $\overline{OE1}$ and $\overline{OE2}$ both must be LOW.

The CD54HC and CD54HCT devices are supplied in 20-lead ceramic dual-in-line packages (F suffix). The CD74HC and CD74HCT devices are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range:
 - CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:2 to 6 V Operation
 - High Noise Immunity:
 - $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$: @ $V_{\rm CC} = 5~V$
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - $V_{IL} = 0.8 V Max., V_{IH} = 2 V Min.$
 - CMOS Input Compatibility
 - $I_{\rm I} \leq$ 1 μA @ $V_{\rm OL},~V_{\rm OH}$

TRUTH TABLE

	NPUTS	3	OUT	PUTS
OE1	OE2	An	HC/ HCT540	HC/ HCT541
L	L	Н	L	Н
Н	X	Х	Z	Z
X	Н	Х	Z	Z
L	L	L	H	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±35mA
DC V _{CC} OR GROUND CURRENT, PER PIN (I _{CC})	,
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For $T_A = -40$ to $+60^{\circ}$ C (PACKAGE TYPE E) For $T_A = +60$ to $+85^{\circ}$ C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
	,,
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = +70 to +125°C (PACKAGE TYPE M). OPERATING TEMPERATURE RANGE (T.)	
For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = +70 to +125° C (PACKAGE TYPE M). OPERATING-TEMPERATURE RANGE (T _A):	
For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = +70 to +125° C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H	
For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = +70 to +125°C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H PACKAGE TYPE E, M	
For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = +70 to +125° C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H	
For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = +70 to +125° C (PACKAGE TYPE M). OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H. PACKAGE TYPE E, M. STORAGE TEMPERATURE (T _{S10}) LEAD TEMPERATURE (DURING SOLDERING):	
For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = +70 to +125°C (PACKAGE TYPE M). OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H. PACKAGE TYPE E, M. STORAGE TEMPERATURE (T _{sto}) LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max. Light inserted into a PC Board (min. thickness 1/16 in. 1.59 mm)	
For T _A = -40 to +70° C (PACKAGE TYPE M) For T _A = +70 to +125° C (PACKAGE TYPE M). OPERATING-TEMPERATURE RANGE (T _A): PACKAGE TYPE F, H. PACKAGE TYPE E, M. STORAGE TEMPERATURE (T _{S10}) LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max.	

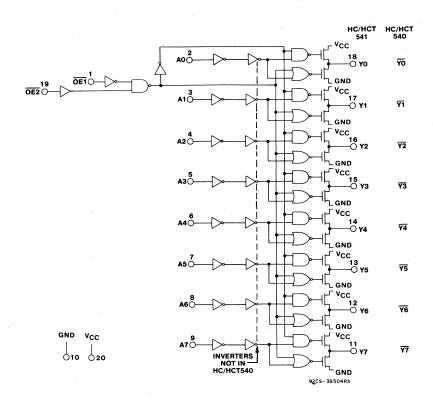


Fig. 1 — Logic diagram for the CD54/74HC/HCT 540 & 541

STATIC ELECTRICAL CHARACTERISTICS

				IC540.									74HC						:	
CHARACTERISTIC	TEST CONDITIONS				74HC/54HC TYPES			74HC 54HC TYPE TYPE		TEST CONDITION		CT/54 TYPE		74HCT TYPE		54HCT TYPE				
CHARACTERISTIC	V, V	I _o mA	V _{cc}		+25° C		1	0/ 5° C		5/ 5° C	V,	V _{cc}		+25° C	;		10/ 5° C	1	5/ 5° C	UNITS
				Min	Тур	Max	Min	Max	Min	Max		•	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	-	1.5	-	1.5	-		4.5								
Input Voltage V _{IH}			4.5	3.15	_		3.15	_	3.15	_	. <u> </u>	to	2	-		2	-	2	-	v
		-	6	4.2	_	-	4.2	-	4.2	_		5.5			_		_		_	
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5							-	
Input Voltage V _{IL}			4.5	-	_	1.35	_	1.35	-	1.35	-	to	-	-	0.8	-	0.8	-	0.8	V
			6	_	_	1.8	_	1.8	_	1.8	-	5.5								
High-Level	VIL	0.00	2	1.9	_	-	1.9	_	1.9	-	VıL					١				
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	-	4.4	_	4.4		or	4.5	4.4	-	-	4.4	-	4.4	-	V
CMOS Loads	, V _{IH}		6	5.9		_	5.9	_	5.9	_	V _{IH}								-	
TTL Loads	V _{IL}	-6	4.5	3.98		-	3.84	ļ	3.7	-	V _{اد}	4.5	3.98			3.84		3.7		v
(Bus Driver)	V _{IM}	-7.8	6	5.48		_	5.34	-	5.2		1	4.5	3.96	_	-	3.64	-	3.7	-	, v
Low-Level	VIL	-7.0	2	5.40		0.1	J.34	0.1	5.2	0.1	V _{IH}		-					-		
Output Voltage Vol	or	0.02	4.5	=	_	0.1		0.1	_	0.1	or	4.5			0.1		0.1		0.1	v
CMOS Loads	V _{IH}	0.02	6	-		0.1		0.1		0.1	V _{IH}	4.3	-		0.1		0.1		0.1	
	V _{IL}		<u> </u>			-		0.1		0.7	VIL							-		
TTL Loads	or	6	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v .
(Bus Driver)	V _{tH}	7.8	6	_	_	0.26	_	0.33	-	0.4	V _{IH}									
Input Leakage	V _{cc}										Any .									
Current I,	or Gnd		6	-	-	±0.1	.—,	±1		±1	Voltage Between V _{cc}	5.5	-		±0.1	_	±1	_	±1	μΑ
Quiescent											& Gnd				-			-	_	
Device	V _{cc}	0	6	_	_	8		80	_	160	V _{cc} or	5.5	_	_	8		80		160	μΑ
Current I _{cc}	Gnd							1		100	Gnd	5.5			0		00	_	100	μ
Additional Quiescent Device Current per input pin: 1 unit load		1				:					V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ
3-State	V _{1,7} ,	V = V _{CC}									V									
Leakage Current	or	or	6	-	-	±0.5		±5.0	-	±10	or	5.5	-	-	±0.5	-	±5.0	-	±10	μΑ
loz	V _{IH}	Gnd				L	1			1	V _{IH}									

*For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA. HCT Input Loading Tables

CD54/74	4 HCT 540
Input	Unit Loads*
A0 — A7	1
A ₀ — A ₇ OE2	0.75
ŌĒ1	1.15

CD54/74	HCT 541
Input	Unit Loads*
A0 — A7	0.4
ŌE2	0.75
ŌE1	1.15

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25°C.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LIAUTO	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{IN} , V _{OUT}	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	ns
at 4.5 V	0.	500	ns
at 6 V	0	400	ns

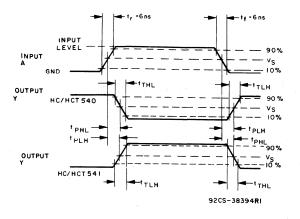
^{*}Unless otherwise specified, all voltages are referenced to Ground.

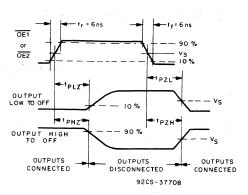
SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t,ti=6 ns)

CHARACTERISTIC		C _L	5	40	5	41	UNITS
<u> </u>		(pF)	HC	HCT	HC	HCT	1
Propagation Delay		45			_		
Data to Output	t _{PHL} t _{PLH}	15	9	9	9	11	ns
Output Enable and Disable to Outputs	t _{PZH} , t _{PZL} , t _{PHZ} , t _{PLZ}	15	13	14	14	14	ns
Power Dissipation Capacitance*	C _{PD}		50	55	48	55	pF

^{*}C_{PD} is used to determine the dynamic power consumption per channel.

 $PD = V_{CC}^2 f_i \left(C_{PD} + C_L \right)$


f_i = input frequency,


C_L = output load capacitance

V_{CC} = supply voltage

SWITCHING CHARACTERISTICS (CL=50 pF, Input tr, tr=6 ns)

				25	°C		-4	0°C to	o +85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	HC		HCT		74HC		74HCT		54HC		ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	-	110	_		_	140			_	165	_	_	
Data to Outputs	t _{PHL}	4.5	_	22		24		28	_	30	-	33	_	36	ns
HC/HCT 540		6	l –	19	_	_	_	24	_	_	_	28	_	_	
Propagation Delay	t _{PLH}	2	I	115	_	_		145	_	_	_	175		_	
Data to Outputs	t _{PHL}	4.5	_	23	l —	28		29	_	35	_	35	_	42	ns
HC/HCT541		6	-	20	_			25	_	l —		30		_	
Propagation Delay	t _{PZH} , t _{PZL} ,	2		160	_	_		200		_	_	240	_		
Output Enable and	t _{PHZ} ,	4.5	_	32		35		40		44		48		53	ns
Disable to Outputs	t _{PLZ}	6	_	27	_	—	_	34	_	_	_	41	_	_	
Output Transition	t _{TLH}	2	_	60	_	_		75			_	90	_	_	
Time	t _{THL}	4.5	<u> </u>	12	_ ,	12	_	15		15		18		18	ns
	-	6	-	10	-	_	_	13	_	_	_	15		_	ľ
Input Capacitance	Cı			10	_	10	_	10	_	10		10	_	10	pF
3-State Output Capacitance	Co			20	_	20	_	20	_	20	_	20	-	20	pF

and Arminia	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _s	50% V _{CC}	1.3 V

Fig. 3 — Transition times and propagation delay times.

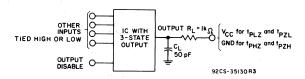
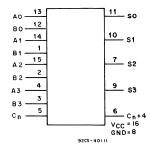



Fig. 4 — Three-state propagation delay test circuit.



CD54/74HC, HCT540 Types TERMINAL ASSIGNMENT

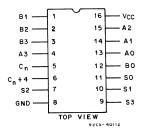
CD54/74HC, HCT541 Types TERMINAL ASSIGNMENT

High-Speed CMOS Logic

4-Bit BCD Full Adder With Fast Carry

Type Features:

- Adds two decimal numbers
- Full internal lookahead
- Fast ripple carry for economical expansion


FUNCTIONAL DIAGRAM

The RCA-CD54/74HC583 and CD54/74HCT583 are binary-coded-decimal (BCD) full adders that add two 4-bit BCD numbers and generate a carry-out bit if the sum exceeds 9.

The CD54HC/HCT583 are supplied in 16-lead hermetic dual-in-line frit seal ceramic packages (F suffix). The CD74HC/HCT583 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}, @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁≤ 1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

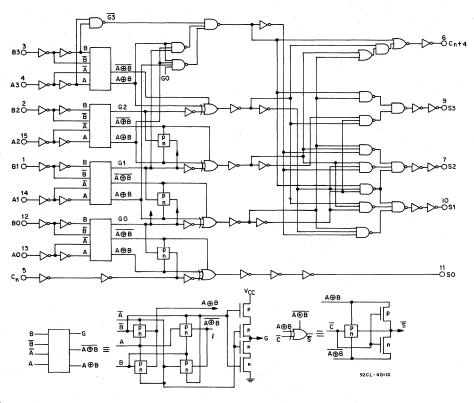


Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
Court-votage, (vcc):	051-17
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} + 0.5 \text{ V}$)	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc + 0.5 V)	
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	Dojato Embany at o mitty o to 10 mit
PACKAGE TYPE F, H	-55 to +125°C
PACKAGE TYPE E, M	-40 to +85° C
STORAGE TEMPERATURE (Tara)	-65 to +150°C
STORAGE TEMPERATURE (Tatg)	65 to +150°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
STORAGE TEMPERATURE (T_{stg})	65 to +150°C
STORAGE TEMPERATURE (Tstg)	65 to +150° C+265° C

Technical Data		
i Common Data		

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIR	MITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :*	1		
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r , t _f		1	
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

				CD	74HC	583/C	D54H	C583					CD74	нст	583/C	D54H	ICT58	13				
		1	TEST IDITIOI	vs		C/54		741 TYF		54I TYF		TEST CONDITION	NS	74HCT/54HCT TYPES			74HCT TYPES			ICT PES		
CHARACTERIST	riC	V.	l _o	Vcc	-	25° C	;	-4 +85		-5: +12!	5/ 5°C	Vı	Vcc		+25° C	;		0/ 5°C	ľ	5/ 5°C	UNITS	
		v	mA	v	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max		
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5									
Input Voltage	VIH			4.5	3.15	_	_	3.15	_	3.15	_		to	2	_	-	2	_	2	-	٧	
				6	4.2	_	_	4.2	-	4.2	_		5.5									
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5									
Input Voltage	V_{IL}			4.5	_	_	1.35	_	1.35	_	1.35	-	to	-	-	8.0	-	0.8	-	0.8	٧	
				6	_	_	1.8	_	1.8	_	1.8		5.5	<u> </u>								
High-Level		VIL		2	1.9	_		1.9	_	1.9	_	VIL			1		l					
Output Voltage	V_{OH}	or	-0.02	4.5	4.4	_	_	4.4		4.4		or	4.5	4.4	 –	_	4.4	-	4.4	ļ —	V	
CMOS Loads		ViH		6	5.9	_		5.9	_	5.9	_	V _{IH}		<u> </u>								
		VIL										VIL					3.84 —		3.7	-		
TTL Loads		or	-4	4.5	3.98	_		3.84	_	3.7	_	or	4.5	3.98		-		-			V	
		V _{IH}	-5.2	6	5.48	_	_	5.34		5.2	<u> </u>	V _{IH}										
Low-Level		VIL		2			0.1		0.1		0.1	VIL	Į	}				1				
Output Voltage	V_{OL}	or	0.02	4.5	<u> </u>		0.1		0.1	<u> </u>	0.1	or	4.5	-	-,	0.1		0.1		0.1	V	
CMOS Loads		V _{IH}		6		_	0.1		0.1	<u> </u>	0.1	V _{IH}	<u> </u>									
		VIL										V _{IL}									1.75	
TTL Loads		or	4	4.5	<u> </u>		0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	٧	
		ViH	5.2	6	_		0.26	_	0.33		0.4	ViH										
Input Leakage		Vcc]			Any]			1	
Current	l ₁	or		6	_	_	±0.1	_	±1	_	±1	Voltage	5.5	l_	_	±0.1		±1	_	±1	μΑ	
		Gnd		ľ					1 -	j	1	Between	"."	ļ			· ·					
		unu		<u></u>	<u> </u>		<u> </u>	<u> </u>				V _{cc} & Gnd										
Quiescent		V _{cc}							ļ			Vcc				ļ						
Device Current	Icc	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ	
		Gnd		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u>L</u>	<u> </u>	Gnd				<u> </u>				_		
Additional													4.5									
Quiescent Device												V _{cc} -2.1	to	_	100	360	_	450	_	490	μΑ	
Current per input												- 55	5.5	1								
pin: 1 unit load	Δl _{cc} *											= 5.5 V) specifi	<u> </u>	<u> </u>		<u> </u>	<u> </u>	L		<u> </u>		

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 r

HCT INPUT LOADING TABLE

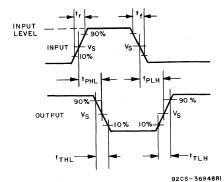
INPUT	UNIT LOADS *
All	1.5

Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t, = 6 ns)

			TYPICAL			
CHARACTERISTIC		C _L (pF)	нс	нст	UNITS	
Propagation Delay,					1	
C _n to S _n	t _{PHL} , t _{PLH}	15	24	24		
An or Bn to Sn	t _{PHL} , t _{PLH}	15	23	29	ns	
C _n to C _n + 4	t _{PHL} , t _{PLH}	15	15	18	-	
A _n or B _n to C _n + 4	t _{РНL} , t _{РLН}	15	16	22		
Power Dissipation Capacitance *	CPD		50	54	pF	

^{*}CPD is used to determine the dynamic power consumption, per package


 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where: $f_i = input$ frequency

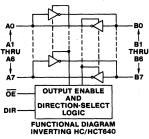
C_L = output load capacitance

V_{cc} = supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t = 6 ns)

								LIN	IITS						
CHARACTERISTI	TEST	25° C				-4	0°C t	o +85	,c	-55°C to +125°C]	
CHARACTERISTI		CONDITIONS	н	C	н	СТ	74	нс	741	ICT	54	нс	541	ICT	UNITS
		V _{cc}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	-	290	-	-	_	365	-	_	_	435	_	-	
	tPHL	4.5	-	58	-	58	_	73	—	73	-	87	_	87	
C _n to S _n		6	_	49	<u> </u>	_	_	62		<u> </u>		74			
	tpLH	2	_	280	-	-	-	350	-	-	-	420	_	-	
	t _{PHL}	4.5	-	56	-	68	-	70	-	85	—	84	-	102	
A _n or B _n to S _n		6		48	<u> </u>	<u> </u>		60			·	71		_	,
	tpLH	2	-	180	-	_	_	225	_		_	270	_	-	
	tenL	4.5	_	36		42	-	45	-	53	—	54	_	63	ns
C _n to C _n + 4		6	_	31		_		38	_	_		46	_		
	t _{PLH}	2	_	195	_		_	245	_	_	_	295	-	-	
	t _{PHL}	4.5	—	39	_	51	-	49	-	64	_	59	_	77	
A _n or B _n to C _n + 4		6		33	_	-	_	42		_	_	50	_	_	
Transition	t _{TLH}	2	_	75	_	-	_	95	_	_	_	110	_	_	
Time	t _{THL}	4.5	-	15	-	15	-	19	-	19	_	22	_ ı	22	
		6	_	13	-	_	_	16	_		_	19	-	-	
Input Capacitance	Cı			10	-	10	_	10	_	10	_	10	_	10	рF

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V


Fig. 2 - Transition and propagation delay times.

Application

In an application where a binary number whose decimal value is greater than 9 is to be added to a BCD number (0-9), this device can be used to convert the binary number to a BCD number and a carry. The resultant BCD + carry can

then be added to the other BCD operand to complete the operation. The conversion from binary to BCD is accomplished by adding the binary number to BCD "0" (binary number on A0-A3 and 0000 on B0-B3).

High-Speed CMOS Logic

9205-38780

Octal 3-State Bus Transceivers

Inverting (HC/HCT640)
True/Inverting (HC/HCT643)

Type Features:

- 3-state outputs
- Buffered inputs
- Applications in multiple-data-bus architecture

The RCA-CD54/74HC640, 643 and CD54/74HC7640, 643 silicon-gate CMOS 3-state bidirectional inverting and non-inverting buffers are intended for two-way asynchronous communication between data buses. They have high drive current outputs which enable high-speed operation when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuits, and have speeds comparable to low power Schottky TTL circuits. They can drive 15 LSTTL loads.

The CD54/74HC640 and CD54/74HCT640 are inverting buffers; the CD54/74HC643 and CD54/74HCT643 are true/inverting buffers.

The direction of data flow (A to B, B to A) is controlled by the DIR input.

Outputs are enabled by a low on the Output Enable input (OE); a high OE puts these devices in the high impedance mode.

The CD54HC640, 643 and the CD54HCT640, 643 are supplied in 20-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC640, 643 and CD74HCT640, 643 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface mount plastic packages (M suffix). These devices are also supplied in chip form (H suffix).

Family Features:

- Fanout (over temperature range):
 Standard outputs 10 LSTTL loads
 Bus driver outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}= 30%, N_{IH}=30% of V_{CC} @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I₁ ≤ 1 µA @ V_{OL}, V_{OH}

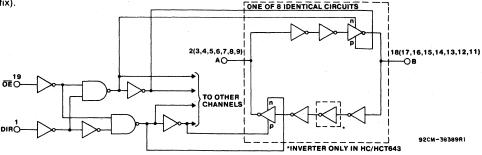
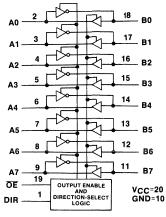



Fig. 1 - Logic diagram.

FUNCTIONAL DIAGRAM
TRUE/INVERTING HC/HCT643

TRUTH TABLE

1	TROL UTS	HC, HCT6	PORT	HC, HCT6	PORT
ŌĒ	DIR	A n	B _n	A n	B _n
L H H L	L H L H	O Z Z I	I Z Z Ō	O Z Z I	I Z Z O

To prevent excess currents in the High-Z modes all I/O terminals should be terminated with 10K $\!\Omega$ to 1M $\!\Omega$ resistors.

H = High L = Low $\frac{O}{O}$ = Output (Same Level as Input) $\frac{O}{O}$ = Output (Inversion of Input Level)

I = Input

Z = High Impedance

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} +0.5$ V).	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_{\text{o}} < -0.5 \text{V}$ OR $V_{\text{o}} > V_{\text{CC}}$ +0.5	V)±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)±35 mA
DC Vcc OR GROUND CURRENT, (Icc)	±70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125° C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F. H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s max.	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OLIADA OTEDIOTIO	LIN	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} :*			1.4
CD54/74HC Types	2	6	v
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	C
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD7	4HC6	40/64	3/CD	54HC	640/6	43			CD	74HCT				CT64	0/643			
			TEST		74H	IC/54	нс	741		541	IC	TEST		ı .	CT/54			ICT	54H		
CHARACTERISTI		CON	DITIO	NS		TYPE		TY	TYPE		PE	CONDITIONS		TYPE			TY	PE	TY	PE	UNITS
UNANAO IENISTICS		Vı	l _o	Vcc	•	•25° C	;	-4 +85	0/ 5°C	-5 +12		V i	V _{cc}	,	•25° C		1	0/ 5°C	-5 +12		UNITE
		٧	mA	V	Min	Тур	Max	Min	Max	Min	Max	v	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	-	_	1.5	_	1.5	_		4.5								
Input Voltage	VIH			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	_	_	2	-	2	_	V
				6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_	_	1.35	_	1.35	_	1.35	_	to	_	_	0.8	_	0.8	_	0.8	٧
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	VIL									
Output Voltage	VoH	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	٧
CMOS Loads		ViH		6	5.9	_	_	5.9	_	5.9	_	VIII									
		VIL										ViL									
TTL Loads		or	-6	4.5	3.98	_	_	3.84	-	3.7	_	or	4.5	3.98	_	_	3.84	_	3.7	_	V
Bus Driver		ViH	-7.8	6	5.48	_	_	5.34	_	5.2	_	VIH									
Low-Level		VIL	. %	2	_	_	0.1	_	0.1	_	0.1	VIL									
Output Voltage	VoL	or	0.02	4.5	_		0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	_	0.1	-	0.1	v
CMOS Loads		VIH		6	_	_	0.1	_	0.1	_	0.1	ViH									
		VIL										VIL									
TTL Loads		or	6	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	_	0.26	_	0.33	_	0.4	٧
Bus Driver		VIH	7.8	6	_	_	0.26	_	0.33	_	0.4	ViH	1.		Ĺ						
Input Leakage Current	l ₁	V _{cc} or Gnd		6	-	_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	-	-	±0.1		±1		±1	μА
Quiescent Device Current	lcc	V _{cc} or Gnd	0	6	_	_	8	_	80	_	160	V _{cc} or Gnd	5.5	-	-	8		80		160	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load	Δlcc*.									:		V _{cc} -2.1	4.5 to 5.5	-	100	360	_	450	_	490	μΑ
3-State Leakage Current	loz	V _{IL} or V _{IH}	V _o = V _{cc} or Gnd	6	_	-	±0.5	-	±5	-	±10	V _{IL} or V _{IH}	5.5	-	-	±0.5	_	±5	-	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{∞} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

	UNIT L	OADS *
INPUT	HCT640	HCT643
DIR	0.9	0.9
OE, A	1.5	1.5
В	1.5	0.4

^{*} Unit load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$, input t_r , $t_f = 6 \text{ ns}$)

			1	TYPICAL	VALUES		
CHARACTERISTIC	C _L	SYMBOL	HC640	HCT640	HC643	HCT643	UNITS
Propagation Delay							
$A \rightarrow \overline{B}, B \rightarrow \overline{A}$	ļ	t _{PHL} , t _{PLH}	7	9	7	9	
B → A	15			_	9	10	ns
Enable to High Z		t _{PHZ} , t _{PLZ}	12	12	12	12	
Enable from High Z		t _{PZH} , t _{PZL}	12	12	12	13	
Power Dissipation Capacitance	_	C _{PD} *	38	41	45	55	pF

 $^{^{\}star}$ C_{PD} is used to determine the dynamic power consumption per channel.

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, input t_r , $t_f = 6 \text{ ns}$)

				25	°C		-4	0°C t	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	н	С	Н	СТ	74	нс	74H	ICT	54	нс	54H	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	tplH	2	_	90	_	-	_	115	_	_	_	135	_	_	
A → B 640/643	t _{PHL}	4.5	_	18	-	22	_	23	_	28	—	27		33	ns
$B \rightarrow \overline{A}$		6		15	-	_	-	20	—	_	_	23		_	
643	t _{PLH}	2	_	110		_	_	140	_	_	_	165	_		
B → A	t _{PHL}	4.5		22		26		28	_	33	-	33	_	39	ns
	}	6	_	19	-	_	_	24	_	_	_	28	_		
Output High-Z:	t _{PZH}	2	_	150	_	_	_	190	-	-	_	225	-	_	
To High Level, 640	t _{PZL}	4.5	_	30	_	30	-	38	—	38	—	45	_	45	ns
To Low Level		6	-	26	_	_	-	33	<u>-</u>	_	_	38	_	_	
Output High Level,	t _{PHZ}	2	_	150	_	_	_	190	-	_	_	225	_	_	
Output Low Level 640	t _{PLZ}	4.5	_	30	-	30	—	38	-	38		45	_	45	ns
to High Z		6		26	_	1-	—	33	-	—	_	38	-	-	
Output High Z:	t _{PZH}	2	_	150	_	_	_	190	_	-	_	225	_	_	
To High Level 643	t _{PZL}	4.5	_	30	_	33	_	38	_	41	_	45	_	50	ns
To Low Level		6		26	_	_	-	33	_	-	_	38	_	_	
Output High Level,	t _{PHZ}	2	_	150	_	_	_	190	_	-	_	225	_	_	
Output Low Level 643	t _{PLZ}	4.5	_	30	_	30	—	38	_	38	-	45	_	45	ns
to High Z		6	_	26	-	—	—	33	_	_	_	38	_	-	-
Output Transition	tTLH	2	_	60	_	_	_	75	_	-	_	90	_	_	
Time	t _{THL}	4.5	-	12	-	12	-	15	_	15	_	18	_	18	ns
	1	6	-	10	-	_	-	13	_	-	_	15	_	—	
Input Capacitance	Cin		_	10	_	10	-	10	_	10	_	10	_	10	pF
3-State Output Capacitance	C _o		_	20	_	20	-	20	_	20	_	20	-	20	pF

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$, where: f_i = input frequency. C_L = output load capacitance. V_{CC} = supply voltage.

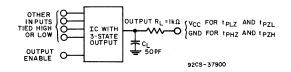


Fig. 2 - Three-state propagation delay test circuit.

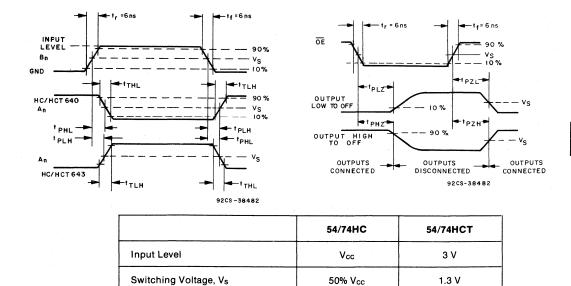
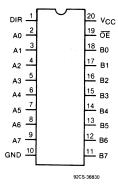
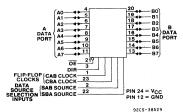



Fig. 3 - Transition times and progagation delay times.



TERMINAL ASSIGNMENT

File Number 1664

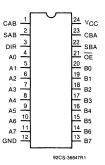
Advance Information/ Preliminary Data

High-Speed CMOS Logic

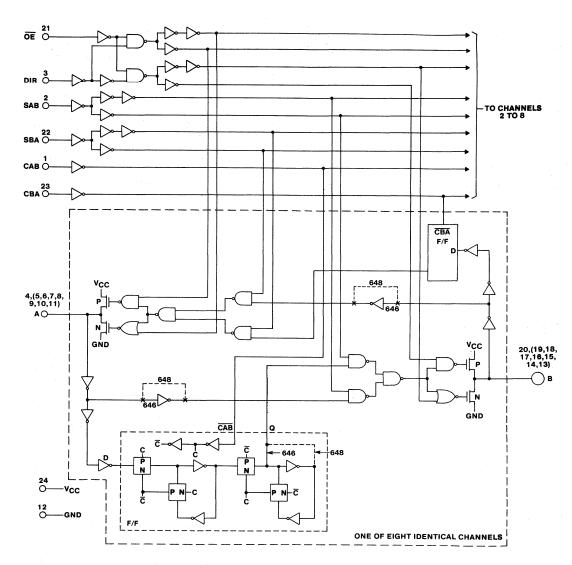
Octal Bus Transceiver/Register, 3-State

Type Features:

- Independent Registers for
- A and B Buses
- CD54/74HC/HCT646 Non-Inverting CD54/74HC/HCT648 Inverting
- 3-State Outputs
- Drives 15LSTTL loads
- Typical Propagation Delay = 12ns (A ← →B)
 @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C


FUNCTIONAL DIAGRAM

The RCA-CD54/74HC646 and CD54/74HCT646 are octal bus transceivers/registers with 3-state non-inverting outputs. The RCA-CD54/74HC648 and CD54/74HCT648 are octal bus transceivers/registers with 3-state inverting outputs. These devices are bus transceivers with D-type flip-flops which act as internal storage registers. Data on the A bus or the B bus can be clocked into the registers on the LOW-to-HIGH transition of either CAB or CBA clock inputs. Output enable (OE) and direction (DIR) inputs control the transceiver functions. Data present at the high impedance output can be stored in either register or both but only one of the two buses can be enabled as outputs at any one time. The select controls (SAB and SBA) can multiplex stored and transparent (real time) data. The direction control determines which data bus will receive data when the output enable (OE) is LOW. In the high impedance mode (output enable HIGH), A data can be stored in one register and B data can be stored in the other register. The clocks are not gated with the direction (DIR) and output enable (OE) terminals; data at the A or B terminals can be clocked into the storage flip-flops at any time


The CD54HC646, 648 and CD54HCT646, 648 are supplied in 24-lead dual-in-line frit-seal ceramic packages (F suffix). The CD74HC646, 648 and CD74HCT646, 648 are supplied in 24-lead dual-in-line, narrow-body plastic packages (EN suffix), in 24-lead dual-in-line, wide-body plastic packages (E suffix), and in 24-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:
 - $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5~V$
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

92CL - 3853ORI

Fig. 1 — Logic Diagram.

FUNCTION TABLE

		INP	UTS			DATA	A I/O #	OPERATION OR FUNCTION					
ŌĒ	DIR	CAB	CBA	SAB	SBA	A0 THRU A7	B0 THRU B7	646	648				
X	Х		Х	Х	Х	Input	Not specified	Store A, B unspecified	Store A, B unspecified				
X	Χ	Х	~	Х	Х	Not specified	Input	Store B, A unspecified	Store B, A unspecified				
Н	Х	~		Х	Х	14	1	Store A and B Data	Store A and B Data				
Н	Χ	H or L	H or L	Х	Х	Input	Input	Isolation, hold storage	Isolation, hold storage				
L	L	Х	Х	Х	٦	0.11	1	Real-Time B Data to A Bus	Real-Time B Data to A Bus				
L	L	Х	H or L	Х	Н	Output	Input	Stored B Data to A Bus	Stored B Data to A Bus				
L	Н	Х	X	L	Х			Real-Time A Data to B Bus	Real-Time A Data to B Bus				
L	н	H or L	×	Н	Х	Input	Output	Stored A Data to B Bus	Stored A Data to B Bus				

[#] The data output functions may be enabled or disabled by various signals at the OE and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):
(Voltages referenced to ground) -0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC}$ -0.5 V)
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC} + 0.5$ V)
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V) $\dots \pm 35$ mA
DC V _{cc} OR GROUND CURRENT (Icc) ±70mA
POWER DISSIPATION PER PACKAGE (PD):
For $T_A = -40$ to $+60$ °C (PACKAGE TYPE E)
For T _A = +60 to +85° C (PACKAGE TYPE E)
For $T_A = -55$ to $+100$ °C (PACKAGE TYPE F, H)
For T _A = +100 to +125°C (PACKAGE TYPE F, H)
For T _A = -40 to +70°C (PACKAGE TYPE M)
For T _A = +70 to +125°C (PACKAGE TYPE M)
OPERATING-TEMPERATURE RANGE (Ta):
PACKAGE TYPE E, M -40 to +85° C
PACKAGE TYPE F. H
STORAGE TEMPERATURE (Tstq)65 to150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. $+265^{\circ}$ C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)
with solder contacting lead tips only -300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OUAD A OTEDIOTIO	LIN	IITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	l v
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{IN} , V _{OUT}	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	1
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

To prevent excess currents in the High-Z modes all I/O terminals should be terminated with $10 K\Omega$ resistors.

STATIC ELECTRICAL CHARACTERISTICS

			D74H										74HC							
CHARACTERISTIC	COI	TEST	-		IC/54			HC PES		HC PES	TEST CONDITIE		1	CT/54		74HCT TYPES			ICT PES	UNITS
	V, V	I _o	V _{cc}		+25° (>	1	10/ 5° C		5/ 5° C	V, V	V _{cc}		+25° C	; ;	1	10/ 5° C		5/ 5°C	OMITS
				Min	Тур	Max	Min	Max	Min	Max	ľ	•	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	-	1.5	_	1.5	T-		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	_	3.15	-] _	to	2	_	_	2	_	2	_	V
			6	4.2	_	-	4.2	_	4.2	T-		5.5								
Low-Level			2	-	-	0.5	_	0.5	-	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	-	1.35	1 _	to	_	_	0.8	_	0.8	_	0.8	v
			6		_	1.8	_	1.8	_	1.8		5.5								- 1
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	Vı,								-	
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4		v
CMOS Loads	VIH		6	5.9	-	_	5.9	_	5.9	_	Viii									
	V _{IL}										V _{IL}									
TTL Loads	or	-6	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_	3.7	-	V
(Bus Driver)	VIH	-7.8	6	5.48	_	_	5.34	-	5.2	_	V _{IH}									
Low-Level	V _{IL}		2	_		0.1	-	0.1	_	0.1	V _{IL}									
Output Voltage Vo.	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5		_	0.1	_	0.1	_	0.1	· .v
CMOS Loads	VIH		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	VıL										V _{IL}									
TTL Loads	or	6	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v
(Bus Driver)	VIH	7.8	6	-	-	0.26	_	0.33	_	0.4	V ₁₁₊									
Input Leakage	V _{cc}										Any									
Current I,	or		6	_	_	±0.1	_	±1	_	±1	Voltage Between	5.5	_	_	±0.1	_	±1	_	±1	μΑ
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}								1		V _{Cr} ;									
Device	or	0	6	-	_	8	_	80	_	160	or	5.5	_	_	8	-	80	_	160	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current per input pin: 1 unit load Δl_{cc}^*											V _{cc} -2.1	4.5 to 5.5		100	360	_	450	_	490	μΑ
3-State	V _{IL}	V _o = V _{CC}									V _{IL}						<u> </u>	 		
Leakage Current	or	or	6	_	_	±0.5	_	±5.0	_	±10	or	5.5	_	_	±0.5	_	±5.0	_	±10	μΑ
loz	V _{IH}	Gnd									V _{IH}					1				"

*For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA. HCT Input Loading Table

Input	Unit Loads*	
ŌĒ	1.3	
DIR	0.75	
Clock A→B, B →A	0.6	
Select A, Select B	0.45	
Inputs A0-A7, B0-B7	0.3	

*Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ Input } t_n, t_r = 6 \text{ ns}$)

CHARACTERISTIC		C	TY	PICAL	UNITS
CHARACTERISTIC		(pF)	HC	HCT	UNITS
Propagation Delays Store A Data to B Bus (646)	tр _{LH} , t _{PHL}	15	18	18	ns
Store B Data to A Bus (646)	t _{PLH} , t _{PHL}	15	18	18	ns
Store A Data to B Bus (648)	t _{PLH} , t _{PHL}	15	20	23	ns
Store B Data to A Bus (648)	t _{PLH} , t _{PHL}	15	20	23	ns
A Data to B Bus (646)	t _{PLH} , t _{PHL}	15	12	15	ns .
B Data to A Bus (646)	t _{PLH} , t _{PHL}	15	12	15	ns
A Data to B Bus (648)	t _{PLH} , t _{PHL}	15	12	15	ns
B Data to A Bus (648)	t _{PLH} , t _{PHL}	15	12	15	ns
Select to Data (646)	t _{PLH} , t _{PHL}	15	14	19	ns
Select to Data (648)	t _{PLH} , t _{PHL}	15	16	19	ns
3-State Disabling Time	t _{PLZ} , t _{PHZ}	15	14	14	ns
3-State Enabling Time	t _{PZL} , t _{PZH}	15	14	19	ns
Max Frequency	f _{max}	15	60	45	MHz
Power Dissipation Capacitance*	C _{PD}		52	52	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

PREREQUISITE FOR SWITCHING FUNCTION

				25	°C		-4	0°C te	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC		V _{cc}	Н	C	HC.		74	НС	74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.) }
		2	6	I — .	_	T-	5	_	T		4	T	_	_	
Maximum Frequency	f _{MAX}	4.5	30	_	25	_	25	_	20	_	20		17	_	MHZ
		6	35		_	-	29	_	_		23	-	_	_	
Cattle Time		2	60	_	_	T	75	_	_	_	90			_	
Set Up Time Data to Clock		4.5	12	<u> </u>	12	-	15	_	15	-	18		18		ns
Data to Clock	tsu	6	10	_	_	-	13	_	_	_	15	-			1
Hold Time		2	35	_			45	_	_	T —	55	-	_	T -	
Data to Clock		4.5	7	_	5		9	_	5		11	-	5	_	ns
Data to Clock	t _H	6	6	_	_	_	8	_	_	_	9	-	_	-	
Clock Pulse Width		2	80	_	_	_	100	_	_	_	120		_	_	
	tw	4.5	16	_	25		20	_	31	_	24		38	l -	ns
		6	14	_	—	-	17	_	—		20		_	_	

 $P_D = V_{CC}^2 C_{PD} f_i + \sum V_{CC}^2 C_L f_o$ where:

C_L = output load capacitance

V_{cc} = supply voltage

f_i = input frequency

fo = output frequency

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, input t_r , $t_f = 6 \text{ ns}$)

					°C		-4	0°C to	o +85°	C	-5				
CHARACTERISTIC		Vcc	Н	С	H	СТ	74	НС	74F	ICT	54	HC .	54H	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,		2	T -	220		_		275	_	_		330	_		
Store A data to B bus	t_{PLH}	4.5	-	44	l —	44		55	_	55	_	66	ļ .—	66	ns
Store B data to B bus (646)	t _{PHL}	6	-	37	_		_	47	_	_	_	5.6	_	-	
Store A data to B bus	t _{PLH}	2	-	240	_	_		300		_	_	360	_	_	
Store B data to A Bus	t _{PHL}	4.5	 -	48	_	54		60	_ ,	68	_	72	_	81	ns
(648)		6		41	_	-	_	51		_	_	61			
A data to B bus	t _{PLH}	2	T -	135	_	_	_	170	-	_	_	205	_	_	
B data to A Bus	t _{PHL}	4.5	-	27	-	37	_	34	_	46		41		56	ns :
(646)		6	_	23	-	_		29			_	35	_	- 1	
Ā data to B bus	t _{PLH}	2	_	150	_	_	-	190	-	_	_	225		_	
B data to A Bus	t _{PHL}	4.5	-	30	-	37	_	38	_	46	-	45	_	56	ns
(648)		6	<u> </u>	26	_	_	_	33	_	—	-	38	_	_	
Select to Data		2	_	170	_	_		215	_	_	_	255	_	_	
1.11.	tplH	4.5	_	34	l	46	-	43	l —	58		51	_	69	ns
(646)	t _{PHL}	6	<u> </u>	29				- 37				43			
Select to Data		2		190			_	240	_	_	-	285	—	-	
Celect to Data	t_{PLH}	4.5	-	38	-	46	_	48	. —	58	_	57	_	69	ns
(648)	t_{PHL}	6	-	32	—·	-	_	39	_	-	_	48	_	_	
3-State Disabling Time		2	T-	175	_	_	_	220	_	_	_	265	_	_	
Bus to Output or	t_{PLZ}	4.5	-	35	-	35	_	44	-	44	_	53	_	53	ns
Register to Output	t _{PHZ}	6		30				37		_		45			
3-State Enabling Time		2	_	175		 		220		_	_	265		-	
Bus to Output or	t_{PZL}	4.5	-	35	-	45	_	44	_	56	-	53		68	ns
Register to Output	t _{PZH}	6		30	_			37				45	_	_	
Output Transition Time		2	_	60	-	-	-	75	_	-	_	90	_	-	
	t_{TLH}	4.5		12	—	12	_	15	_	15	-	18	_	18	ns
	t _{THL}	6	_	10				13				15			
3-State Output			-	-		-		-	_	-	-	_	_	-	
Capacitance	C。	_	-	20	_	20	_	20	—	20	_	20	_	20	pF
									_					_	
Input Capacitance	Cı	_	-	10	_	10	_	10	-	10	_	10	_	10	pF

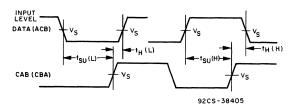
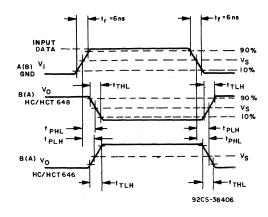
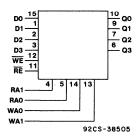




Fig. 2 — Data setup and hold times.



	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, Vs	50% V _{cc}	1.3 V

Fig. 3 — Transition times and propagation delay times.

High-Speed CMOS Logic

4 x 4 Register File

Type Features:

- Simultaneous and Independent Read and Write Operations
- Expandable to 512 Words of n-Bits
- 3-State Outputs
- Organized as 4 Words x 4 Bits Wide
- Typical read time: 16 ns for HC670 at Vcc = 5 V, CL = 15 pF, TA = 25° C
- Buffered inputs

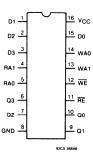
FUNCTIONAL DIAGRAM

The RCA-CD54/74HC670 and CD54/74HCT670 are 16-bit register files organized as 4 words x 4 bits each. Read and write address and enable inputs allow simultaneous writing into one location while reading another. Four data inputs are provided to store the 4-bit word. The write address inputs (WA0 and WA1) determine the location of the stored word in the register. When write enable (WE) is low the word is entered into the address location and it remains transparent to the data. The outputs will reflect the true form of the input data. When (WE) is high data and address inputs are inhibited. Data acquisition from the four registers is made possible by the read address inputs (RA1 and RA0). The addressed word appears at the output when the read enable (RE) is low. The output is in the high inpedance state when the (RE) is high. Outputs can be tied together to increase the word capacity to 512 x 4 bits.

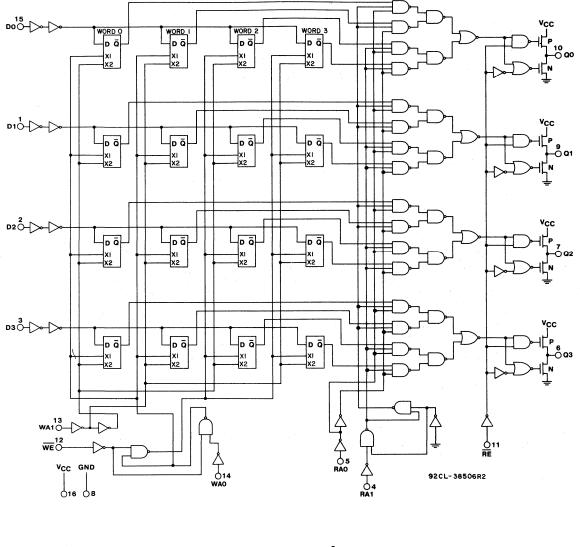
The RCA CD54HC/HCT670 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT670 are supplied in a 16-lead dual-in-line plastic package (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

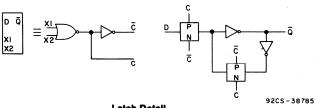
Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:


 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5 \ V$

CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation


Direct LSTTL Input Logic Compatibility


 $V_{IL} = 0.8 \text{ V Max.}, V_{IH} = 2 \text{ V Min.}$ CMOS Input Compatibility

MOS Input Compatibil I₁≤1 μA @ VoL, VoH

TERMINAL ASSIGNMENT

Latch Detail

Fig. 1 — Logic Diagram.

WRITE MODE SELECT TABLE

OPERATING	INP	UTS	INTERNAL
MODE	WE	D _N	LATCHES(a)
Write Data	L	L	L
write Data	L	Н	Н
Data	н	×	no oboneo
Latched		^	no change

NOTE:

a. The Write Address (WA0 and WA1) to the "internal latches" must be stable while $\overline{\text{WE}}$ is LOW for conventional operation.

READ MODE SELECT TABLE

OPERATING		INPUTS	OUTPUT
MODE	RE	INTERNAL LATCHES(b)	Q _N
Read	L	L	L
1.000	L	Н	Н.,
Disabled	Н	X	(Z)

NOTE:

 b. The selection of the "internal latches" by Read Address (RA0 and RA1) are not constrained by WE or RE operation

H = HIGH voltage level

L = LOW voltage level

X = Don't care

Z = HIGH impedance "off" state.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V $<$ V _o $<$ V _{cc} $+$ 0.5V)	±35 mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	NITS	UNITS	
	MIN.	MAX.	UNIIS	
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			V	
CD54/74HC Types	2	6	1	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O	0 .	V _{cc}	V	
Operating Temperature T _A :				
CD74 Types	-40	+85		
CD54 Types	-55	+125	°C	
Input Rise and Fall Times t _r , t _f				
at 2 V	0	1000	, .	
at 4.5 V	0	500	ns	
at 6 V	0	400		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		C	D74H	C670	/CD5	4HC67	70					CE	74HC	T670	/CD5	4НСТ	670			
CHARACTERISTIC		TEST NDITIONS	-		IC/54 SERIE			HC RIES	54 SEF		TEST CONDITION		74HCT/54HCT SERIES			1	ICT	54H SER	ICT IIES	UNITS
CHARACTERISTIC	V, V	I _o	V _{cc}		+25° (;	I .	10/ 5° C	-5 +12	5/ 5°C	V,	V _{cc}		+25° C	;	1	10/ 5° C	-5 +12	5/ 5° C	UNITS
				Min	Тур	Max	Min	Max	Min	Max			Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	-	1.5	_	1.5	-		4.5			1					
Input Voltage V _{ін}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2	_	-	2	-	2	_	v
			6	4.2		_	4.2	_	4.2	_		5.5								
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	-	_	1.35	_	1.35	_	1.35	_	to	_	_	0.8	-	0.8	_	0.8	v
			6	_	-	1.8	-	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	-	1.9	_	1.9	_	, V _{iL}							2.5		
Output Voltage V _{он}	or	-0.02	4.5	4.4	-	<u> </u>	4.4	_	4.4		or	4.5	4.4	_	_	4.4		4.4	_	· v
CMOS Loads	V _{IH}		6	5.9	_	-	5.9	<u> </u>	5.9	_	V _{IH}						٠.			
	V _{IL}										V _{IL}									
TTL Loads	or	-6	4.5	3.98	_	_	3.84	-	3.7	_	or	4.5	3.98		_	3.84	-	3.7	_	V
Bus Driver	V _{IH}	-7.8	6	5.48	_	_	5.34	-	5.2	_	V _{IH}									
Low-Level	V _{IL}		2	-	_	0.1	Ī-	0.1	_	0.1	V _{IL}									
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1		0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	V _{IL}										V _{IL}									
TTL Loads	or	6	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	-,	0.33	_	0.4	V
Bus Driver	V _{IH}	7.8	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any									
Current I,	or		6	-	-	±0.1	_	±1	_	±1	Voltage Between	5.5		_	±0.1	-	±1	_ ·	±1	μΑ
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}						4			-	V _{cc}									100
Device	or	0	6	-	-	8	_	80	_	160	or	5.5	_	_	8	_	80	1 - 1	160	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent Device Current per input pin:											V _{cc} -2.1	4.5 to	_	100	360	_	450	-	490	μΑ
1 unit load Δlcc*		Τ	T		ſ		r					5.5								
3-State	V _{IL}	V _o = V _{cc}									V _{IL}									
leakage	or	or	6	-	-	±0.5	-	±5	_	±10	or	5.5		-	±0.5	-	±5	-	±10	μΑ
current	V _{IH}	Gnd	L	l			L				V _{IH}							l -		

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
WE	0.3
WAO	0.2
WA1	0.4
RE	1.5
DATA	0.15
RAO	0.4
RA1	0.7

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25°C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t = 6 ns)

CHARACTERISTIC	CL	SYMBOL	TYP	ICAL	UNITS
- TANA TEMOTIO	(pF)	STMBOL	HC	HCT	UNITS
Propagation Delay Reading any word	15	t _{PLH} t _{PHL}	16	17	ns
Write Enable to Output	15	t _{PLH} t _{PHL}	21	21	ns
Data to Output	15	t _{PLH} t _{PHL}	21	21	ns
Output Disable Time	15	t _{PLZ} t _{PHZ}	12	14	ns
Output Enable Time	15	t _{PZL} t _{PZH}	12	16	ns
Power Dissipation Capacitance*	_	C _{PD}	59	66	pF

 $^{{}^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per output.

PREREQUISITE FOR SWITCHING FUNCTION

	T	r	Т	25	°C			0°C to	- +OE		-	5°C to	±125	°C	-1
CHARACTERISTIC	SYMBOL	Vcc	<u> </u>	IC	Н	`T		HC	T	ICT		HC		ICT	UNITS
CHARACTERISTIC	STWBUL	V CC	Min.	Max.		Max.		Max.		Max.					DIVITS
Set-up time		2	60	IVIAA.	IVIIII.	IVIAA.	75	IVIAA.	IVIIII.	IVIGA.	90	Wax.	IVIIII.	Wax.	
Data to WE	t _{su}	4.5	12	_	12	_	15	_	15		18		18		ns
Duid to WE	-50	6	10			_	13	_	_		15		_		
Hold time		2	5	<u> </u>	_	_	5				5	-		_	
Data to WE	t _h	4.5	5		5		5	_	5	_	5	_	5	-	ns
		6	5	_	_	_	5	_	_	_	5	_	_		l
Set-up time		2	60	_		_	75	_	_		90	_	_	_	
Write to WE	t _{su}	4.5	12	-	18	_	15	_	23	-	18	—	27	_	ns
		6	10	_	_	_	13	_		_	15	_			
Hold time		2	5	_	_	-	5	_	_	_	5	_	_	_	
Write to WE	t _h	4.5	5	—	5	-	5	_	5	l – .	.5	_	5	_	ns
		6	5	<u> </u>			5	_	_		5	_	_		
WE		2	80	_	_	_	100	_	-		120	_	_	_	
Pulsewidth	tw	4.5	16	- -	20	-	20	-	25	l —	24	-	30	—	ns
		6	14		_	_	17	-	-	-	20	-	—	_	
Latch time		2	100	_	_	_	125		_		150	_	_	_	
WE to RA0, RA1	tLATCH	4.5	20		25	-	25	_	31	_	30	_	38	-	ns
		6	17		. —	_	21	—	_	, —	26	_		_	

PD = $C_{PD} V_{CC}^2 f_i + \Sigma C_L V_{CC}^2 f_o$ where f_i = input frequency,

fo = output frequency,

C_L = output load capacitance

V_{CC} = supply voltage

SWITCHING CHARACTERISTICS (CL = 50 pF, input t, t = 6 ns,)

				25	°C		-4	0°C t	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	C	Н	CT	74	нС	74H	1CT	54	нС	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	T -	195	_	_	_	245	-	_		295	—	_	
Reading any word	t _{PHL}	4.5	l –	39	—	40	_	49	-	50	<u> </u> _	59		60	ns
		6	<u> </u>	_33_		_		42				50			
Write Enable	t _{PLH}	2	-	250	—	l —	_	315	-		_	375	_		
to Output	t _{PHL}	4.5	-	50		50	l —	63	-	63	-	75		75	ns
		6		43				54	_	<u> </u>		64			
Data to Output	t _{PLH}	2	T -	256	_	_		315	-	-	l –	375	_	_	
	t _{PHL}	4.5	—	50		50	—	63	_	63	_	75	_	75	ns
		6		43				54	_			64	_		
Output Disable Time	t _{PLZ}	2	T -	150	_	-	—	190		-	-	225	_	_	
	t _{PHZ}	4.5	l –	30	_	35		38	-	44	-	45	l	53	ns
		6	-	26	_	_		33	_			38	l —		
Output Enable Time	t _{PZL}	2		150		_	_	190	_	I —	_	225		_	
	t _{PZH}	4.5	—	30	_	38	l —	38	-	48	_	45	_	57	ns
		6		26		_	_	33	_		<u> </u>	38		_	
Output Transition	t _{TLH}	2	T -	75	I —	_	_	95	_	-	-	110	_	_	
Time	t _{THL}	4.5	-	15	—	15	_	19	-	19	-	22		22	ns
		6	_	13	_	l —		10	_	<u> </u>		19		_	
3-State Output Capacitance	Co		_	20	_	20	_	20	_	20	_	20	_	20	pF
Input Capacitance	Cı		-	10	_	10	_	10	_	10	_	10	-	10	pF

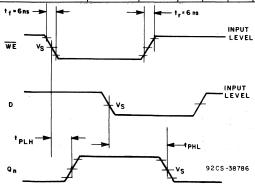


Fig. 2 — Propagation Delay, Write Enable and Data to Output

Fig. 4 — Setup and Hold Times, Write Address and Data to Write Enable

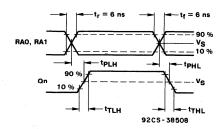
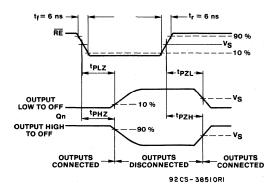
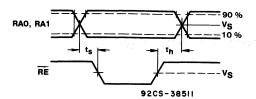
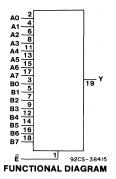


Fig. 3 — Propagation delay, Read Address to Output


Fig. 5 — 3-State Enable and Disable Times

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _S	50% V _{CC}	1.3 V

Fig. 6 — Setup and Hold times, Read Address to Read Enable

High-Speed CMOS Logic

8-Bit Magnitude Comparator

Type Features:

■ Cascadable

The RCA-CD54/74HC688 and CD54/74HCT688 are 8-bit magnitude comparators designed for use in computer and logic applications that require the comparison of two 8-bit binary words. When the compared words are equal the output (Y) is low and can be used as the enabling input for the next device in a cascaded application.

The CD54HC688 and CD54HCT688 are supplied in 20-lead ceramic dual-in-line packages (F suffix). The CD74HC688 and CD74HC7688 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

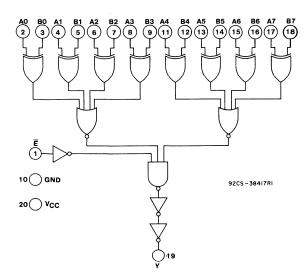


Fig. 1 - Logic diagram.

Family Features:

- Fanout (over temperature range):
 Standard outputs 10 LSTTL loads
 Bus driver outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}= 30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I_I≤ 1 µA @ Vo_{IL} V_{OH}

TRUTH TABLE

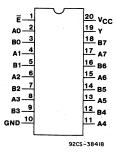
Inpu	ts	Outputs
A, B	E	Y
A = B	L	L
A≠B	L	н
X	Н	Н

X = Don't care

L = Low level

H = High level

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{CC} + 0.5$ V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	±25 mA
DC V _{CC} OR GROUND CURRENT, (I _{CC})	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
	400 mW
For $T_A = +70$ to $+125^{\circ}$ C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F. H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tetg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIM	ITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} .*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	٧
Operating Temperature, T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	-0
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

		CD74HC688/CD54HC688										CD74HCT688/CD54HCT688									
		TEST CONDITIONS					74HC 54HC TYPE TYPE			TEST		TYPE		74F	PE		ICT PE	UNITS			
CHARACTERISTI	CS	V	1 1 1		25° (;	-4/ +85		-5 +12		Vı	Vcc		+25° C	;		0/ 5°C	-55/ +125°C			
		V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage	VIH			4.5	3.15	_	_	3.15	_	3.15	-		to	2	l –	-	2	_	2	-	٧.
				6	4.2	_	_	4.2	_	4.2	1		5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_	_	1.35	_	1.35	_	1.35	_	to	_	_	0.8	_	0.8	-	0.8	٧
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	-	VIL									
Output Voltage	VoH	or	-0.02	4.5	4.4		_	4.4	_	4.4	_	or	4.5	4.4	ı —	-	4.4	-	4.4	-	· v
CMOS Loads		ViH		6	5.9			5.9		5.9		ViH							-		
		ViL										ViL									
TTL Loads		or	-4	4.5	3.98	_		3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	-	3.7	- 1	٧
		ViH	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}	15.5					L			
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	VIL			ŀ						
Output Voltage	Vol	or	0.02	4.5	_	_	0.1		0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	–	0.1	٧
CMOS Loads		VIH		6	_	_	0.1	_	0.1	<u>.</u>	0.1	V _{IH}					٠.				
		V _{IL}										. V _{IL}									
TTL Loads		or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	_	0.26	-	0.33	_	0.4	V
		ViH	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage Current	1,	V _{CC} or Gnd		6	_	_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	-		±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{cc} or Gnd	0	6			8	_	80	_	160	Vuc or Gnd	5.5	_	_	8		80	_	160	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load	Δlcc*								-			V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ

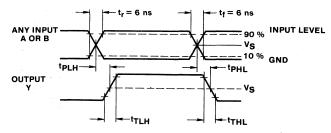
^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
Enable	0.7
Data Inputs	0.35

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max.@25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$, Input t_r , $t_f = 6 \text{ ns}$)

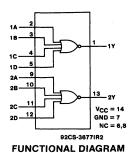

QUADACTERISTIC	0/44001		TYPICA		
CHARACTERISTIC	SYMBOL	CL F	нс	нст	UNITS
Propagation Delay A and B Data to Output	t _{PLH}	15	14	14	
Propagation Delay Enable to Output	t _{PLH}	15	9	9	ns
Power Dissipation Capacitance*	CPD	_	22	22	pF

 $^{^{*}}C_{PD}$ is used to determine the power consumption, per device. $PD=V_{CC}^{2}$ fi $(C_{PD}+C_{L})$ where f_i=input frequency

C_L=output load capacitance V_{cc}=supply voltage

SWITCHING CHARACTERISTICS (CL=50 pF, Input t, t=6 ns)

				25	°C		-4	0°C to	+85°	,C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	Н	С	H	CT	74	НС	74H	ICT	54	HC	54H	ICT	UNITS
<u> </u>			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay	t _{PLH}	2	-	170	_	_	_	210		_	_	255	_	_	
An to Output	t _{PHL}	4.5		34	_ '	34	_	42	l —	42		51	-	51	ns
	1 Minut	6	-	29	 	_	l — .	36	l —		l —	43	-	-	
	t _{PLH}	2	_	170	_	_	-	210		_	_	255	_	1 —	
Bn to Output	t _{PHL}	4.5	-	34	— ·	34	<u> </u>	42		42	—	51	_	51	ns
		6	l -	29	—	 	l —	36	_	-	l —	43	- 1	-	
	t _{PLH}	2		120	_	<u> </u>	_	150		_	_	180	-	-	
E to Output	t _{PHL}	4.5	-	24	_	24	_	30	_	30	—	36	-	36	ns
		6		20	_	- '	_	26	_	'	_	30		—	
Output Transition	t _{TLH}	2	-	75	_		_	95	_	—		110	_	 	
Time	t _{THL}	4.5	_	15	l —	15	_	19	_	19		22	_	22	ns
		6	 -	13	—	-	_	16	_	—	_	19	 –	—	
Input Capacitance	Cı		-	10	_	10		10	<u> </u>	10	-	10	-	10	pF



92CS-38416

	54/74HC	54/74HCT
Input Level	VCC	3 V
Switching Voltage, V _S	50% VCC	1.3 V

Fig. 2 - Propagation delay and transition times.

High-Speed CMOS Logic

Dual 4-Input NOR Gate

Type Features:

■ Typical CD54/74HC4002 Propagation Delay = 8ns @ V_{CC} = 5V, C_L = 15pF, T_A = 25° C

The RCA-CD54/74HC4002 and CD54/74HCT4002 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The CD54/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC/HCT4002 are supplied in 14-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT4002 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

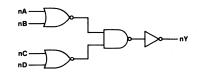


Fig. 1 - LOGIC DIAGRAM (One Gate) for HC4002.

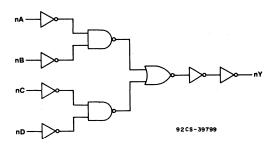


Fig. 2 - LOGIC DIAGRAM for HCT4002.

Family Features:

- Fanout (over temperature range): Standard Outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide Operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High noise immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}, @ V_{CC} = 5V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL input logic compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V Min. ÇMOS input compatibility I₁ ≤ 1 µA @ V_{OL}, V_{OH}

TRUTH TABLE

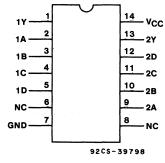
	INP	OUTPUT		
nA	nB	nC	nD	nY
L	L	L	L	Н
Н	x	Х	Х	L
×	Н	X	Х	L
Х	X	Н	Х	L
Х	X	Х	Н	L

H = High Level

L = Low Level

X = Don't Care.

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	±20mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5	V)
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5 V	/) ±25mA
DC Vcc OR GROUND CURRENT (Icc)	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	05 t0 +150 C
STORAGE TEMPERATURE (Tstg)	-65 t0 ± 150 °C
LEAD TEMPERATURE (DURING SOLDERING):	+265°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

OHADAOTEDIOTIO	LIN	UNITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{CC}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

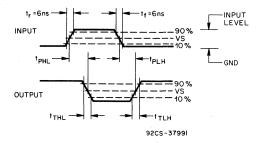
		CI	074H	24002	/CD54	4HC40	002		,			CD7	4HC1	4002	/CD54	нст	4002			* *.		
	co	TEST NDITIONS		ł	IC/54		Į	HC PE	541 TY		TEST 74HCT/54HCT CONDITIONS TYPES				1	PE	1					
CHARACTERISTIC	V,	I _o	V _{cc}		+25° C	;	-4 +85	0/ 6° C	1	5/ 5° C	V,	V _{cc}				+25°C		l .	10/ 5° C	-55/ +125°C		UNITS
	"	mA	•	Min	Тур	Max	Min	Max	Min	Max	`	•	Min	Тур	Max	Min	Max	Min	Max			
High-Level			2	1.5	_	_	1.5	-	1.5	-		4.5										
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	-	-	2	-	2	-	v		
			6	4.2	_	_	4.2	_	4.2	_		5.5										
Low-Level			2	-	_	0.5	_	0.5	_	0.5		4.5										
Input Voltage $V_{\text{\tiny IL}}$		ļ	4.5	_	_	1.35	_	1.35	_	1.35		to	-	-	0.8	-	0.8	-	0.8	V		
			6	_	- 1	1.8	_	1.8	_	1.8		5.5										
High-Level	VIL		2	1.9		_	1.9		1.9	_	V _{IL}											
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	v		
CMOS Loads	V _{IH}		6	5.9	_	_	5.9		5.9	_	V _{IH}									Aga S		
	V _{IL}										V _{IL}											
TTL Loads	or	-4	4.5	3.98	_	_	3.84		3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	v		
	V _{IH}	-5.2	6	5.48	_	-	5.34	_	5.2	_	V _{IH}											
Low-Level	VIL		2	_		0.1	_	0.1	_	0.1	V _{IL}											
Output Voltage V _{OL}	or	0.02	4.5	_		0.1	_	0.1	-	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V		
CMOS Loads	V _{IH}		6		_	0.1	_	0.1	_	0.1	V _{IH}											
	V _{IL}										V _{IL}											
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v		
	V _{IH}	5.2	6		_	0.26	_	0.33	_	0.4	V _{IH}											
Input Leakage	V _{cc}										Any Voltage								100			
Current I,	or		6	-	-	±0.1	-	±1	-	±1	Between	5.5	-	-	±0.1	-	±1	-	±1	μΑ		
	Gnd										V _{cc} & Grid											
Quiescent	V _{cc}										Vcc											
Device	or	0	6	_		2	-	20	_	40	or	5.5	-	-	2	-	20	-	40	μΑ		
Current I _{c.c.}	Gnd										Gnd											
Additional Quiescent												4.5										
Device Current											V _{cc} -2.1	to	-	100	360	-	450	-	490	μA		
per input pin: 1 unit load Δlcc*	-											5.5										

^{*}For dual-supply systems theoretical worst case (V $_{\rm i}$ = 2.4 V, V $_{\rm t.c.}$ = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS*
All	0.45

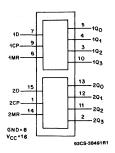
Unit Load is $\Delta l_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @25° C.


SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t = 6 ns)

CHARACTERISTIC		CL	TYP	ICAL	UNITS
CHARACTERISTIC		(pF)	HC	HCT	UNITS
Propagation Delay Time:	t _{PLH}	4.5	8	9	
nA, nB, nC, nD to nY (Fig. 3)	t _{PHL}	15	8	12	ns
Power Dissipation Capacitance*	C _{PD}	, · · · -	22	22	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per gate. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where: f_i = input frequency C_L = output load capacitance V_{CC} = supply voltage

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r, t_f = 6 ns)


			25° C					-40° C to +85° C				-55°C to +125°C			
CHARACTERISTIC		Vcc	HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
·			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	-	100	_	_	_	125	_	_		150	_	_	
nA, nB, nC, nD		4.5		20	_	22	_	25		28		30	<u>:</u>	33	
to nY (Fig. 3)		6	_	17			_	21	_			26	_	l —	1
		2	_	100		_	-	125	_	_	_	150	_		
	t _{PHL}	4.5	_	20	—	29	j	25		36		30		44	ns
		6	_	17		_	_	21	_	_		26		_	
Transition Time	t _{TLH}	2	_	75		_		95	_		_	110	_	_	-
(Fig. 3)	t _{THL}	4.5		15		15		19	_	19	_	22		22	
		6	_	13	_	_		16			_	19	_	_	
Input Capacitance	C ₁		_	10	_	10	_	10	_	10	_	10	_	10	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _S	50% V _{CC}	1.3 V

Fig. 3 - Transition times and propagation delay times.

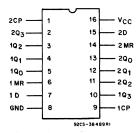
High-Speed CMOS Logic

Dual 4-Stage Static Shift Register

Type Features:

- Maximum frequency, typically 60 MHz C_L = 15 pF, V_{CC} = 5 V, T_A = 25° C
- Positive-edge clocking
- Overriding reset
- Buffered inputs and outputs

FUNCTIONAL DIAGRAM


The RCA-CD54/74HC4015 and CD54/74HCT4015 consist of two identical, independent, 4-stage serial-input/parallei-output registers. Each register has independent CLOCK (CP) and RESET (MR) inputs as well as a single serial DATA input. "Q" outputs are available from each of the four stages on both registers. All register stages are D-type, master-slave flip-flops. The logic level present at the DATA input is transferred into the first register stage and shifted over one stage at each positive-going clock transition. Resetting of all stages is accomplished by a high level on the reset line.

The device can drive up to 10 low power Schottky equivalent loads. The CD54/74HCT4015 is an enhanced version of equivalent CMOS types.

The CD54HC4015 and CD54HCT4015 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4015 and CD74HCT4015 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85°C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}=30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I₁≤1 µA @ Vo_L, Vo_H

TERMINAL ASSIGNMENT

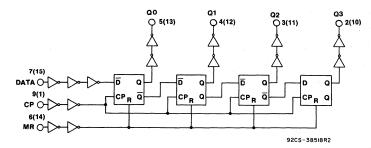


Fig. 1 - Logic diagram for one-half CD54/74HC/HCT4015.

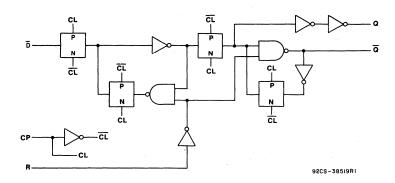


Fig. 2 - Flip-flop detail.

LOGIC TABLE

INP	UTS			OUT	PUTS	
СР	D	R	Qo	Q ₁	Q ₂	Q ₃
	1	L	L	q′o	q′ı	q′2
	h	L	Н	q′o	q′ı	q′2
	х	L	q′o	q′ı	q′2	q'з
х	х	Н	L	L	L	L

- H = HIGH voltage level.
- h = HIGH voltage level one setup time prior to the LOWto-HIGH clock transition.
- L = LOW voltage level.
- I = LOW voltage level one setup time prior to the LOWto-HIGH clock transition.
- q'n= Lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition.
- X = Don't Care.
- _ = LOW-to-HIGH clock transition.
- = HIGH-to-LOW clock transition.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{ik} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{cc} + 0.5 \text{ V}$)	±20 mA
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Voc +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT, (Icc)	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	·
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} .*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	'
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	V
Operating Temperature, T _A :	-		
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times, tr,tr:			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

d,				CD74	HC40)15/C	D54H	C401	5				CD74	НСТ4	015/C	D54F	ICT4	015			
			TEST IDITIO	NS	1	IC/54 TYPE		741 TY		541 TY		TEST 74HCT/54						ICT PE	54H TY	ICT PE	
CHARACTERISTICS	5	V ₁	lo lo	Vcc		-25° C	;	-4 +85	0/ 5°C	1	5/ 5°C	V,	Vcc		+25°C	;		60/ 5°C	-5 +12		UNITS
	-	٧	mA	V	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage	V _{IH}			4.5	3.15		_	3.15	_	3.15	_	_	to	2	_	_	2	_	2	_	٧
				6	4.2	_	_	4.2	_	4.2	_		5.5								P 10. 1
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	<u> </u>	to	-	/	0.8		0.8	-	0.8	, v .,
				6	_	_	1.8		1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	VIL									
Output Voltage V	/он	or	-0.02	4.5	4.4	_	_	4.4	-	4.4		or	4.5	4.4	_	-	4.4	-	4.4	-	v
CMOS Loads		V _{IH}		6	5.9	-	_ '	5.9	_	5.9	_	V _{IH}									
		VIL										VIL									
TTL Loads	- 1	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	_	3.7	_	v
		V _{IH}	-5.2	6	5.48	_	_	5.34	-	5.2	_	ViH	1						<u> </u>		
Low-Level		VIL		2	-	-	0.1	-	0.1	_	0.1	٧ _١									
Output Voltage V	/oL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	v
CMOS Loads		ViH		6	_	_	0.1	-	0.1	_	0.1	ViH									
		VIL										VIL									
TTL Loads		or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5		-	0.26	_	0.33	-	0.4	v
	ĺ	VIH	5.2	6	_	_	0.26	_	0.33	_	0.4	ViH									
Input Leakage Current	lı .	V _{cc} or Gnd		6	_	_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	_	_	±0.1	-	±1	_	±1	μΑ
Quiescent Device Current	сс	V _{cc} or Gnd	0	6	-		8	_	80	-	160	V _{cc} or Gnd	5.5			8	_	80	_	160	μΑ
Additional Quiescent Device Current per Input Pin: 1 Unit Load Δi	lcc*								-			V _{cc} -2.1	4.5 to 5.5	_	100	360		450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

input	Unit Loads*
DATA	0.15
CP	0.45
MR	0.15

^{*}Unit load is Δ I_{cc} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, input t_r , t_t = 6 ns)

		C,	Туј	oical	11-14-
CHARACTERISTIC	SYMBOL	pF	НС	HCT	Units
Propagation Delay CP to Qn	t _{PHL}	15	14	14	ns
MR to Qn	t _{PHL}	15	25	25	
Maximum Clock Frequency	f _{MAX}	15	60	60	MHz
Power Dissipation Capacitance*	C _{PD} *	-	43	43	pF

 $^{^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per shift register. $P_D = C_{PD} \ V_{Cc}^2$ fi + $\Sigma \ C_L \ V_{Cc}^2$ fo where: fi=input frequency, fo=output frequency $C_L = I_{CD}$ capacitance

V_{cc}=supply voltage

PREREQUISITE FOR SWITCHING FUNCTION

				25	°C		-4	0°C t	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	Н	С	Н	CT	74	НС	74F	ICT	54	НС	54H	ICT	UNITS
		1	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6	_	_	_	5	_	_	-	4	_	_	_	
Frequency	f _{MAX}	4.5	30	_	30		24	 -	24		20	_	20	_	MHz
(See Fig. 3)		6	35		_	-	28	-	-	-	24		_	_	
Clock Pulse		2	80		_	_	100	_	_	_	120	_	T -	_	
Width	tw	4.5	16	_	16	l —	20	_	20	-	24	-	24	_	
(See Fig. 3)		6	14		_	l –	17	_	_	_	20		_		
		2	150	_	_		190	_	_	_	225	_	_	-	
MR Pulse Width	tw	4.5	30	_	30	_	38	_	38	_	45	_	45	-	
(See Fig. 4)		6	26		—	_	33	-	-		38	_	_		
MR Recovery		2	50	_	_	_	65	_	Γ-	_	75	_	_		
Time	t _{REC}	4.5	10	-	15		13	-	19	-	15	-	22	-	ns
(See Fig. 4)		6	9		-		11	<u> </u>			13	_		_	
Setup Time	tsüL	2	60	_	_	_	75	_	T -	-	90	_	_	_	
Data-In to CP	tsun	4.5	12	—	16	-	15		20	-	18	-	24		
(See Figs. 5 & 6)		6	10	_	_		13				15				
Hold Time:		2								I					
Data-In to CP	t⊬	4.5	0		0	-	0	-	0	-	0	-	0	-	
(See Figs. 5 & 6)		6													

SWITCHING CHARACTERISTICS (CL=50 pF, Input t,t=6 ns)

				25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	Н	С	Н	CT	74	НС	74F	ICT	54	нС	54H	1CT	UNITS
·			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay		2	_	175	_		_	220	_	_		270	_	-	
Clock to Qn		4.5	_	35	—	35	 	44		44	-	54	-	54	
	1	6	_	30	_	l —	l —	37	_	_	l —	46	—	-	
	t _{PLH}	2	T —	275	—	_	_	345	_	_	_	415	_	T —	
MR to Qn	t _{PHL}	4.5	_	55		60		64	l —	75	 	83	_	90	
(Clock High)		6	—	47	l –		—	54	l —	-	-	71	-	_	
		2	T —	325			_	400	_	Γ-	T —	490	I -	T-	
MR to Qn		4.5	-	65	_	65		81		81	-	98	— ı	98	ns
(Clock Low)		6	-	55	_	-	-	69			-	83	_	-	İ
Output Transition	ttlH	2	—	75	_	_	_	95	_	T -	—	110	—	T —	1
Time	t _{THL}	4.5	—	15	_	15	_	19	_	19	-	22	 -	22	
		6	-	13	_	-	—	16		l —	-	19	_	-	
Input Capacitance	Cı		T -	10	_	10	_	10	_	10	_	10	_	10	pF

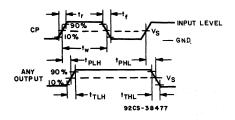


Fig. 3 - Clock-to-output delays and clock pulse width.

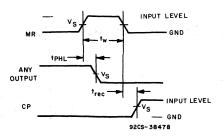


Fig. 4 - Master Reset pulse width. Master Reset to output delay and clock recovery times.

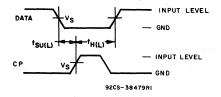


Fig. 5 - Data set-up and hold times.

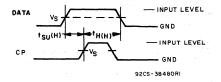
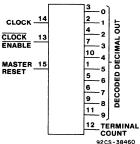



Fig. 6 - Data set-up and hold times.

	54/74HC	54/74HCT
Input Level	VCC	3 V
Switching Voltage, V _S	50% VCC	1.3 V

High-Speed CMOS Logic

Decade Counter/Divider with 10 Decoded Outputs

Type Features:

- Fully static operation
- Buffered inputs
- Common reset
- Positive edge clocking
- Typical f_{MAX} = 50 MHz @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C

FUNCTIONAL DIAGRAM CD54/74HC4017, CD54/74HCT4017

The RCA-CD54/74HC4017 and CD54/74HCT4017 are high speed silicon gate CMOS 5-stage Johnson counters with 10 decoded outputs. Each of the decoded outputs is normally low and sequentially goes high on the low to high transition of the CLOCK (CP) input. Each output stays high for one clock period of the 10 clock period cycle. The CARRY (TC) output transitions low to high after OUTPUT 10 goes low, and can be used in conjunction with the CLOCK ENABLE (CE) to cascade several stages. The CLOCK ENABLE input disables counting when in the high state. A RESET (MR) input is also provided which when taken high sets all the decoded outputs, except "0", low.

The device can drive up to 10 low power Schottky equivalent loads. The CD54/74HCT4017 is an enhanced version of equivalent CMOS types.

The CD54HC4017 and CD54HCT4017 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4017 and CD74HCT4017 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

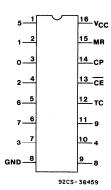
TRUTH TABLE

СР	CE	MR	Output State*
L	Х	L	No Change
X	H	L	No Change
X	×	Н	"O"=H, "1"-"9"=L
_	L	L	Increments Counter
	X	L	No Change
X	_	L	No Change
H		L	Increments Counter

H = High Level

L = Low Level

= High-to-Low Transition = Low-to-High Transition


X=Don't Care

*If n<5 TC=H, Otherwise=L

Family Features:

- Fanout (Over Temperature Range): Standard Outputs — 10 LSTTL Loads Bus Driver Outputs — 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility

 $I_1 \leq 1 \, \mu A \otimes V_{OL}, V_{OH}$

TERMINAL ASSIGNMENT

MAXIMUM RATINGS. Absolute-Maximum Values:

Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)

For TA = +70 to +125° C (PACKAGE TYPE M) OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE F, H -55 to +125° C PACKAGE TYPE E, M -40 to +85° C STORAGE TEMPERATURE (Tstg) -65 to +150° C LEAD TEMPERATURE (DURING SOLDERING):

At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. +265°C

with solder contacting lead tips only +300°C +300°C

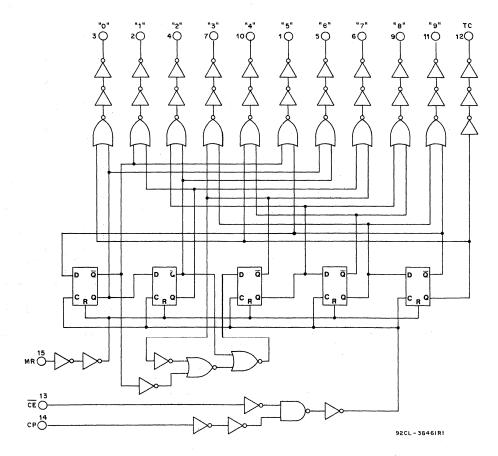


Fig. 1 — Logic diagram for the CD54/74HC/HCT 4017

STATIC ELECTRICAL CHARACTERISTICS

				CD7	4HC4	017/0	D54	1C401	17				_ (CD74	нст4	017/0	D541	ICT4	017		
			TEST CONDITIONS			IC/54		1	HC PES		HC PES	TEST 74HCT/54HCT CONDITIONS TYPES					74HCT TYPES		54HCT TYPES		, N. J.
CHARACTERISTIC	2	V _i			+25°C +85°						UNITS										
		•	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5					}.			
Input Voltage V	′н			4.5	3.15	_		3.15		3.15	_		to,	2	_	-	2	_	2	_	٧
				6	4.2	L	_	4.2	_	4.2	_		5.5								
Low-Level				2		_	0.5	_	0.5	_	0.5	,	4.5								
Input Voltage V	/IL			4.5		<u>_</u>	1.35	_	1.35	_	1.35	_	to	-	_	0.8		8.0	_	0.8	٧
				6			1.8	_	1.8		1.8		5.5								
High-Level		Vil		2	1.9	<u>_</u>	_	1.9		1.9	_	Vıı									
Output Voltage Vo	эн	or	-0.02	4.5	4.4			4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	-	٧
CMOS Loads		V _{IH}		6	5.9	_		5.9		5.9	_	ViH									
		VIL										VIL									
TTL Loads		or	-4	4.5	3.98		_	3.84		3.7	_	or	4.5	3.98	_	_	3.84	-	3.7	_	٧
		V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2		V _{IH}									
Low-Level		VIL		2			0.1	_	0.1	_	0.1	VIL									
Output Voltage Vo	OL	or	0.02	4.5	_	_	0.1	-	0.1	_	0.1	or	4.5	_		0.1	-	0.1	_	0.1	v
CMOS Loads		V _{IH}		6	_	_	0.1		0.1	_	0.1	V _{IH}									
		VIL										VIL									
TTL Loads	ļ	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5		_	0.26	-	0.33	_	0.4	v
		V _{iH}	5.2	6	_		0.26	_	0.33	-	0.4	V _{IH}									
Input Leakage		Vcc										Any Voltage									
Current	lı	or		6	_	_	±0.1	_	±1	-	±1	Between V _{cc}	5.5	-	_	±0.1	-	±1	-	±1	μΑ
		Gnd					-					& Gnd									
Quiescent		Vcc										Vcc									
Device		or	0	6	_	_	8	_	80	_	160	or	5.5	_		8	-	80	-	160	μΑ
Current Id	сс	Gnd										Gnd				L		L			
Additional Quiescent Device Current per input pin: 1 unit load			V _{cc} -2.1										490	μΑ							

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
СР	0.15
CE	0.25
MR .	0.3

^{*}Unit load is Δl_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25°C.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	v
CD54/74HCT Types	4.5	5.5	.V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t, t			2.25
at 2V	0	1000	ns
at 4.5 V	О	500	ns
at 6V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

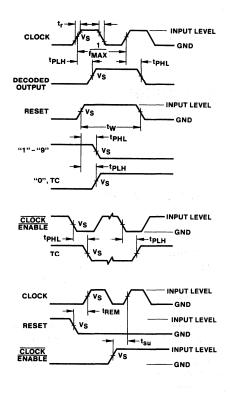
SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, Input t, t_f = 6 \text{ ns}$)

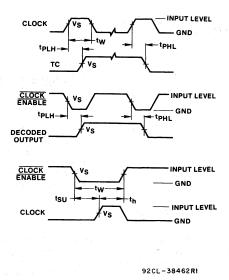
		C _L	Typica		
CHARACTERISTIC	SYMBOL	(pF)	нс	нст	UNITS
Propagation Delay CP to Out	t _{PLH} t _{PHL}	15	19	19	ns
CP to TC	t _{PLH} t _{PHL}	15	19	19	ns
CE to Out	t _{PLH} t _{PHL}	15	21	21	ns
CE to TC	t _{PLH} t _{PHL}	15	21	21	ns
MR to Out	t _{PLH} t _{PHL}	15	19	19	ns
MR to TC	t _{PLH} t _{PHL}	15	19	19	ns
Max. CP Frequency	f _{MAX}	15	60	50	MHz
Power Dissipation Capacitance*	СРВ		39	39	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} \, V_{CC^2} \, f_i + \Sigma \, C_L \, V_{CC^2} \, f_o$ where $f_i =$ input frequency.

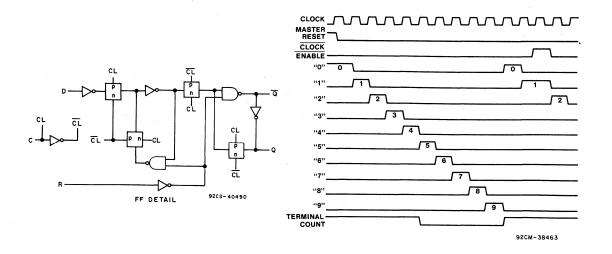
 $f_o =$ output frequency.

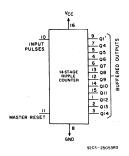

C_L = output load capacitance. V_{cc} = supply voltage.


PREREQUISITE FOR SWITCHING FUNCTION

							LIM	ITS						
CHARACTERISTIC	TEST		25	°C		-4	10°C to	+ 85 °	C	-5				
CHARACTERISTIC	CONDITION	Н	iC	н	СТ	74	нс	74F	ICT	54	НС	54F	ICT	UNITS
	V _{cc}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
CP Pulse Width tw	2 4.5 6	80 16 14	=	16 —	=	100 20 17	_	_ 20 _	_	120 24 20	=	 24 	=	ns
MR Pulse Width tw	2 4.5 6	80 16 14	_ _ _	16 —	_	100 20 17	=	20 —	=	120 24 20	_	 24 	=	ns
Max. Clock Freq. fcL (max.	2 4.5 6	6 30 35	_ _ _	_ 25 _	 - -	5 24 30		_ 20 _		4 20 23		17 —	_ 	MHz
CE to CP Setup Time tsu	2 4.5 6	75 15 13		15 —	=	95 19 16	_ _ _	19 —	<u>-</u>	110 22 19	<u>-</u>	_ 22 _	- - -	ns
CE to CP Hold Time	2 4.5 6	0 0	=	0	-	0 0 0		0	_	0		0	=	ns
MR Removal Time t _{REM}	2 4.5 6	5 5 5	=	_ 5 _	_	5 5 5	=	_ 5 _		5 5 5		_ 5 _	= 1	ns

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_f = 6 \text{ ns}$)


	1.0		1	25	°C		-4	10°C to	+85°	Č	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	IC	H	СТ	74	HC	74F	ICT	54	HC	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	l –	230	_	_	—	290	_	_	—	345	_		
CP to any Dec. Out	t _{PHL}	4.5 6	_	46	_	46	_	58 49	_	58 —		69 59	=	69	ns
CP to TC	t _{PLH} t _{PHL}	2 4.5 6	_	230 46 39	_	_ 46	·	290 58 49	_	_ 58	_	345 69 59	=	_ 69	ns
CE to any Dec. Out	t _{PLH} t _{PHL}	2 4.5 6	-	250 50 43	_	 50 		315 63 54		 63 		375 75 64	=	75 —	ns
CE to TC	t _{PLH} t _{PHL}	2 4.5 6	_	250 50 43	_	_ 50 _	_	315 63 54		- 63 -		375 75 64	- -	- 75 -	ns
MR to any Dec. Out	t _{PLH} t _{PHL}	2 4.5 6	-	230 46 39	_	- 46 -	=	290 58 49	=	_ 58 _	<u> </u>	345 69 59	<u>-</u>	69 —	ns
MR to TC	t _{PLH} t _{PHL}	2 4.5 6	_	230 46 39	_	 46 	_	290 58 49	_	_ 58 _		345 69 59		69 —	ns
Transition Time TC, Dec. Out	t _{THL} t _{TLH}	2 4.5 6	_ _	75 15 13	_	_ 15 _	_	95 19 16		19 —	<u>-</u>	110 22 19	_ _ _	 22 	ns
Input Capacitance	Cin			10		10	_	10		10	_	10	_	10	pF



	CD54/74HC	CD54/74HCT
Input Level	Vcc	3 V
Vs	0.5 V _{cc}	1.3 V

Transition times and propagation delay times.

High-Speed CMOS Logic

14-Stage Binary Counter

Type Features:

- Fully static operation
- Buffered inputs
- Common reset
- Negative edge pulsing
- Typical f_{MAX} = 50 MHz @ V_{CC} = 5 V, C_L = 15, T_A = 25° C

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC4020 and CD54/74HCT4020 are 14-stage ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of the stage advances one count on the negative transition of each input pulse; a high voltage level on the MR line resets all counters to their zero state. All inputs and outputs are buffered.

The CD54HC4020 and CD54HCT4020 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4020 and CD74HCT4020 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic package (M suffix). Both types are also available in chip form (H suffix).

TRUTH TABLE

φ	MR	Output State
1	L	No Change
	L	Advance to next state
Х	н	All Outputs are low

- H = high level (steady state)
- L = low level (steady state)
- X = don't care

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 - 2 to 6 V Operation
 - High Noise Immunity: N_{IL}=30%, N_{IH}=30% of V_{CC};
- @ V_{cc}=5 V
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - V_{IL} =0.8 V Max., V_{IH} =2 V Min.
 - CMOS Input Compatibility
 - $I_1 \leq 1 \mu A @ V_{OL}, V_{OH}$

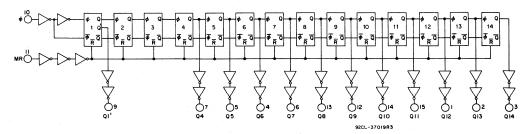


Fig. 1 - Logic block diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o < -0.5 V OR V_o > V_{CC} +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V $<$ V _o $<$ V _{cc} + 0.5V)	±25mA
DC V _{cc} OR GROUND CURRENT (I _{cc})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to 125°C (PACKAGE TYPE M)	····· Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _a): PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1:59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIP	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNIIS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
Vcc.*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{in} , V _{out}	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r ,t _f			
at 2 V	О	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	. ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

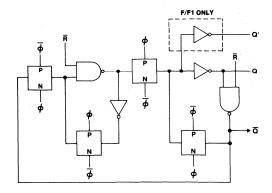


Fig. 2 - Detail for flip-flops 1, 2, 3, 5, 6, 8,10, 11, 13 & 14.

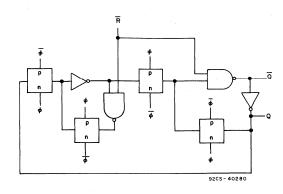
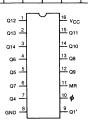


Fig. 3 - Detail for flip-flops 4, 7, 9 & 12.

STATIC ELECTRICAL CHARACTERISTICS


		CD74HC4020/CD54HC4020												CD74HCT4020/CD54HCT4020									
01404075010710		TEST IDITIONS		74HC/54HC 74HC 54HC TYPES TYPES					TEST 74HCT/54HCT CONDITIONS TYPES						HCT PES	1	HCT PES	UNITS					
CHARACTERISTIC	V ₁ I ₀ V _{cc} +25°C -40/ -55/ +85°C +125°C		V, V _{cc}		+25°C			1	10/ 5° C	-55/ +125°C		UNITS											
		""	ľ	Min	Тур	Max	Min	Max	Min	Max	'	ľ	Min	Тур	Max	Min	Max	Min	Max				
High-Level			2	1:5	-	_	1.5	-	1.5	-		4.5											
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	_	3.15	_	-	to	2	 	-	2		2	-	v			
			6	4.2	_	-	4.2	-	4.2	_	1	5.5											
Low-Level			2	_	_	0.5	-	0.5	_	0.5		4.5											
Input Voltage V _{IL}			4.5	_	_	1.35	-	1.35	_	1.35	_	to	-	-	0.8	-	0.8	-	0.8	v			
·		İ	6	-	-	1.8	-	1.8	-	1.8		5.5											
High-Level	V _{IL}		2	1.9		_	1.9	_	1.9	_	VIL						- :-						
Output Voltage V _{OH}	or	-0.02	4.5	4.4	-	_	4.4	_	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	-	v			
CMOS Loads	V _{IH}		6	5.9			5.9	-	5.9	_	V _{IH}												
	VIL			,							V _{IL}												
TTL Loads	or	-4	4.5	3.98	_		3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	_	3.7	-	v			
	V _{IH}	-5.2	6	5.48	_		5.34		5.2	_	V _{IH}												
Low-Level	VIL		2	_	_	0.1	_	0.1	_	0.1	VIL												
Output Voltage V _{ol}	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	V			
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}												
	V _{IL}										V _{IL}												
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	_	0.26	-	0.33	-	0.4	v			
	V _{IH}	5.2	6			0.26	_	0.33	_	0.4	V _{IH}												
Input Leakage	V _{cc}										Any Voltage									1.0			
Current I,	or		6	-	_	±0.1	_	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	_	±1	_	±1	μΑ			
	Gnd										& Gnd												
Quiescent	V _{cc}										Vcc												
Device	or	0	6	_	-	8	_	80	_	160	or	5.5		_	8	_	80	-	160	μΑ			
Current I _{cc}	Gnd										Gnd				<u> </u>								
Additional Quiescent Device Current per input pin:											V _{cc} -2.1	4.5 to	_	100	360	_	450	_	490	μΑ			
1 unit load Δ lcc*												5.5											

 $^{^{\}circ}$ For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
MR	0.65
Ø	0.5

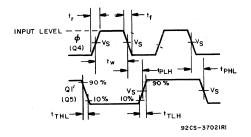
^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 $\mu{\rm A}$ max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns)

0.1.0.000000000000000000000000000000000		C,	Ту	oical	1 Imite
CHARACTERISTIC	SYMBOL	pF	HC	HCT	Units
Propagation Delay Ø to Q1' Output	t _{PLH} t _{PHL}	15	11	17	ns
Propagation Delay Q _n to Q _{n 1 1}	t _{PLH} t _{PHL}	15	6	6	ns
Propagation Delay MR to Qn	t _{PHL}	15	14	17.	MHz
Power Dissipation Capacitance*	C _{PD}	T-T	30	30	pF

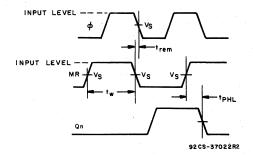
 $^{\bullet}C_{PD}$ is used to determine the power consumption, per package. PD = C_{PD} Vcc² fi + Σ (C_L Vcc² fi/M) where: $M = 2^1, \, 2^4, \, 2^5 \, \dots \, 2^{14}$

CL = output load capacitance


fi = input frequency

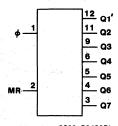
Pre-requisite for Switching Function

- +				25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	H	CT	74	нс	74F	ICT	54	HC	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Input Pulse		2	6	_	_	_	5	_	_	_	4	_	I —	I —	
Frequency	f _{MAX}	4.5	30	_	25	-	25	-	20	 	20	<u> </u>	16	—	MHz
		6	35	_	_	l –	29	_	_	_	24	—	 -	_	
Input Pulse Width	tw	2	80	_	_	_	100	-	_	<u> </u>	120	I —	_	-	
(Figure 4)		4.5	16	_	20	 	20	_	25	-	24		30	_	ns
		6	14	—	—	l –	17	—		_	20	-	<u> </u>	l —_	
Reset Removal Time	trem	2	50		_	_	65	_	_	_	75	I —	_	_	
(Figure 5)		4.5	10	_	10	_	13	-	13	_	15	-	15		ns
		6	9	_	l —	_	11	— .	—	_	13	l —		l –	
Reset Pulse Width	tw	2	80	_	<u> </u>	_	100	T —	_	T —	120		_	T -	
(Figure 5)		4.5	16	_	20	_	20	-	25	-	24	_	30	-	ns
	ľ	6	14	-	l —	_	17	-	—	-	20	_	—	-	


SWITCHING CHARACTERISTICS (C_L=50 pF, Input t_r,t_f=6 ns)

				25	°C		-4	0°C t	o +85°	C	-5				
CHARACTERISTIC	SYMBOL	Vcc	Н	С	H	CT .	74	HC	74H	ICT	54	HC	54F	ICT	UNITS
·			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	tpLH	2	_	140	-	_	_	175	_	_	_	210		—	
φ to Q1' Output	tent	4.5	 	28		40		35	-	50	_	42	—	60	ns
(Figure 4)		6	_	24	—	_		30	-	-	_	36	-	_	ļ _
Propagation Delay	tpLH	2	_	75	—	_		95	_	-	_	110	T -	_	
Q _n to Qn+1	tpHL	4.5	— .	15	-	15	—	19	-	19	-	22	—	22	ns
(Figure 4)		6	-	13	_	-		16	—		_	19	_	_	
Propagation Delay	tpHL	2	_	170	_	_	_	215	_	_	_	255	_	_	
MR to Q _n		4.5	-	34	—	40		43	—	50	 	51	_	60	ns
(Figure 5)		6	-	29	-	—	<u> </u>	37	-	_	—	43	-	-	
Output Transition	tTLH	2	T	75	_	_	T —	95	_	_	_	110	—	T	
Time	tTHL	4.5	_	15	_	15	—	19	_	19	_	22	_	22	ns
(Figure 4)	1	6	_	13	l —	—	_	16	-	-	l —	19	_		
Input Capacitance	Cı		_	10	_	. 10	_	10	_	10	_	10	_	10	pF

	54/74 HC	54/74 HCT
INPUT LEVEL	V _{cc}	3V
V _s	50%	1.3V


Fig. 4 - Input pulse pre-requisite times, propagation delays and output transition times.

	54/74 HC	54/74 HCT
INPUT LEVEL	V _{cc}	3V
v _s	50%	1.3V

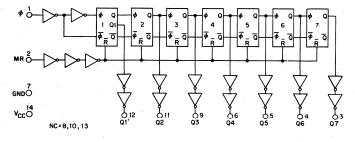
Fig. 5 - Master Reset pre-requisite and propagation delays.

High-Speed CMOS Logic

7-Stage Binary Ripple Counter

Type Features:

- Fully static operation:
- Buffered inputs:
- Common reset
- Typical fmax = 50 MHz @ Vcc = 5 V, CL = 15 pF, TA = 25° C


92CS-38450RI CD54/74HC4024, HCT4024 FUNCTIONAL DIAGRAM

The RCA-CD54/74HC4024 and CD54/75HCT4024 are 7-stage ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of the stage advances one count on the negative transition of each input pulse; a high voltage level on the MR line resets all counters to their zero state. All inputs and outputs are buffered.

The CD54HC4024 and CD54HCT4024 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4024 and CD74HCT4024 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}= 30%, N_{IH}=30% of V_{CC} @ V_{CC} =5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I_I ≤ 1 µA @Vo_L, V_{OH}

92CM-38451R3

TRUTH TABLE

φ	MR	OUTPUT STATE
	L	No Change
/	L	Advance to Next State
Χ	Н	All Outputs are Low

H = high level (steady state)

L = low level (steady state)

X = don't care

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} +0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	
DC Vcc OR GROUND CURRENT, (Icc)	±50 mA
POWER DISSIPATION PER PACKAGE (P₀):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tato)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} :*			
CD54/74HC Types	2	6	v
CD54/74HCT Types	4.5	5.5	, v
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	C
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

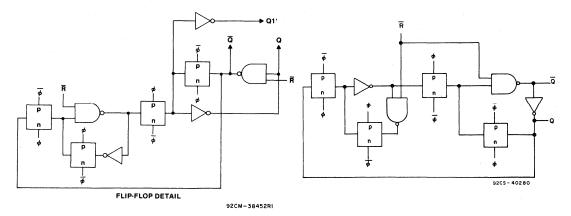


Fig. 2 - Flip-flop No. 1 detail.

Fig. 3 - Detail for flip-flops 2 through 7.

STATIC ELECTRICAL CHARACTERISTICS

			CD7	4HC4	024/0	D54F	IC402	4				CD74	нст4	024/0	CD541	ICT4	024			
	со	TEST CONDITIONS			74HC/54HC TYPE		74HC TYPE		54HC TYPE		TEST		74HCT/54HCT TYPE			74HCT TYPE		54HCT TYPE		
CHARACTERISTICS	Vı	l _o	Vcc		+25° (•	1	0/ i°C	-5 +12	5/ 5°C	Vı	V _{cc}		+25° (;	i	0/ 5° C		5/ 5°C	UNITS
	٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	v	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{II}	.	1	4.5	3.15	_	Ī-	3.15	_	3.15	_	_	to	2		-	2	-	2	_	v
			6	4.2	_	Ī-	4.2	_	4.2	_		5.5	1							
Low-Level			2	_	_	0.5	_	0.5	-	0.5		4.5								-
Input Voltage V _{II}			4.5	 	_	1.35	_	1.35	_	1.35	_	to	_	_	0.8	_	0.8	_	0.8	V.
		İ	6		_	1.8	_	. 1.8	_	1.8		5.5								
High-Level	VIL		2	1.9	_	-	1.9	_	1.9		ViL		Г							
Output Voltage Vo	or	-0.02	4.5	4.4		-	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	v
CMOS Loads	VIH	1	6	5.9	_	-	5.9	_	5.9	_	ViH							l		
	VIL	1									VıL									
TTL Loads	or	-4	4.5	3.98	_	_	3.84		3.7		or	4.5	3.98	_	_	3.84	_	3.7	_	v
	VIH	-5.2	6	5.48	_	_	5.34		5.2		ViH									
Low-Level	VIL	1	2	_	_	0.1	_	0.1	_	0.1	Vil		-		-					
Output Voltage Vo	1	0.02	4.5	_	_	0.1		0.1		0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads	VIH	0.02	6	_	_	0.1		0.1		0.1	ViH	4.0			0.1		0.,		٥.,	•
000 2000	VIL	1	۲	\vdash	\vdash	-		0.1		0.1	VIL			<u> </u>		 		 		
TTL Loads	or	4	4.5	_		0.26		0.33	_	0.4	or	4.5			0.26		0.33		0.4	. v
112 20003	V _{IH}	5.2	6	-	-	0.26	Ε-	0.33	_	0.4	ViH	4.5	-	_	0.20	-	0.33	_	0.4	. *
Input Leakage Current Ii	V _{cc} or Gnd		6	-	_	±0.1		±1		±1	Any Voltage Between V _{CC} and Gnd	5.5	_	_	±0.1	_	±1	_	±1	μΑ
Quiescent Device Current Ico	V _{cc} or Gnd	0	6	_	_	8	_	80	-	160	V _{cc} or Gnd	5.5	_	_	8	_	80	_	160	μА
Additional Quiescent Device Current per Input Pin: 1 Unit Load Alc	;•			L							V _{cc} -2.1	4.5 to 5.5		100	360	_	450	_	490	μΑ

^{*}For dual-supply system" theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
Ø,MR	0.5

*Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max.@25° C.

φ <u>1</u>		14 v _{CC}
MR -2		13 NC
Q7 -3		12 Q1'
Q6 -4		11 Q2
Q5 -5		10 NC
Q4 <u>6</u>		9 Q3
GND —7		8 NC
-	TOP VIEW	•

92CS-38453RI

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input tr,tr=6 ns)

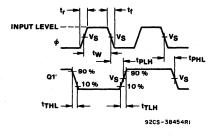
			TYPICAL	. VALUES	
CHARACTERISTIC	SYMBOL	C _L (pF)	HC	HCT	UNITS
Propagation Delay	tpHL	15	11	17	
ϕ to Q1'	t _{PLH}				
	t _{PHL}	15	6	6	ns
Qn to Qn+1	tplH				
	t _{PHL}	15	14	17	
MR to Q _n	t _{PLH}				
Power Dissipation Capacitance*	C _{PD}		30	30	pF

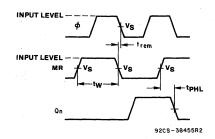
^{*}C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{CC}^2 fi + \Sigma (C_L V_{CC}^2 fi/M)$ where:

 $M=2^{1},2^{2},2^{3},2^{4},2^{5},2^{6},2^{7}$

C_L=output load capacitance

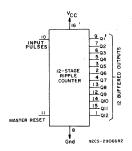

fi=input frequency


Prerequisite for Switching Function

	***************************************		Π	25	°C		-4	0°C t	o +85°	°C	-5	°C			
CHARACTERISTIC	SYMBOL	VCC	C HC		с нс			74HC		74HCT		HC	54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Input		2	6	_			5	_	_	- T	4	_	-	-	1
Pulse Frequency	f _{MAX}	4.5	30	_	25	l —	24		20	-	20	_	16	_	MHz
		6	35	_	_	—	29	-	-	-	24	_	-	-	-
Input Pulse Width	tw	2	80	_		_	100	_	_	_	120	_	_	T-	
		4.5	16	-	20	_	20	_	25	_	24	-	30	-	
		6	14	-	_	—	17	-		—	20	-	-	-	
Reset Removal Time	t _{REM}	2	50	-	_		65		_		75	_	_	_	1
		4.5	10		10		13		13	-	15	-	15	-	ns
		6	9	_	_	_	11		-	_	13	_	-	_	
Reset Pulse Width	t _w	2	80	T-			100	T —	_	T -	120	_	_	T —	
		4.5	16		20	-	20	—	25	-	24	-	30		
		6	14	-	-		17	-	-	-	20		-		

SWITCHING CHARACTERISTICS (CL=50 pF, input t,,t,=6 ns)

				25	°C		-4	0°C t	o +85°	°C	-5				
CHARACTERISTIC	SYMBOL	VCC	Н	С	H	CT	74	нс	74F	ICT	54	HC	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	T-	140	_	_	_	175	_	-	_	210	_	-	
ϕ to Q1' Output	tpHL	4.5	_	28	_	40		35	_	50		42	—	60	ns
	-	6	-	24	_	_	-	30	-			36	-	-	
Propagation Delay	t _{PLH}	2	_	75	=		_	95	_	T -	_	110	_	T -	
Qn to Qn+1	tpHL	4.5	-	15	_	15	—	19	_	19	-	22		22	ns
		6	-	13	-	_	_	13			_	19	-	-	
Propagation Delay	t _{PHL}	2	T-	170	_	_	_	215	T =	_	_	255	_	_	
MR to Q _n		4.5	-	34	_	40		43	_	50	_	51	-	60	ns
		6	-	29	_	_	_	27	_	_	—	43	_	 	
Output Transition	t _{TLH}	2	1-	75	_		_	95	 	_	_	110	-	-	
Time	t _{THL}	4.5	_	15	_	15		19	_	19	_	22	_	22	ns
		6	-	13	_	_		16	_	<u> </u>] —	19	_	_	
Input Capacitance	Cı	_	T —	10	_	10		10	_	10	_	10	_	10	pF



	54/74HC	54/74HCT
Input Level	VCC	3 V
Switching Voltage, V _S	50% V _{CC}	1.3 V

Fig. 4 - Input Pulse pre-requisite times, propagation delays and output transition times.

Fig. 5 - Master Reset pre-requisite and propagation delays.

High-Speed CMOS Logic

12-Stage Binary Counter

Type Features:

- Fully static operation
- Buffered inputs
- Common reset
- Negative edge pulsing
- Typical $f_{MAX} = 50 \text{ MHz}$ @ $V_{CC} = 5 \text{ V}$, $C_L = 15 \text{ pF}$, $T_A = 25^{\circ} \text{ C}$

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC4040 and CD54/74HCT4040 are 12-stage ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of the stage advances one count on the negative transition of each input pulse; a high voltage level on the MR line resets all stages to their zero state. All inputs and outputs are buffered.

The CD54HC4040 and CD54HCT4040 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4040 and CD74HCT4040 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic package (M suffix). Both types are also available in chip form (H suffix).

TRUTH TABLE

φ	MR	Output State
	L	No Change
~	L	Advance to next state
х	Н	All Outputs are low

- H = high level (steady state)
- L = low level (steady state)
- X = don't care

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL}=30%, N_{IH}=30% of V_{CC} @ V_{CC}=5 V
- CD54HCT/CD74HCT Types:

 4.5 to 5.5 V Operation

 Direct LSTTL Input Logic Compatibility

 V_{IL}=0.8 V Max., V_{IH}=2 V Min.

 CMOS Input Compatibility

 I₁ ≤ 1 µA @ V_{OL}, V_{OH}

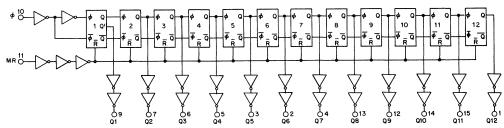


Fig. 1 - Logic block diagram.

92CL-37015R3

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_i $<$ -0.5 V OR V_i $>$ V_{CC} +0.5V) \hdots	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_{\text{o}} < -0.5 \text{ V OR } V_{\text{o}} > V_{\text{CC}} + 0.5 \text{V}) \ \dots$	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M STORAGE TEMPERATURE (Tstg)	-40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIA	AITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage Vin, Vout	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r ,t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

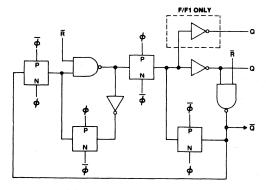


Fig. 2 - Detail for flip-flops 1, 2, 4, 5, 7, 8, 10 & 11.

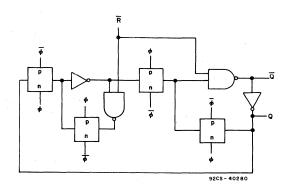


Fig. 3 - Detail for flip-flops 3, 6, 9 & 12.

STATIC ELECTRICAL CHARACTERISTICS

	-	CE	74HC	4040/	CD54	HC40	140					CD7	4HC1	4040	CD54	нст	4040			
		TEST IDITIONS		i	IC/54		741 TYF		54I TYF		TEST CONDITIO		1	HCT/54HCT 74HCT TYPES TYPES			1		UNITS	
CHARACTERISTIC	۷, ۷	I _o	V _{cc}		+25° C	;	-4 +85		-5 +12!	5/ 5°C	V, V			+25° C	:	-40 +85°			5/ 5°C	UNITS
	V	mA		Min	Тур	Max	Min	Max	Min	Max	ď	ľ	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	-	to	2		-	2	-	2	_	v
			6	4.2	-	_	4.2		4.2	_		5.5								
Low-Level			2	_	_	0.5		0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	-	-	1.35	_	1.35	_	1.35	-	to	-	-	0.8	-	0.8	-	0.8	v
			6	_	_	1.8		1.8	-	1.8		5.5								
High-Level	V _{IL}		2	1.9		_	1.9	_	1.9	_	V _{IL}									
Output Voltage V _{он}	or	-0.02	4.5	4.4	_	_	4.4		4.4	-	or	4.5	4.4	_	-	4.4	_	4.4	-	V
CMOS Loads	V _{IH}		6	5.9	_	-	5.9	_	5.9	_	V _{IH}									31
	VIL										V _{IL}							ľ		
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	, V
	V _{tH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	V _{IL}		2	_	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage VoL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-		0.1	-	0.1	-	0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1		0.1	_	0.1	V _{IH}						<u> </u>			
	V _{IL}										V _{IL}									
TTL Loads	or	4	4.5	-	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
	V _{IH}	5.2	6	_		0.26	_	0.33		0.4	V _{IH}									
Input Leakage	V _{cc}										Any Voltage								1	
Current I,	or		6	-	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd										& Gnd							_	<u> </u>	
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	_	-	8	-	80	-	160	or	5.5	-	-	8	_	80	-	160	μΑ
Current I _{cc}	Gnd										Gnd								<u> </u>	
Additional Quiescent												4.5							-	
Device Current per input pin: 1 unit load \(\Delta \cdot \											V _{cc} -2.1	to 5.5	-	100	360	-	450	-	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_i = 2.4 V, $V_{\rm CC}$ = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
MR	0.65
	1
φ	0.5

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

Q12 1	$\overline{}$	16 VCC	
Q6 ²		15 Q11	
Q5 3		14 Q10	
Q7 4		13 Q8	
Q4 5		12 Q9	
Q3 6		11 MR	
Q2 -7		10 ф	
GND B		9 Q1'	
	L	•	92CS-36852R1

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, input t_r, t_i = 6 ns)

CHARACTERICTIC	OV4501	C,	Typical						
CHARACTERISTIC	SYMBOL	pF	HC	HCT	Units				
Propagation Delay ϕ to Q1' Output	t _{PLH} t _{PHL}	15	11	17	ns				
Propagation Delay Q_n to Q_{n+1}	t _{PHL}	15.	4	4	ns				
Propagation Delay to MR to Q _n	t _{PHL}	15	14	17	ns				
Power Dissipation Capacitance*	C _{PD}	1-1	40	45	pF				

^{*}C_{PD} is used to determine the power consumption, per package.

PD = $C_{PD} \ Vcc^2 \ fi + \Sigma \ (C_L \ Vcc^2 \ fi/M) \ where:$ $M = 2^1, \ 2^2, \ 2^3, \ \ldots \ 2^{12}$

C_L = output load capacitance

fi = input frequency

Pre-requisite for Switching Function

				25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	5°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	C	H	CT	74	НС	741	1CT	54	нС	541	HCT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	. Min. Max.	1	
Maximum Input Pulse		2	6		_	_	5	_		-	4	_		_	
Frequency	f _{MAX}	4.5	30	_	25	<u> </u>	25	_	20		20	_	16	_	MHz
		6	35		_	-	29	-	 —	_	24		_	-	ì
Input Pulse Width	tw	2	80	_	_	_	100	_	_	_	120	—	_	1-	
(Figure 4)		4.5	16		20	l –	20		25	_	24	l —	30		ns
		6	14	-	_	l —	17	_	l —		20	_	_	_	
Reset Removal Time	t _{REM}	2	50	_	Ī —	_	65	_	_	_	75	_	_	 	
(Figure 5)	.	4.5	10		10		13	-	13	_	15		15	-	ns
· · · · · · · · · · · · · · · · · · ·		6	9		_	l —	11	_	_	_	13	_	_	_	
Reset Pulse Width	tw	2	80	_	—	_	100	_		_	120	_	_	† -	
(Figure 5)		4.5	16	—	20	—	20		25	_	24	_	30	_	ns
	1	6	14	_			17	-	-	_	20	_		_	

SWITCHING CHARACTERISTICS (CL=50 pF, input $t_{\rm r}, t_{\rm f}$ =6 ns)

				25	°C	-	-4	0°C t	o +85°	°C	-5				
CHARACTERISTIC	SYMBOL	Vcc	Н	C	Н	СТ	74	нс	74F	ICT	54	нС	54H	ICT	UNITS
	-		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay	telH	2	_	140	I -	-	I —	175	_	T	T —	210		_	
φ to Q1' Output	tpHL	4.5	_	28	_	40	l —	35	_	50	-	42		60	ns
(Figure 4)		6	_	24	_	_	_	30	_	_		36	_	_	İ
Propagation Delay	tpLH	2	I -	75	_	_	_	95	_		_	110	_	_	
Q _n to Qn+1	t _{PHL}	4.5	—	15	_	15	-	19	-	19	-	22	_	22	ns
(Figure 4)		6	_	13	-	-	_	16	_	_	_	19	_	_	
Propagation Delay	tpHL	2	_	170	_	_	-	215		_	_	255	_	_	
MR to Q _n		4.5	-	34	_	40	_	43		50	_	51	_	60	ns
(Figure 5)		6	—	29	-	_	_	37	_	_	_	43		_	
Output Transition	t _{TLH}	2	_	75		_		95	_	_		110		_	
Time	t _{THL}	4.5	_	15	_	15	l —	19	l —	19	 _	22		22	ns
(Figure 4)		6	_	13	I		_	16	_	l –	_	19		_	
Input Capacitance	Cı		_	10	_	10	_	10	-	10		10	_	10	pF

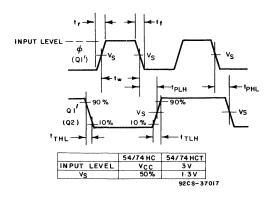
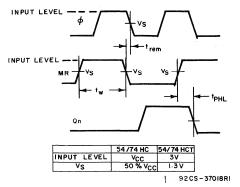
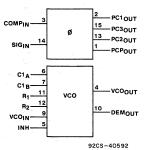


Fig. 4 - Input pulse pre-requisite times, propagation delays and output transition times.




Fig. 5 - Master Reset pre-requisite and propagation delays.

File Number 1854

Advance Information/ Preliminary Data

CD54/74HC 4046A CD54/74HCT 4046A

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Phase-Locked-Loop with VCO

Features:

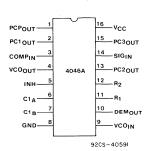
- Operating frequency range of up to 18 MHz (typ.) at V_{CC} = 5 V
- Choice of three phase comparators:
 EXCLUSIVE-OR:
 edge-triggered JK flip-flop;
 edge-triggered RS flip-flop
- Excellent VCO frequency linearity
- VCO-inhibit control for ON/OFF keying and for low standby power consumption
- Minimal frequency drift

 Operating power supply voltage range: VCO section 3 V to 6 V; digital section 2 V to 6 V

Applications:

- FM modulation and demodulation
- Frequency synthesis and multiplication
- Frequency discrimination
- Tone decoding
- Data synchronization and conditioning
- Voltage-to-frequency conversion
- Motor-speed control

The RCA CD54/74 HC/HCT4046A are high-speed Si-gate CMOS devices that are pin compatible with the CD4046B of the "4000B" series. They are specified in compliance with JEDEC standard no. 7


The HC/HCT4046A are phase-locked-loop circuits that contain a linear voltage-controlled oscillator (VCO) and three different phase comparators (PC1, PC2 and PC3). A signal input and a comparator input are common to each comparator.

The signal input can be directly coupled to large voltage signals, or indirectly coupled (with a series capacitor) to small voltage signals. A self-bias input circuit keeps small voltage signals within the linear region of the input amplifiers. With a passive low-pass filter, the 4046A forms a second-order loop PLL. The excellent VCO linearity is achieved by the use of linear op-amp techniques.

The CD54HC4046A and CD54HCT4046A are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC4046A and CD74HCT4046A are supplied in 16-lead plastic dual-in-line packages (E suffix), and in 16-lead surface mount plastic dual-in-line packages (M suffix). The CD54/74HC/HCT4046A are also supplied in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range); Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/HCU: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁≤1 µA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values

DC SUPPLY-VOLTAGE (V _{cc}):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$)	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (for $V_O < -0.5 \text{ V}$ or $V_O > V_{CC} + 0.5 \text{ V}$)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (for -0.5 V < Vo < Vcc + 0.5 V)	±25 mA
DC V _{cc} OR GOUND CURRENT (I _{cc}):	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always with the following ranges:

	2 4.5 0 -40 -55	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (for T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _{r.} t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	РСРоит	phase comparator pulse output
2	PC1 _{out}	phase comparator 1 output
3	COMP _{IN}	comparator input
4	VCO _{OUT}	VCO output
5	INH	inhibit input
6	C1 _A	capacitor C1 connection A
7	C1 _B	capacitor C1 connection B
8	GND	ground (0 V)
9	VCOIN	VCO input
10	DEM _{OUT}	demodulator output
11	R ₁	resistor R1 connection
12	R ₂	resistor R2 connection
13	PC2 _{out}	phase comparator 2 output
14	SIG _{IN}	signal input
15	РС3оит	phase comparator 3 output
16	Vcc	positive supply voltage

GENERAL DESCRIPTION

vco

The VCO requires one external capacitor C1 (between C1_A and C1_B) and one external resistor R1 (between R₁ and GND) or two external resistors R1 and R2 (between R₁ and GND, and R₂ and GND). Resistor R1 and capacitor C1 determine the frequency range of the VCO. Resistor R2 enables the VCO to have a frequency offset if required. See logic dlagram, Fig. 1.

The high input impedance of the VCO simplifies the design of low-pass filters by giving the designer a wide choice of resistor/capacitor ranges. In order not to load the low-pass filter, a demodulator output of the VCO input voltage is provided at pin 10 (DEMout). In contrast to conventional techniques where the DEMout voltage is one threshold voltage lower than the VCO input voltage, here the DEMout voltage equals that of the VCO input. If DEMout is used, a load resistor (Rs) should be connected from DEMout to GND; if unused, DEMout should be left open. The VCO output (VCO_{OUT}) can be connected directly to the comparator input (COMPIN), or connected via a frequency-divider. The VCO output signal has a guaranteed duty factor of 50%. A LOW level at the inhibit input (INH) enables the VCO and demodulator, while a HIGH level turns both off to minimize standby power consumption.

Phase Comparators

The signal input (SIG_{IN}) can be directly coupled to the self-biasing amplifier at pin 14, provided that the signal swing is between the standard HC family input logic levels. Capacitive coupling is required for signals with smaller swings.

Phase comparator 1 (PC1)

This is an Exclusive-OR network. The signal and comparator input frequencies (f_i) must have a 50% duty factor to obtain the maximum locking range. The transfer characteristic of PC1, assuming ripple ($f_r = 2f_i$) is suppressed, is:

 $V_{\text{DEMOUT}}=(V_{\text{CC}}/\pi)~(\phi_{\text{SIGIN}}-\phi_{\text{COMPIN}})$ where V_{DEMOUT} is the demodulator output at pin 10; $V_{\text{DEMOUT}}=V_{\text{PC1OUT}}$ (via low-pass filter).

The average output voltage from PC1, fed to the VCO input via the low-pass filter and seen at the demodulator output at pin 10 (V_{DEMOUT}), is the resultant of the phase differences of signals (SIGiN) and the comparator input (COMPiN) as shown in Fig. 2. The average of V_{DEM} is equal to $1/2~V_{\text{cc}}$ when there is no signal or noise at SIGiN, and with this input the VCO oscillates at the center frequency (f_{o}). Typical waveforms for the PC1 loop locked at f_{o} are shown in Fig. 3.

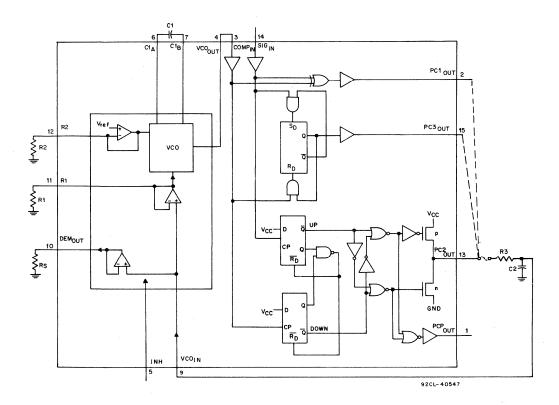


Fig. 1 — Logic diagram.

The frequency capture range $(2f_c)$ is defined as the frequency range of input signals on which the PLL will lock if it was initially out-of-lock. The frequency lock range $(2f_c)$ is defined as the frequency range of input signals on which the loop will stay locked if it was initially in lock. The capture range is smaller or equal to the lock range.

With PC1, the capture range depends on the low-pass filter characteristics and can be made as large as the lock range. This configuration retains lock behavior even with very noisy input signals. Typical of this type of phase comparator is that it can lock to input frequencies close to the harmonics of the VCO center frequency.

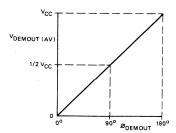


Fig. 2 — Phase comparator 1: average output voltage versus input phase difference:

 $V_{\rm DEMOUT} = V_{\rm PC1OUT} = \ (V_{\rm CC}/\pi) \ (\phi_{\rm SIGIN} - \phi_{\rm COMPIN}); \ \phi_{\rm DEMOUT} = (\phi_{\rm SIGIN} - \phi_{\rm COMPIN}).$

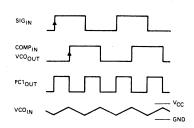


Fig. 3 — Typical waveforms for PLL using phase comparator 1, loop locked at fo.

Phase Comparator 2 (PC2)

This is a positive edge-triggered phase and frequency detector. When the PLL is using this comparator, the loop is controlled by positive signal transitions and the duty factors of SIG_{IN} and COMP_{IN} are not important. PC2 comprises two D-type flip-flops, control-gating and a 3-state output stage. The circuit functions as an up-down counter (Fig. 1) where SIG_{IN} causes an up-count and COMP_{IN} a down-count. The transfer function of PC2, assuming ripple ($f_r = f_i$) is suppressed, is:

 $V_{\text{DEMOUNT}} = (V_{\text{CC}}/4\pi) \ (\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}}) \ \text{where} \ V_{\text{DEMOUT}} \ \text{is the demodulator output at pin 10:} \ V_{\text{DEMOUT}} = V_{\text{PC2OUT}} \ (\text{via low-pass filter}).$

The average output voltage from PC2, fed to the VCO via the low-pass filter and seen at the demodulator output at pin 10 (V_{DEMOUT}), is the resultant of the phase differences of SIG_{IN} and COMP_{IN} as shown in Fig. 4. Typical waveforms for the PC2 loop locked at f₀ are shown in Fig. 5.

When the frequencies of SIG_{IN} and $COMP_{IN}$ are equal but the phase of SIG_{IN} leads that of $COMP_{IN}$, the p-type output driver at $PC2_{OUT}$ is held "ON" for a time corresponding to the phase difference (ϕ_{DEMOUT}). When the phase of SIG_{IN} lags that of $COMP_{IN}$, the n-type driver is held "ON".

When the frequency of SIG_{IN} is higher than that of COMP_{IN}, the p-type output driver is held "ON" for most of the input signal cycle time, and for the remainder of the cycle both n- and p-type drivers are "OFF" (3-state). If the SIG_{IN} frequency is lower than the COMP_{IN} frequency, then it is the n-type driver that is held "ON" for most of the cycle. Subsequently, the voltage at the capacitor (C2) of the low-pass filter connected to PC2_{out} varies until the signal and comparator inputs are equal in both phase and frequency. At this stable point the voltage on C2 remains constant as the PC2 output is in 3-state and the VCO input at pin 9 is a high impedance. Also in this condition, the signal at the phase comparator pulse output (PCP_{Out}) is a HIGH level and so can be used for indicating a locked condition.

Thus, for PC2, no phase difference exists between SIG_{IN} and COMP_{IN} over the full frequency range of the VCO. Moreover, the power dissipation due to the low-pass filter is reduced because both p- and n-type drivers are "OFF" for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range and is independent of the low-pass filter. With no signal present at SIG_{IN}, the VCO adjusts, via PC2, to its lowest frequency.

Phase comparator 3 (PC3)

This is a positive edge-triggered sequential phase detector using an RS-type flip-flop. When the PLL is using this comparator, the loop is controlled by positive signal transitions and the duty factors of SIG_{IN} and $COMP_{IN}$ are not important. The transfer characteristic of PC3, assuming ripple (f. = f_I) is suppressed, is:

 $V_{\text{DEMOUT}} = (V_{\text{CC}}/2\pi) \ (\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}}) \ \text{where } V_{\text{DEMOUT}} \ \text{is the demodulator output at pin 10; } V_{\text{DEMOUT}} = V_{\text{PC3OUT}} \ (\text{via low-pass filter}).$

The average output from PC3, fed to the VCO via the low-pass filter and seen at the demodulator at pin 10 (V_{DEMOUT}), is the resultant of the phase differences of SIG_{IN} and COMP_{IN} as shown in Fig. 6. Typical waveforms for the PC3 loop locked at f₀ are shown in Fig.7.

The phase-to-output response characteristic of PC3 (Fig. 6) differs from that of PC2 in that the phase angle between SIG_{IN} and COMP_{IN} varies between 0° and 360° and is 180° at

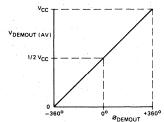


Fig 4 — Phase comparator 2: average output voltage versus input phase difference: V DEMOUT = V PCZOUT = (V CC/4π) (ΦSIGIN - ΦCOMPIN); ΦΟΕΜΟUT = (ΦSIGIN - ΦCOMPIN).

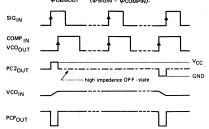


Fig. 5 — Typical waveforms for PLL using phase comparator 2, loop locked at f_o.

the center frequency. Also PC3 gives a greater voltage swing than PC2 for input phase differences but as a consequence the ripple content of the VCO input signal is higher. With no signal present at SIG_{IN}, the VCO adjusts, via PC3, to its highest frequency.

The only difference between the HC and the HCT versions is the input level specification of the INH input. This input disables the VCO section. The comparators' sections are identical, so that there is no difference in the SIG_{IN} (pin 14) or COMP_{IN} (pin 3) inputs between the HC and the HCT versions.

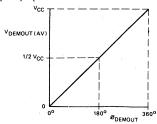


Fig.6 — Phase comparator 3: average output voltage versus input phase difference:

Voemout = Vpcsout = (Vcc/2π) (φsigin - φcompin);

Φρεμούτ = (Φsigin - Φcompin).

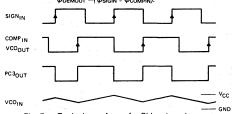


Fig. 7 — Typical waveforms for PLL using phase comparator 3, loop locked at f_o.

STATIC ELECTRICAL CHARACTERISTICS

		CD7	4HC4	046A	CD54	4HC40	046A				1	CD74	нст4	1046A	CD5	нст	4046A			
		TEST NDITIONS			IC/54		741 TY	HC PE	54 TY		TEST CONDITION			CT/54			ICT PE		ICT PE	
VCO SECTION	v,	I _O	v _{cc}		+25° C		-40/ +85°C		-55/ +125°C		V _i	v _{cc}	+25°C			-40/ +85° C		-55/ +125°C		UNITS
	V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
INH High Lovel			3	2.1	-	_	2.1	_	2.1	1		4.5								
High-Level Input Voltage V _{IH}			4.5	3.15	-	_	3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	V.
			6	4.2	-	_	4.2	_	4.2	-		5.5								
INH Low-Level		*	3	_	-	0.9	_	0.9	-	0.9		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	-	1.35	_	1.35	_	to	-	-	0.8	-	0.8	-	0.8	v
			6	_	-	1.8	-	1.8	_	1.8		5.5								
VCO _{OUT}	VIL		3	2.9	_	_	2.9	_	2.9	-	VIL									
High-Level Output Voltage V _{он}	or .	-0.02	4.5	4.4	_	-	4.4	_	4.4	_	or	4.5	4.4	-	_	4.4	-	4.4	-	v
CMOS Loads	VIH		6	5.9	-	-	5.9	-	5.9	-	V _{IH} .									
	VIL										VIL									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	-	3.7	_	or	4.5	3.98	-		3.84	-	3.7	-	v
	ViH	-5.2	6	5.48	_	_	5.34	-	5.2	_	Viii									
VCO _{OUT}	VıL		2	-	_	0.1	-	0.1	-	0.1	VIL									
Low-Level Output Voltage Vol	or	0.02	4.5	-	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads	ViH		6	_	_	0.1	_	0.1	_	0.1	Vін									
	VıL										V _{IL}	<u> </u>		·		ļ	1			
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_		0.26	l _	0.33	_	0.4	v
	VIH	5.2	6	_	_	0.26	_	0.33	-	0.4	Vін									
C1A, C1B	VIL					<u> </u>	ļ		 	<u> </u>	VIL									l
Low Level Output Voltage	or	4	4.5	_	_	0.40	_	0.47	_	0.54	or .	4.5	_	_	0.40	_	0.47	_	0.54	v
(Test purposes Vol. only)	V	5.2	6	_	-	0.40	_	0.47	<u> </u>	0.54	V _{IH}	_	_	_	_	_	_	_	<u> </u>	
INH VCOIN	Vcc		-	-		l		-	 		Any		-	1		<u> </u>	 		_	
Input Leakage Current I ₁	or		6	_	_	±0.1	_	±1	_	±1	Voltage Between Vcc	5.5	_	_	±0.1	_	±1	_	±1	μА
	Gnd								an	and Gnd										
			3	_	_	-	_	_	_	_	<u> </u>	_	-	_	_	-	 -	-	-	
R1 Range			4.5	3	_	300	_	-	-	-		4.5	3	_	300	_	-	-	_	kΩ
			6	_	=	1=	_	_	_	-		<u> </u>	-	_	_	=	 	_	1=	
	-		3	_	_	+	-	_	-	-			-	_	_	-	-	_	=	-
R2 Range			4.5	3	-	300	-	-	-	_			3	=	300	_	 	-	-	kΩ
			6	_	-	=	_	_	_	_	1		-	_	_	=	 	_	=	
	<u> </u>		3		<u> </u>	No	 	-	 	 		<u> </u>		-	No	 	\vdash	 	\vdash	<u> </u>
C1 Capacitance			4.5	0		L							0		L					рF
Range			6	_		M							Ī		M I T					
VCOIN	Over th	e range	3	0.9	<u> </u>	1.9	 	\dagger	+-	-	<u> </u>	-	 -	 	 		 	 	1	
Operating Voltage	specifie	e range ed for _inearity	4.5	0.9		3.2					1	4.5	0.9		3.2	1				v
Range		8 & 35-38	6	0.9		4.6						4.5	0.9		3.2	1			1	•

NOTES: 1. The value for R1 & R2 in parallel should exced 2.7 k Ω . 2. The maximum operating voltage can be as high as V_{CC} -0.9 V, however, this may result in an increased offset voltage.

STATIC ELECTRICAL CHARACTERISTICS

		CD	4HC4	1046A	CD5	4HC40	046A					CD74	нст4	046A	CD54	нст	4046A			
CHARACTERISTIC PHASE COMPARATOR SECTION	TEST CONDITIONS			1	74HC/54HC TYPES			HC PE	54I TY		TEST CONDITI		1	CT/54		1	ICT PE	54H TY	ICT PE	
	V _I	Io	v _{cc}		+25° (-25°C		0/ 5°C	-55/ +125° C		V _I	v _{cc}	+25° C		:	1 .	10/ 5° C	1 -	5°C	UNITS
	V	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
SIG _{IN} , COMP _{IN}			2	1.5	-	-	1.5	_	1.5	_		4.5								
DC Coupled High-Level V _{IH} Input Voltage		* :	4.5	3.15		_	3.15	_	3.15	-	_	to	2	-	-	2	-	2	-	v
input voltage			6	4.2	_	-	4.2		4.2	-		5.5								
SIG _{IN} , COMP _{IN} DC Coupled			2	_	_	0.5	-	0.5	_	0.5		4.5								
Low-Level V _{IL} Input Voltage			4.5	_	_	1.35	_	1.35	_	1.35	-	to	-	_	0.8	- 1	0.8	-	0.8	V
mput voltage	1		6	_	-	1.8	_	1.8	_	1.8		5.5								
PCP _{OUT} , PCn OUT High-Level	VIL		2	1.9	_		1.9	_	1.9	_	ViL									
Output Voltage VoH	or	-0.02	4.5	4.4	_	-	4.4		4.4	-	or	4.5	4.4	-	-	4.4	-	4.4	,	v
CMOS Loads	V _{IH}		6	5.9	_	_	5.9		5.9		V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	-4	4.5	3.98	_	_	3.84		3.7	-	or	4.5	3.98		-	3.84	-	3.7	-	V
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	VIH						ļ			
PCP _{OUT} , PCn OUT Low-Level	VIL		2	_		0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	V
CMOS Loads	. V _{IH}		6	_	_	0.1		0.1	Ŀ	0.1	ViH		ļ.,				<u> </u>			
	Vil		ļ								Vil									
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
	V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
SIG _{IN} , COMP _{IN}	Vcc		2	_		±3		±4	_	±5	Any								ĺ	
Input Leakage I	or		3	_	_	±7		±9	_	±11	Voltage Between Vcc	5.5	_	_	±30	_	±38	_	±45	μΑ
Current	Gnd		4.5		_	±18		±23	_	±29	and Gnd									
			6	_	_	±30	_	±38	-	±45		<u> </u>	ļ			ļ				
PC2 OUT 3-State loz	VIL																			
Off-State Current	or		6	-	-	±0.5	-	±5	-	±10		5.5	-	-	±0.5	±5	-	_	±10	μΑ
	V _{IH}			ļ		_						_	<u> </u>		<u> </u>		-	<u> </u>		
SIG _{IN} , COMP _{IN} Input	Self-	at Bias	3	_	800	_	_	_	_	_										
Resistance R _I	ΔV ₁ ==		4.5	-	250	-	-	-	-	_		4.5	_	250	-	_	_	-	-	kΩ
	See F	ig. 8	6	_	150	-		_		_										

STATIC ELECTRICAL CHARACTERISTICS

		CD74HC4046A/CD54HC4046A												CD74HCT4046A/CD54HCT4046A										
		TEST CONDITIONS				74HC/54HC TYPES		74HC TYPE		HC PE	TEST CONDITION	74HCT/54HCT TYPES			74HCT TYPE		54HCT TYPE							
CHARACTERISTIC	V _I	I _O	v _{cc}		+25°C		-40/ +85° C		-55/ +125° C		v _i	v _{cc}	+25°C			-40/ +85° C		-55/ +125° C		UNITS				
DEMODULATOR SECTION	V mA	mA	v	Min	Тур	Max	Min	Max	Min	Max	VV	Min	Тур	Max	Min	Max	Min	Max						
Resistor Range	at R _s >		3	50	-	300																		
R _s	Curre influ	nt can ence	4.5	50	-	300						4.5	5	-	300					kΩ				
	V _{DEM}	OUT	6	50	_	300																		
Offset Voltage	$V_1 = V_{VCO\ IN} = \frac{V_{CC}}{2}$		3	-	±30	_																		
VCO _{IN} , to V _{DEM}	Values	Values taken over R _S range		-	±20	-						4.5	-	±20	-					mV				
V _{OFF}	See F		6	_	±10				ĺ											100				
Dynamic Output Resistance at DEMour			3	-	25	-																		
Resistance at DEMout	V _{DEM} OUT	$r = \frac{V_{CC}}{2}$	4.5	-	25	-						4.5		25	-					Ω				
			6	-	25	l																		
Quiescent Device Current Icc	. Pins 3,	5 & 14 V _{cc}									Vcc													
Device Current Icc	Pin 9 a	t Gnd.	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ				
	I ₁ , at Pir to be e										Gnd													
Additional Quiescent Device											V _{cc} -2.1	4.5												
Current Per Input Pin:											(Excluding Pin 5)	to	-	100	360	-	450	-	490	μΑ				
1 unit load ∆lcc*												5.5												

^{*}For dual-supply systems theoretical worst case ($V_1 = 2.4 \text{ V}, V_{CC} = 5.5 \text{ V}$) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
INH	. t

^{*}Unit Load is $\Delta l_{\rm CC}$ limit specified in Static Characteristics Chart, e.g., 360 $\mu\rm A$ max. @ 25° C.

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_f = 6 \text{ ns}$)

		TEST CONDI	TIONS	25° C					-40° C t	o +85° C	;	-				
CHARACTERISTIC			v.	Н	С	н	т	741	нс	74F	ICT	54	нс	54F	ICT	UNITS
			v _{cc}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
PHASE COMPARATOR SE	СТІО	N							,							
Propagation Delay,			2	-	200	-	-	-	250	-		-	300	1-	-	
	PLH.		4.5	-	40	-	45	-	50	-	56	-	60	-	68	
to PCI _{OUT} t	PHL		6	_	34	_		_	43	_	_		51		_	
SIGIN, COMPIN			2	-	300	-	_		375	-	-	-	450	-	-	
to PCPout	-[4.5	-	60	-	68	-	75	-	85	-	90	-	102	
			6	_	51	-		_	64	-	-	-	77	_	_	
SIG _{IN} , COMP _{IN}			2		245	_	_	_	305	_	_		307	-	_	
to PC3 _{OUT}	l		4.5	_	49	_	58	_	61		73	- I	74	-	87	
			6	-	42		_	-	52		_	_	63	-	_	
Output Transition			2	_	75	_	_	_	95	- "	_	_	110	_		ns
Time t	t _{THL}		4.5		15	_	15		19	_	19	_	22	_	22	
t	t _{TLH}		6	_	13	_	_	_	16	_		_	19	_	-	41
Output Enable Time,			2	_	265	<u> </u>	_		330	_	_	_	400		-	
	Ргн		4.5	-	53	_	60		66		75	_	80	_	90	
	tezL		6		45	_	_	_	56		_	_	68	_	_	
Output Disable Time,			2		315	-	_		395	_	_	-	475	_	-	
	PHZ		4.5	_	63	_	- 68	_	79	_	85	_	95	l _	102	
	t _{PLZ}		6	_	54		_		67	_		_	81	_	_	
AC Coupled Input	7,62				TYP	L			<u> </u>		-				 	
Sensitivity (p-p)	1	3		1		1	1					1				
at SIG _{IN} or		V ₁ (p-p)	4.5	15		15										mV
COMPIN	1		6	3		3										
VCO SECTION	L		. 0					L	L	<u> </u>	L	L		<u> </u>	<u> </u>	
Frequency Stability			3			Γ				I		Γ	Γ		Γ	
	Δf	R1 = 100kΩ	4.5					Typ	0.11	Typ	0.11					%/°C
-	ΔΤ	R ₂ = ∞	6					·yρ.	1,70							/""
Max. Frequency		C _i = 50 pF	3												-	
Max. Frequency	.	$R_1 = 3.5k\Omega$	4.5	2	4	2	4								. ,	MHz
	1	R ₂ = ∞	6		4		+						1.			IVII 12
f _r	max.		3													
	.	C ₁ = 0 pF			•											MHz
		R ₁ = 9.1kΩ	4.5	3	8	3	5									IVITZ
		R ₂ = ∞	6													
Center Frequency	.	C _i = 40 pF	3													
		R ₁ = 3kΩ	4.5	1	7	1	′									MHz
	.	R ₂ = ∞	. 6							100						
		VCO _{IN} = V _{CC}														
				:		_						<u> </u>				
Frequency Linearity.	- 1	R ₁ = 100kΩ	3													
Δfvco		R ₂ = ∞	4.5	0.	4	0.	4						-			%
	\dashv	C ₁ = 100 pF	6								<u> </u>	ļ	<u> </u>			
Offset Frequency		R ₂ = 220kΩ	3												1	
		C ₁ = 1 nF	4.5	40	00	40	10									kHz
			6			L					L	<u> </u>			<u> </u>	L
DEMODULATOR SECTION	4														·	
Vout Vs fin		R ₁ = 100 kΩ														
		R ₂ = ∞	3		_	_	_									
		C ₁ = 100 pF	4.5	. 33	an.	33										mV/kHz
		R _s = 10 kΩ	6	30	,,	33						1,1	1			,11V/N/1
	- 1	R ₃ = 100 kΩ	٥	_	-	_	-									
		C ₂ = 100 pF														

Figure References for DC Characteristics

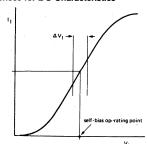


Fig. 8 — Typical input resistance curve at SIG_{IN}, COMP_{IN}.

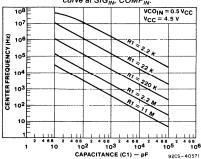


Fig. 10-HCT4046A typical center frequency vs R1, C1 (Vcc=4.5 V).

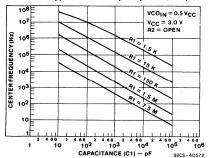


Fig. 12-HC4046A typical center frequency vs R1, C1 (Vcc=3 V, R2=open).

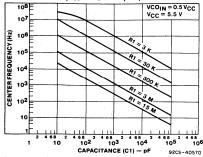


Fig. 14-HCT4046A typical center frequency vs R1, C1 (Vcc=5.5 V).

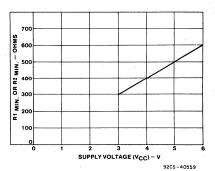


Fig. 9-HC/HCT4046A R1 (min) or R2 (min) vs supply voltage (Vcc).

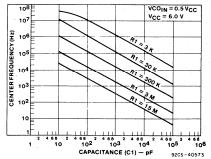


Fig. 11-HC4046A typical center frequency vs R1, C1 (V_{CC} =6 V).

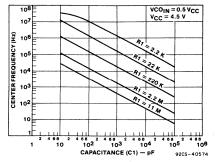


Fig. 13-HCT4046A typical center frequency vs R1, C1 (Vcc=4.5 V).

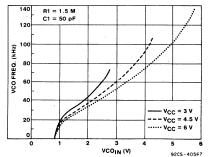


Fig. 15-HC4046A typical VCO frequency vs VCO_{IN} (R1=1.5 M Ω , C1=50 pF).

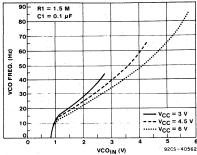


Fig. 16-HC4046A typical VCO frequency vs VCO_{IN} (R1=1.5 M Ω , C1=0.1 μ F).

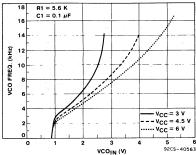


Fig. 18-HC4046A typical VCO frequency vs VCO_{IN} (R1=5.6 k Ω , C1=0.1 μ F).

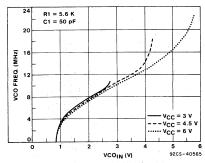
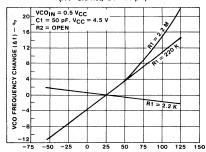



Fig. 20-HC4046A typical VCO frequency vs VCO_{IN} (R1=5.6 k Ω , C1=50 pF).

AMBIENT TEMPERATURE (TA) – $^{\circ}$ C 92C5-40579 Fig. 22-HC4046A typical change in VCO frequency vs ambient temperature as a function of R1 (Vcc=4.5 V).

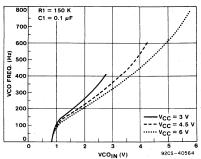


Fig. 17-HC4046A typical VCO frequency vs VCO_{IN} (R1=150 k Ω , C1=0.1 μ F).

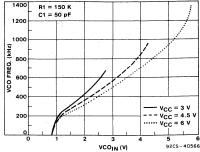


Fig. 19-HC4046A typical VCO frequency vs VCO_{IN} (R1=150 kΩ, C1=50 pF).

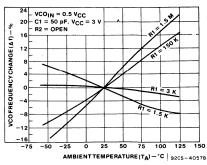


Fig. 21-HC4046A typical change in VCO frequency vs ambient temperature as a function of R1 (Vcc=3 V).

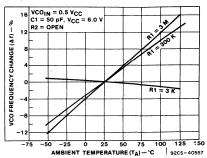


Fig. 23-HC4046A typical change in VCO frequency vs ambient temperature as a function of R1 (Vcc=6 V).

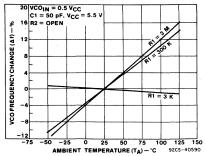


Fig. 24-HCT4046A typical change in VCO frequency vs ambient temperature as a function of R1.

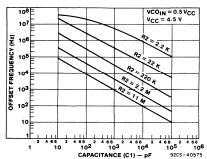


Fig. 26-HC4046A offset frequency vs R2, C1 (Vcc=4.5 V).

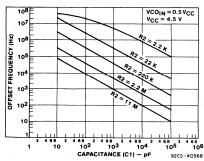


Fig. 28-HCT4046A offset frequency vs R2, C1 (Vcc=4.5 V).

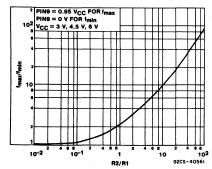


Fig. 30-HC4046A f_{max}/f_{min} vs R2/R1 (V_{CC}=3 V, 4.5 V, 6 V).

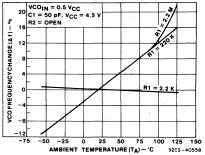


Fig. 25-HC4046A typical change in VCO frequency vs ambient temperature as a function of R1 (Vcc=4.5 V).

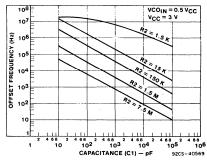


Fig. 27-HC 4046A offset frequency vs R2, C1 (Vcc=3 V).

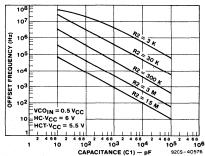


Fig. 29-HC4046A & HCT4046A offset frequency vs R2, C1 (Vcc=6 V, Vcc=5.5 V).

Fig. 31-HCT4046A f_{max}/f_{min} vs R2/R1 (Vcc=4.5 V-5.5 V).

AC WAVEFORMS

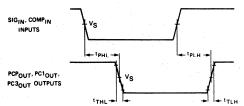


Fig. 32 — Waveforms showing input (SIG_{IN} COMP_{IN}) to output (PCP_{OUT}, PC1_{OUT}, PC3_{OUT}) propagation delays and the output transition times.

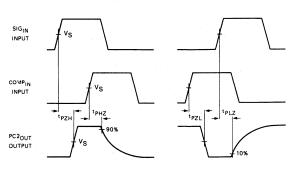
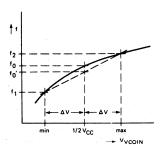



Fig. 33 — Waveforms showing the 3-state enable and disable times for PC2_{OUT}.

	нс	нст
INPUT LEVEL	Vcс	3 V
SWITCHING VOLTAGE, VS	50% VCC	1.3 V

 $\Delta V = 0.5 \; V$ over the V_{CC} range:

for VCO linearity $f'_0 = \frac{f_1 + f_2}{2}$

linearity = $\frac{f'o - fo}{f'o} \times 100\%$

Fig. 34 — Definition of VCO frequency linearity.

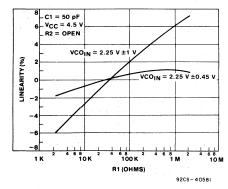


Fig. 35-HC4046A VCO linearity vs R1 (Vcc=4.5 V).

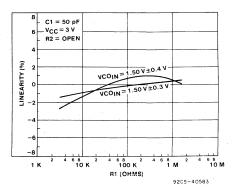


Fig. 36-HC4046A VCO linearity vs R1 (Vcc=3 V).

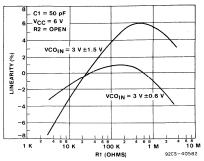


Fig. 37-HC4046A VCO linearity vs R1 (Vcc=6 V).

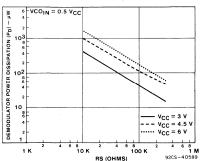


Fig. 39-HC4046A demodulator power dissipation vs RS (typ.) ($V_{\rm CC}$ =3 V; 4.5 V; 6 V).

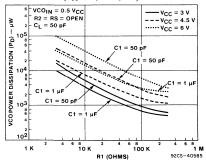


Fig. 41-HC4046A VCO power dissipation vs R1 (C1=50 pF; 1 μ F).

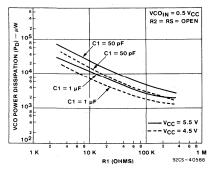


Fig. 43-HCT4046A VCO power dissipation vs R1 (C1=50 pF; 1 μ F).

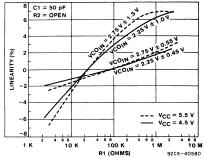


Fig. 38-HCT4046A VCO linearity vs R1 (Vcc=4.5 V, Vcc=5.5 V).

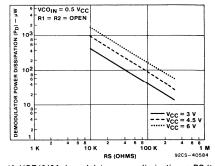


Fig. 40-HCT4046A demodulator power dissipation vs RS (typ.) ($V_{\rm CC}$ =3 V_7 4.5 V_7 6 V).

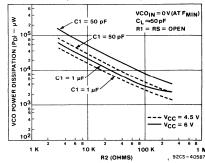


Fig. 42-HCT4046A VCO power dissipation vs R2 (C1=50 pF; 1 μF).

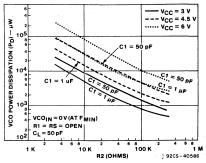


Fig. 44-HC4046A VCO power dissipation vs R2 (C1=50 pF, 1 μ F).

HC/HCT 4046A Cpp

CHIP SECTION	НС	нст	UNIT
COMPARATOR 1	48	50	
COMPARATORS 2 & 3	39	48	pF
VCO	61	53	

APPLICATION INFORMATION

VCO frequency

with extra

offset

This information is a guide for the approximation of values of external components to be used with the 74HC/ HCT4046A in a phase-lock-loop system.

References should be made to Figs.10 through 14 as indicated in the table.

Values of the selected components should be within the following ranges.

between 3 k Ω and 300 k Ω ; R1 R2 between 3 k Ω and 300 k Ω ; R1 + R2parallel value $> 2.7 \text{ k}\Omega$; C₁ greater than 40 pF.

PHASE **SUBJECT DESIGN CONSIDERATIONS COMPARATOR VCO Frequency characteristic** With R2 = ∞ and R1 within the range 3 k Ω < R1 < 300 k Ω , the PC1, PC2 or PC3 VCO frequency characteristics of the VCO operation will be as shown in Figs. 10-14. without extra (Due to R1, C1 time constant a small offset remains when $R2 = \infty$.) offset fyco

Selection of R1 and C1

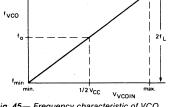
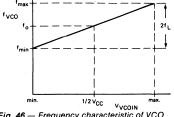
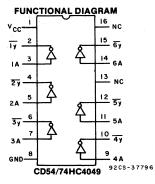


Fig. 45 - Frequency characteristic of VCO operating without offset: for enter frequency: $2f_1$ = frequency lock range.

PC₁ Given fo, determine the values of R1 and C1 using Figs. 10-14. PC2 or PC3 Given fmax and fo, determine the values of R1 and C1 using Fig. 30. Use Fig. 31 to obtain 2f and then use this to calculate fmin.

VCO frequency characteristic With R1 and R2 within the ranges 3 k Ω < R1 < 300 k Ω , 3 k Ω , < R2 < PC1, PC2 or PC3 300 k Ω , the characteristics of the VCO operation will be as shown in Figs. 26-29. fvco




Fig. 46 — Frequency characteristic of VCO operating with offset: fo = center frequency; $2f_L$ = frequency lock range.

APPLICATION INFORMATION (Cont'd.)

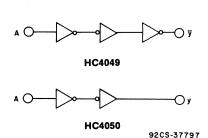
SUBJECT	PHASE COMPARATOR	DESIGN CONSIDERATIONS
		Selection of R1, R2 and C1
VCO frequency with offset (continued)	PC1, PC2 or PC3	Given f_o and f_L , determine the value of product R1C1 by using Figs.26-29. Calculate f_{off} from equation $f_{off} = f_{CO} = f_L$. Obtain the values of C1 and R2 by using Figs. 26-29. Calculate the value of R1 from the value of C1 and the product R1C1.
PLL conditions with	PC1	VCO adjusts to f_o with $\phi_{DEMOUT} = 90^\circ$ and $V_{VCOIN} = 1/2 V_{CC}$ (see Fig. 2).
no signal at the SIG _{IN} input	PC2	VCO adjusts to f _o with $\phi_{\text{DEMOUT}} = -360^{\circ}$ and $V_{\text{VCOIN}} = 0 \text{ V}$ (see Fig. 4).
	PC3	VCO adjusts to f _o with $\phi_{\text{DEMOUT}} = +360^{\circ}$ and $V_{\text{VCOIN}} = V_{\text{CC}}$ (see Fig. 6).
PLL Frequency capture range	PC1, PC2 or PC3	Loop filter component selection
		1
1		$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline \text{INPUT} & & & & \\ \hline & & & & \\ \hline \end{array}$
		(a) $\tau = R3 \times C2$ (b) amplitude characteristic (c) pole-zero diagram A small capture range (2f _c) is obtained if $\tau > 2f_c^* \approx 1/\pi \ (2\pi f_L/\tau_c)^{1/2}$ Fig. 47 — Simple loop filter for PLL without offset.
		INPUT R4 OUTPUT $C2$ $m = \frac{R4}{R3 + R4}$ $-1/_{T2} - 1/_{T3}$
		(a) $\tau_1 = R3 \times C2$; (b) amplitude characteristic (c) pole-zero diagram $\tau_2 = R4 \times C2$; $\tau_3 = (R3 + R4) \times C2$
		Fig. 48 - Simple loop filter for PLL with offset.

SUBJECT	PHASE COMPARATOR	DESIGN CONSIDERATIONS
PLL locks on harmonics	PC1 or PC3	yes
at center frequency	PC2	no
noise rejection at	PC1	high
signal input	PC2 or PC3	low
	PC1	$f_r=2f_i$, large ripple content at $\phi_{DEMOUT}=90^\circ$
AC ripple content when PLL is locked	PC2	$f_r = f_{i_1}$ small ripple content at $\phi_{DEMOUT} = 0^\circ$
	PC3	$f_r = f_{SIG_{IN}}$ large ripple content at $\phi_{DEMOUT} = 180^{\circ}$

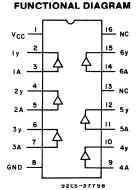
High-Speed CMOS Logic

Hex Buffers, Inverting and Non-Inverting

Type Features

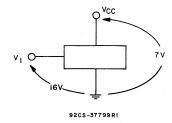

- Typical propagation delay = 6 ns @ $V_{CC} = 5 \text{ V}$, $C_L = 15 \text{pF}$, $T_A = 25 ^{\circ} \text{C}$
- High-to-low voltage level converter for up to V₁ = 16 V

The RCA-CD54/74HC4049 and CD54/74HC4050 are fabricated with high-speed silicon gate technology. They have a modified input protection structure that enables these parts to be used as logic level translators which will convert high-level logic to a low-level logic while operating off the low-level logic supply. For example, 0-V to 15-V input logic levels can be down-converted to 0-V to 5-V logic levels. The modified input protection structure protects the input from both positive and negative electrostatic discharge. These parts can also be used as simple buffers or inverters without level translation. The CD54/74HC4049 and CD54/74HC4050 are enhanced versions of equivalent CMOS types.


The CD54HC4049 and CD54/74HC4050 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix) and in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%,V_{CC}, N_{IH} = 30% V_{CC}; @ V_{CC} = 5 V


LOGIC DIAGRAMS

CD54/74HC4050

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE, (Vcc)	0.5 to +7 V
DC INPUT VOLTAGE, (V _I)	
(Voltages referenced to ground)	-0.5 to +16 V
DC INPUT DIODE CURRENT, I _{IK} (FOR V _I < -0.5 V)	
DC OUTPUT DIODE CURRENT, lok (FOR V _o < -0.5 V OR V _o > V _{cc} +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	
DC Vcc OR GROUND CURRENT (Icc)	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	
For T _A = -55 to +100° C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	
STORAGE TEMPERATURE (Tato)	-65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LIMITS				
CHARACTERISTIC	MIN.	MAX.	UNITS			
Supply-Voltage Range (For T _A =Full Package Temperature Range)						
V _{cc} :*						
CD54/74HC Types	2	6	V			
DC Output Voltage, Vo	0	Vcc	V			
DC Input Voltage (V _i)	0	15	V			
Operating Temperature, T _A :						
CD74 Types	-40	+85				
CD54 Types	-55	+125	°C			
Input Rise and Fall Times, t _r ,t _f :			1 1 1 1 1 1 1 1			
at 2 V	0 "	1000				
at 4.5 V	0	500	ns			
at 6 V	0	400				

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

				D54/74H	IC404	9, CD	54/74	HC40	50					
			TEST		74HC/54HC			74HC		54HC		1		
CHARACTERISTIC		CC	NDITIO	NS	S	ERIE	<u> </u>	SEF		SERIES		UNITS		
		Vı	V _I I _O		lo Vcc			+25°C	;	-4 +85	0/ 0°C		5/ 5° C	
		v	mA	v	Min.	Тур.	Max.	Min.	Max.		Max.			
		1		2	1.5		_	1.5	_	1.5	_			
High-Level Input Voltage	ViH			4.5	3.15	_	_	3.15	_	3.15	_	V		
			İ	6	4.2	_	_	4.2	_	4.2	_			
				2	T -	_	0.5	T	0.5	_	0.5	i		
Low-Level Input Voltage	VIL			4.5	T	_	1.35	-	1.35	_	1.35	. v		
				6	T -	T =	1.8	_	1.8	_	1.8			
		VIL		2	1.9	_		1.9	_	1.9	_			
High-Level Output Voltage	Vон	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	-	٧		
CMOS Loads		V _{IH}		6	5.9	_	_	5.9	_	5.9	_			
TTL Loads		VIL or	-4	4.5	3.98	_		3.84	_	3.7	_	v		
(Standard Output)		V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_			
		VIL		2	T —	_	0.1	_	0.1	_	0.1			
Low-Level Output Voltage	Vol	or	0.02	4.5			0.1		0.1	_	0.1	V		
CMOS Loads		V _{IH}		6		-	0.1	_	0.1	_	0.1			
TTL Loads		V _{IL} or	4	4.5	I –	_	0.26	_	0.33	_	0.4	V		
(Standard Output)		V _{IH}	5.2	6	-	_	0.26	_	0.33	_	0.4	•		
Input Leakage Current	lı	V _{cc} or		6	I		±0.1		+1		±1	uА		
pat zoakago Ourroin	"	Gnd				<u> </u>			L			μ^		
		15		6			±0.5		±5	_	±5			
Quiescent Device Current	Icc	15 or	0	6			2	l	20	_	40	μA		
Lasiosoni Borios Guirent	100	Gnd										μΛ.		

SWITCHING CHARACTERISTICS (VCC=5 V, TA=25° C, Input t_r, t_f =6 ns)

CHARACTERISTIC		SYMBOL	54HC AND 74HC		
CHARACTERISTIC	STMBOL	TYPICAL	UNITS		
Propagation Delay, Data Input to Output (C _L = 15 pF)	HC4049 HC4050	t _{PLH} , t _{PHL}	6	ns	
Power Dissipation Capacitance*		CPD	35	pF	

* C_{PD} is used to determine the dynamic power consumption, per inverter $P_D = V_{CC}^2 f_i(C_{PD} + C_L)$ where: $f_i = input frequency$ $C_L = output load capacitance$ $V_{CC} = supply voltage$

SWITCHING CHARACTERISTICS (CL = 50 pF, input tr,tf = 6 ns)

CHARACTERISTIC			25	°C	-40° C t	o +85° C	-55° C to	+125° C	
	SYMBOL	VCC	. 1	IC .	74	НС	54	HC	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay	tpLH, tpHL	2		85	1	105	_	130	
nA to n HC4049		4.5	l –	17		21	_	26	ns
nA to nY HC4050		6		14	_	18	_	22	
Transition Time	t _{TLH} , t _{THL}	2		75		95	_	110	
		4.5		15	_	19	_	22	ns
		. 6	_	13	_	16	_	19	
Input Capacitance	Cı	_	_	10	 	10	_	10	pF

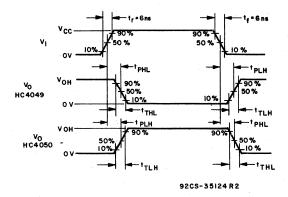
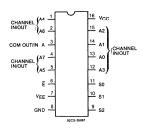



Fig. 1 - Transition times and propagation delay times, combination logic.

High-Speed CMOS Logic

CD54/74HC/HCT4051 TERMINAL ASSIGNMENT

Analog Multiplexers/ Demultiplexers

Type Features:

- Wide analog input voltage range: ± 5 V max.
- Low "on" resistance: $70 \Omega \text{ typ } (V_{\text{CC}}-V_{\text{EE}} = 4.5 \text{ V})$ $40 \Omega \text{ typ } (V_{\text{CC}}-V_{\text{EE}} = 9 \text{ V})$
- Low crosstalk between switches
- Fast switching and propagation speeds
- "Break-before-make" switching

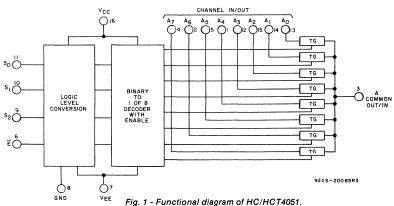
The RCA CD54/74HC/HCT4051, 4052, and 4053 are digitally controlled analog switches which utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

These analog multiplexers/demultiplexers control analog voltages that may vary across the voltage supply range (i.e. V_{cc} to V_{EE}). They are bidirectional switches thus allowing any analog input to be used as an output and visa-versa. The switches have low "on" resistance and low "off" leakages. In addition, all three devices have an enable control which when, high, disables all switches to their "off" state.

The CD54HC/HCT4051, 4052, and 4053 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT 4051, 4052, and 4053 are supplied in 16-lead plastic packages (E suffix) and in 16-lead surface mount plastic packages (M suffix). All devices are also available in chip form (H suffix).

Family Features:

- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:


2 to 6 V Operation, control; 0 to 10 V, switch High Noise Immunity: $N_{IL}=30\%, N_{IH}=30\%$ of $V_{CC};$ @ $V_{CC}=5$ V

■ CD54HCT/CD74HCT Types:

4.5 to 5.5 V Operation, control; 0 to 10 V, switch Direct LSTTL Input Logic Compatibility $V_{\rm IL} = 0.8$ V Max., $V_{\rm IM} = 2$ V Min.

CMOS Input Compatibility

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

TRUTH TABLE CD54/74HC/HCT4051

INPU	T ST	"ON"		
ENABLE	S2	S1	SO	CHANNELS
L	L	L	L	A0
L	L	٦	Н	A1
L	L	I	L	A2
L	L	Ι	Н	A3
L	Ŧ	L	L	A4
L	Н	L	Н	A5
L	I	Н	L	A6
L	Ι	Н	Н	A7
Н	Х	х	Х	NONE

X = Don't Care

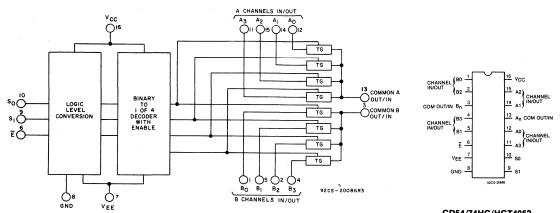


Fig. 2 - Functional diagram of HC/HCT4052.

CD54/74HC/HCT4052 TERMINAL ASSIGNMENT

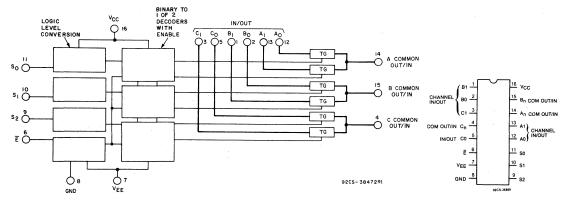


Fig. 3 - Functional diagram of HC/HCT4053.

CD54/74HC/HCT4053 TERMINAL ASSIGNMENT

TRUTH TABLES (Continued)

CD54/74HC/HCT4052

INPL	JT STAT		
ENABLE	S1	S0	"ON" CHANNELS
L	L	L	A0, B0
L	L	Н	A1, B1
L	Н	L	A2, B2
L	Н	Н	A3. B3
Н	X	Х	NONE

X = Don't Care

CD54/74HC/HCT4053

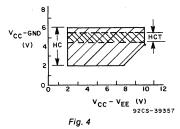
INPUT	STAT	·		
ENABLE	S2	S1	SO	"ON" CHANNELS
L	L	L	L	A0 B0 CO
. L	L	L	Н	A0 B0 C1
L	L	Ι	L	A0 B1 C0
L	L	Ι	Н	A0 B1 C1
L	Н	L	L	A1 B0 C0
L	Н	اد	Н	A1 B0 C1
L	Η	Ι	Г	A1 B1 C0
L	Н	Н	I	A1 B1 C1
н	Х	Х	Х	NONE

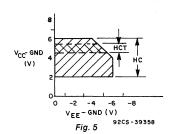
X = Don't Care

MAXIMUM RATINGS, Absolute-Maximum Values: (All voltages referenced to C	Gnd unless otherwise shown)
DC SUPPLY-VOLTAGE (Vcc-Vee)	0.5 to 10.5 V
DC SUPPLY-VOLTAGE (Vcc)	0.5 to +7 V
DC SUPPLY-VOLTAGE (VEE)	+0.5 to -7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{cc} + 0.5 \text{ V}$)	±20 mA
DC SWITCH DIODE CUBRENT low (FOR Vi < Ver -0.5 V OR Vi > Vcc + 0.5 V)	±20 mA
DC SWITCH CURRENT (FOR V _i > V _{EE} -0.5 V OR V _i < V _{CC} + 0.5 V)	+25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50 mA
DC Vee CURRENT (lee)	20 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
FOR TA = +100 to +125°C (PACKAGE TYPE F, H)	400 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	Description of 6 -14/9 C to 70 -14/
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mw/°C to 70 mw
OPERATING-TEMPERATURE RANGE (T _A):	55 4- 14050 0
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max	+265°C
Unit Inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	

• In certain applications, the external load-resistor current may include both V_{cc} and signal-line components. To avoid drawing V_{cc} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.6 volt (calculated from R_{oN} values shown in Electrical Characteristics chart). No V_{cc} current will flow through R_L if the switch current flows into terminal 3 on the HC/HCT4051; terminals 3 and 13 on the HC/HCT4052; terminals 4, 14 and 15 on the HC/HCT4053.

with solder contacting lead tips only


RECOMMENDED OPERATING CONDITIONS:


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIM	LIMITS					
CHARACTERISTIC	MIN.	MAX.	UNITS				
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*							
CD54/74HC Types	2	6	V				
CD54/74HCT Types	4.5	5.5	V				
Supply-Voltage Range (For T_A = Full Package-Temperature Range) V_{CC} - V_{EE} CD54/74HC Types CD54/74HCT Types See Fig. 4	2	10	V				
Supply-Voltage Range (For T_A = Full Package-Temperature Range) V_{EE} : CD54/74HC Types CD54/74HCT Types See Fig. 5	0	-6	V				
DC Input Control Voltage, Vi	Gnd	V _{cc}	V				
Analog Switch I/O Voltage, Vis	VEE	Vcc	V				
Operating Temperature T _A : CD74 Types	-40	+85	°C				
CD54 Types	-55	+125	°C				
Input Rise and Fall Times t _r , t _f at 2 V	0	1000	ns				
at 4.5 V	0	500	ns				
at 6 V	0	400	ns				

^{*}Unless otherwise specified, all voltages are referenced to Ground.

Recommended Operating Area as a Function of Supply Voltages.

STATIC ELECTRICAL CHARACTERISTICS

	TEST	. ,		T		***********	1																	
CON	CONDITI			74HC/54HC					74HC 54HC TYPES TYPES		TEST			74HCT/54HCT TYPES			l	74HCT 54I TYPES TY		CT				
		1	T						-40/		-55/					Γ	†			-40/		-5		UNITS
V _{IS}	V		V _{cc}		+25° C		+85	s°C	+12	5°C	Vis	,Vi	VEE	Vcc		+25° C		+85	°C	+12	5°C			
· V		v	v	Min	Тур	Max	Min	Max	Min	Max	\ \ \	V	٧	٧	Min	Тур	Max	Min	Max	Min	Max			
			2	1.5	_	_	1.5	_	1.5	_				4.5										
- '	-		4.5	3.15	_	<u> </u>	3.15		3.15	_				to	2	-	-	2	-	2	-	v		
			6	4.2	<u> </u>	<u> -</u>	4.2		4.2					5.5		<u> </u>	<u> </u>							
,			2	_	<u> </u>	0.5	_	0.5	<u> </u> _	0.5				4.5				ļ						
			4.5	<u> </u>	_	1.35	_	1.35	_	1.35				to	-	-	0.8	l –	0.8	-	0.8	٧		
			6	<u> </u>	_	1.8		1.8	_	1.8				5.5			<u> </u>							
Vcc		0	4.5	<u> </u>	70	160	_	200	_	240			0	4.5	_	70	160	_	200		240			
or	V	0	6		60	140	_	175		210						_	_	_		<u> </u>	_	Ω		
VEE		-4.5	4.5	_	40	120	_	150		180			-4.5	4.5	_	40	120		150		180			
Vcc	v,	IΛ	4.5	<u> </u>	90	180	<u> </u>	225		270	Í		0	4.5		90	180	_	225		270			
to	"	0	6	<u> </u>	80	160		200	_	240	Same	Same	<u> </u>		_				_	_		Ω		
VEE		-4.5	4.5		45	130		162		195	as	as	-4.5	4.5	_	45	130	_	162	_	195			
		0	4.5	<u> </u>	10	_		-			нс	нс	0	4.5	_	10	_			_	_			
		0	6	<u> </u>	8.5	<u> </u>	_		_	_			_	_	_		_		_	_	_	Ω		
		-4.5	4.5	<u> </u>	5				<u> </u>				-4.5	4.5		5	<u> </u>		_	-	_			
For Switch	:h																							
OFF:																								
hen V _{IS} =V _{CC} V _{OS} = V _{EE} ;		. L																						
hen V _{IS} =V _{EE} ,		0	6	_	_	±0.1	-	±1	-	±1			0	6	_	1	±0.1	-	±1	-	±1			
Vos = Vcc For Switch		-5	5		_	±0.1	_	±1	_	±1			-5	5	_	ı	±0.1	-	±1	-	±1			
ON:		0	6	_	-	±0.1	_	±1	_	±1			0	6 :	_	-	±0.1	1	±1	_	±1-	μA		
l Applicable ombinations		-5	5	_	_	±0.2	-	±2	_	±2			-5	5	_	-	±0.2	_	±2	-	±2	μΑ		
of Vis & Vos		0	6	_	_	±0.2		±2	_	±2			0	6		-	±0.2	1	±2		±2			
Itage Levels	veis	-5	5		_	±0.4	_	±4	_	±4			-5	5	-	_	±0.4	_	±4	_	±4			
	Vc	. .																						
-	or	0	6	-	-	±0.1	-	±1	-	±1	_			5.5	-	-	±0.1	-	±1	-	±1	μΑ		
	Gn	d																						
When	. .														.]									
V _{IS} = V _{EE} ,	v _o	0	6	-	-	8	-	80	-	160	Same	Same	0	5.5	-	-	8	-	80	-	160			
/ _{DS} = V _{CC} ,	· or	- 1									as													
When	Gn	- 1									HC	as HC										μΑ		
V _{IS} = V _{CC} ,	"	-5	5	-	-	16	-	160	-	320	ПС	пС	-4.5	5.5	- 1	-	16	-	160	-	320			
Vos = Vee																								
				-																				
														4.5										
														. 1	- 1				450	- 1	400	μΑ		
												Vcc-2.1	- 1	to	-	100	360	- 1	450	1	490	μΛ		
os =	VEE	Vee	Vee	V _{EE}	Vee	Vee	Vee	Vee	Vee	Vee	Vee				4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		

 $^{^{\}star}$ For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specifications is 1.8 mA.

HCT Input Loading Table

Туре	Input	Unit Loads*
4051, 4053	All	0.5
4052	All	0.4

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

^{**} Any voltage between Vcc & Gnd.

SWITCHING CHARACTERISTICS ($V_{cc} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, Input t_r , $t_r = 6 \text{ ns}$)

CHARACTERISTIC	SYMBOL	CL		UNITS					
CHARACTERISTIC	STWIBOL	pF	40)51	40)52	40)53	UNITS
			HC	HCT	нс	HCT	HC	HCT	
Propagation Delay									
	t _{PHL}	15	4	4	4	4	4	4	ns
Switch IN to OUT	t _{PLH}								1.1
Switch Turn-off (S or E)	t _{PHZ} , t _{PLZ}	15	19	19	21	21	18	18	ns
Switch Turn-on (S or E)	t _{PZH} , t _{PZL}	15	19	23	27	29	18	20	ns
Power Dissipation Capacitance*	C _{PD}		50	52	74	76	38	42	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r , t_r = 6 ns)

						25	°C		-4	0°C to	o +85°	,C	-5	5°C to	+125	°C	
CHARACTER	ISTIC	SYMBOL	VEE	Vcc	Н	IC	Н	CT	74	нс	741	1CT	54	НС	54F	ICT	UNITS
					Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation D	Delay,		0	2	_	60	_	_	_	75	_		_	90	_	_	
Switch In to O	ut	t _{PLH}	0	4.5		12		12	_	15		15		18		18	
		t _{PHL}	0	6	_	10		_	_	13	_	_		15		_	
4051, 4052	, 4053		-4.5	4.5		8	_	8	l —	10		10	_	12		12	į
Maximum			0	2	_	225	_		_	280	_	T —	-	340	_	_	1
Switch	4051		0	4.5	_	45	-	45	-	56	_	56	_	68	l —	68	
Turn "Off"	,,,,,		0	6	_	38			-	48		-	-	57	_	_	
Delay from			-4.5	4.5		32		32		40		40	_	48		48	
S or E to		t _{PHZ}	0	2	_	250	_	_	_	315		-	_	375	-	-	
Switch	4052	t _{PLZ}	0	4.5	_	50		50	— ·	63		63	—	75		75	
Output			0	6	-	43	_	_	_	54	-		-	65	— I	_	
_			-4.5	4.5		38		38	_	48		48		57	_	57	ns
			0	2		210		_	_	265		_	_	315	_	_	
	4053		0	4.5	_	42		44	_	53	_	55		63	-	66	
	4053		0.	6	-	36	-	_	_	45		-	_	54	-		
			-4.5	4.5	_	29		31		36	_	39		44		47	
Maximum			. 0	2	_	225	_	_		280	_			340	I -	_	
Switch	4051		0	4.5	_	45	_	55	-	56	_	69	—	68		83	
Turn "On"			0	6	-	38	-			48		_		57	-	-	
Delay from _			-4.5	4.5		32		39		40	_	49	_	48		59	
S or E to		t _{PZL}	0	. 2	_	325	-			405	_	_		490		-	
Switch	4052	t _{PZH}	0	4.5		65		70		81	_	68		98	-	105	
Output			0	6	_	55	_	_	_	69		-		83		-	
			-4.5	4.5		46		48		58	_	60	<u> </u>	69		72	
			0	2	-	220	_	_	_	275		_		330			
	4053		0	4.5	_	44	- 1	48	_	55		60	_	66	_	72	
	4000		0	6	_	37	_	_	_	47	_	-		56	_	-	
			-4.5	4.5		31		34		39		43	_	47		51	
Input (Control Capacitance)	Cı		_	_	10	_	10	_	10		10		10		10	pF

 $P_D = C_{PD} V_{CC}^2 fi + \sum (C_L + C_S) V_{CC}^2 fo$

fo = output frequency

f_i = input frequency.

C_L= output load capacitance.

C_s = switch capacitance

Vcc = supply voltage.

ANALOG CHANNEL CHARACTERISTICS - TYPICAL VALUES AT TA = 25°C

CHARACTERISTIC	SYMBOL	CONDITIONS	TYPES	VEE (V)	VCC (V)	HC/HCT	UNITS
Switch Input Capacitance	Cı		All			5	
			4051	- ;		25	pF
Common Capacitance	Ссом		4052			12	ρı
			4053	1		8	
12 (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13)			4051			145	
Minimum Switch Frequency		·	4052	-2.25	2.25	165	
Response @ -3 dB	f _{MAX}	See Fig. 6	4053			200	MHz
Figs. 11, 13, 15	IMAX	Notes 1, 2	4051			180	1711 12
	1		4052	-4.5	4.5	185	
			4053			>200	
g a garage			4051			N/A	
Crosstalk Between			4052	-2.25	2.25	(TBE)	
Any Two Switches		See Fig. 7	4053	1		(TBE)	dB
Note 4		Notes 2, 3	4051			N/A	ub
		_, 0	4052	-4.5	4.5	(TBE)	
i de la Companya de l			4053			(TBE)	
Sine-Wave Distortion		See Fig. 8	All	-2.25	2.25	0.035	%
		occ rig. o	All	-4.5	4.5	0.018	70
	1		4051				
E or S to Switch			4052	-2.25	2.25	(TBE)	
Feedthrough Noise		See Fig. 9	4053				mV
		Notes 2, 3	4051				1110
			4052	-4.5	4.5	(TBE)	
			4053				
2.5			4051		W 1	-73	
Switch "OFF"			4052	-2.25	2.25	-65	1.
Signal Feedthrough		See Fig. 10	4053			-64	dB
Figs. 12, 14, 16	1	Notes 2, 3	4051			-75	ub
and the second		_	4052	-4.5	4.5	-67	
the state of the part of the state		A CONTRACTOR	4053	1		-66	

Notes:

- 1. Adjust input voltage to obtain OdBm @ Vos for fin = 1 MHz.
- 2. V_{IS} is centered at $(V_{\text{CC}} V_{\text{EE}})/2.$
- 3. Adjust input for OdBm.
- 4. Not applicable for HC/HCT4051.

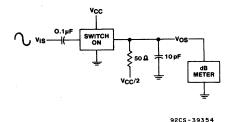


Fig. 6 - Frequency response test circuit.

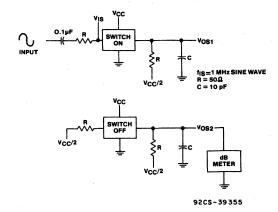


Fig. 7 - Crosstalk between two switches test circuit.

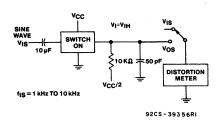


Fig. 8 - Sine wave distortion test circuit.

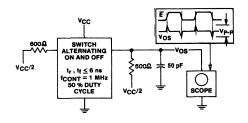


Fig. 9 - Control-to-switch feedthrough noise test circuit.

9205-39352

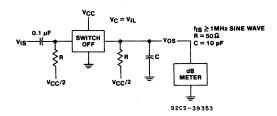
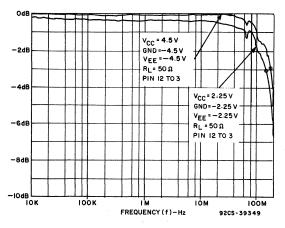



Fig. 10 - Switch off signal feedthrough.

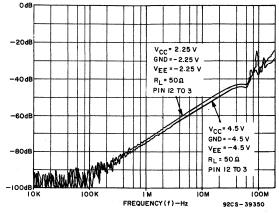


Fig. 11 - Channel on bandwidth (HC/HCT4051).

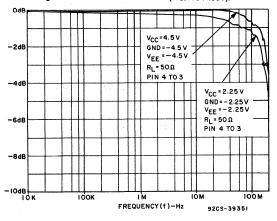


Fig. 12 - Channel off feedthrough (HC/HCT4051).

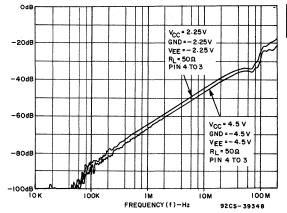


Fig. 13 - Channel on bandwidth (HC/HCT4052).

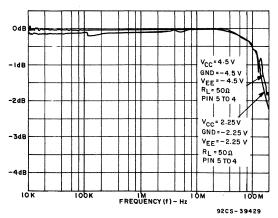


Fig. 14 - Channel off feedthrough (HC/HCT4052).

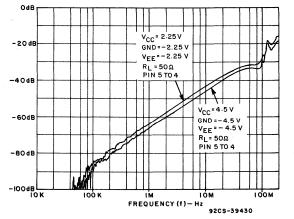


Fig. 15 - Channel on bandwidth (HC/HCT4053).

Fig. 16 - Channel off feedthrough (HC/HCT4053).

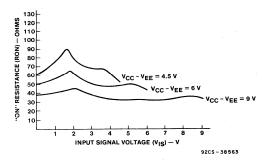
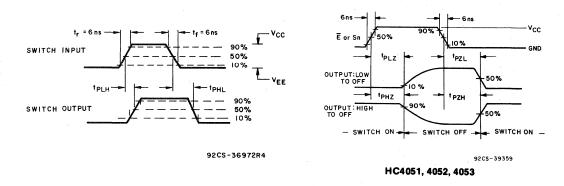



Fig. 17 - Typical ON resistance vs. input signal voltage.

6ns 1, 1, 6ns 3V

E or Sn -2.7 -1.3 GND

OUTPUT:LOW 1PHZ 50%

OUTPUT: HIGH 90%

TO OFF 50%

SWITCH ON - SWITCH ON - 92CS-39360

HCT4051, 4052, 4053

Fig. 18 - Switch propagation delay, turn-on, turn-off times.

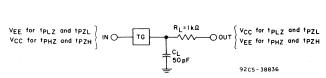


Fig. 19 - Switch on/off propagation delay test circuit.

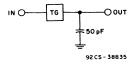
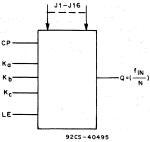



Fig. 20 - Switch In to Switch Out
Propagation delay test circuit.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

CMOS Programmable Divide-by-"N" Counter

Type Features:

- Synchronous programmable ÷ N counter: N = 3 to 9999 or 15999
- Presettable down-counter
- Fully static operation
- Mode-select control of initial decade counting function (÷ 10, 8, 5, 4, 2)
- Master preset initialization
- Latchable ÷ N output

The RCA-CD54/74HC4059 and the CD54/74HCT4059 are high-speed silicon-gate devices that are pin-compatible with the CD4059B devices of the CD4000B series. These devices are divide-by-N down-counters that can be programmed to divide an input frequency by any number "N" from 3 to 15,999. The output signal is a pulse one clock cycle wide occurring at a rate equal to the input frequency divided by N. The down-counter is preset by means of 16 jam inputs.

The three Mode-Select Inputs Ka, Kb, and Kc determine the modulus ("divide-by" number) of the first and last counting sections in accordance with the truth table shown in Table I. Every time the first (fastest) counting section goes through one cycle, it reduces by 1 the number that has been preset (jammed) into the three decades of the intermediate counting section and into the last counting section, which consists of flip-flops that are not needed for operating the first counting section. For example, in the ÷ 2 mode, only one flip-flop is needed in the first counting section. Therefore the last counting section has three flip-flops that can be preset to a maximum count of seven with a place value of thousands. If ÷ 10 is desired for the first section, Ka is set "high", Kb "high" and Kc "low". Jam inputs J1, J2, J3, and J4 are used to preset the first counting section and there is no last counting section. The intermediate counting section consists of three cascaded BCD decade (÷ 10) counters presettable by means of Jam Inputs J5 through J16.

The Mode-Select Inputs permit frequency-synthesizer channel separations of 10, 12.5, 20, 25, or 50 parts. These inputs set the maximum value of N at 9999 (when the first counting section divides by 5 or 10) or 15,999 (when the first counting section divides by 8, 4, or 2).

The three decades of the intermediate counter can be preset to a binary 15 instead of a binary 9, while their place values are still 1, 10, and 100, multiplied by the number of the \div N mode. For example, in the \div 8 mode, the number

Family Features:

- Fanout (over temperature range):
 Standard outputs 10 LSTTL loads
 Bus driver outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85°C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity:
- N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V ■ CD54HCT/CD74HCT types: 4.5 to 5.5 V operation

Direct LSTTL input logic compatibility $V_{\rm IL} = 0.8$ V max., $V_{\rm IH} = 2$ V min. CMOS input compatibility $I_{\rm I} \le 1$ μA @ $V_{\rm OL}$, $V_{\rm OH}$

Applications:

- Communications digital frequency synthesizers: VHF, UHF, FM, AM, etc.
- Fixed or programmable frequency division
- "Time out" timer for consumer-application industrial controls
- Companion Application Note, ICAN-6374, "Application of the CMOS CD4059A Programmable Divide-by-N Counter in FM and Citizens Band Transceiver Digital Tuners"

from which counting down begins can be preset to:

3rd decade: 1500 2nd decade: 150 1st decade: 15 Last counting section 1000

The total of these numbers (2665) times 8 equals 21,320. The first counting section can be preset to 7. Therefore, 21,327 is the maximum possible count in the \div 8 mode.

The highest count of the various modes is shown in the column entitled Extended Counter Range of Table I. Control inputs Kb and Kc can be used to initiate and lock the counter in the "master preset" state. In this condition the flip-flops in the counter are preset in accordance with the jam inputs and the counter remains in that state as long as Kb and Kc both remain low. The counter begins to count down from the preset state when a counting mode other than the master preset mode is selected.

The counter should always be put in the master preset mode before the ÷5 mode is selected. Whenever the master preset mode is used, control signals Kb = "low" and Kc = "low" must be applied for at least 3 full clock pulses.

After the Master Preset Mode inputs have been changed to one of the \div modes, the next positive-going clock transition changes an internal flip-flop so that the countdown can begin at the second positive-going clock transition. Thus, after an MP (Master Preset) mode, there is always one extra count before the output goes high. Fig. 1 illustrates a total count of 3 (\div 8 mode). If the Master Preset mode is started two clock cycles or less before an output pulse, the output pulse will appear at the time due. If the Master Preset Mode is not used, the counter jumps back to the "Jam" count when the output pulse appears.

A "high" on the Latch Enable input will cause the counter output to remain high once an output pulse occurs, and to remain in the high state until the latch input returns to "low". If the Latch Enable is "low", the output pulse will remain high for only 1 cycle of the clock-input signal.

The CD54HC4059 and CD54HCT4059 are supplied in 24-lead dual-in-line frit-seal ceramic packages (F suffix). The CD74HC4059 and CD74HCT4059 are supplied in 24-lead dual-in-line, narrow-body plastic packages (EN suffix), in 24-lead dual-in-line, wide-body plastic packages (E suffix), and in 24-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Table I

	Mode First Cour				•		Last Cou Secti	•	Counter Range				
1	npu	t		Seci	1011		Secu	UII	Design	Extended			
			Mode	Can be		Mode	Can be			14			
			vioue	preset		vioue	preset						
Ka	Kb	Kc	Di-	to a	Jam∙	Di-	to a	Jam●	Max.	Max.			
			vides	max.	inputs	vides	max.	inputs		100			
			by:	of:	used:	by:	of:	used:					
Н	Н	Τ	2	1	J1	8	7 .	J2,J3,J4	15,999	17,331			
L	н	Н	4	3	J1,J2	4	3	J3,J4	15,999	18,663			
н	L	Н	5#	4	J1,J2,J3	2	1	J4	9,999	13,329			
L	L	Н	8	7	J1,J2,J3	2	1	J4	15,999	21,327			
Н	н	L	10	9	J1,J2,J3,J4	1	0	_	9,999	16,659			
Х	L	L		Master	Preset		Master F	reset	_				

- X = Don't Care
- •J1 = Least significant bit.
- J4 = Most significant bit.
- #Operation in the ÷ 5 mode (1st counting section) requires going through the Master Preset mode prior to going into the ÷ 5 mode. At power turn-on, Kc must be "low" for a period of 3 input clock pulses after V_{CC} reaches a minimum of 3 volts.

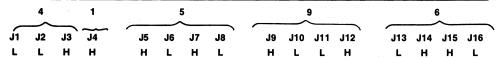
TERMINAL ASSIGNMENT

How to Preset the CD54/74HC/HCT4059 to Desired ÷ N

The value N is determined as follows:

N = (MODE*) (1000 x Decade 5 Preset + 100 x Decade 4 Preset + 10 x Decade 3 Preset +

1 x Decade 2 Preset) + Decade 1 Preset
*MODE = First counting section divider (10, 8, 5, 4, or 2)


. (1)

To calculate preset values for any N count, divide the N count by the Mode. The resultant is the corresponding preset values of the 5th through 2nd decade with the remainder being equal to the 1st decade value.

Example:

Program Jam Inputs (BCD)

To verify the results, use Equation 1:

N = 5 (1000 x 1 + 100 x 6 + 10 x 9 + 1 x 5) + 4

N = 8479

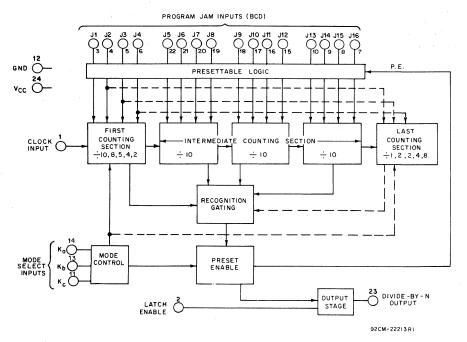


Fig. 1 - Functional block diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} +0.5$ V)	
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT (Icc)	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F,H)	
For T _A = +100 to +125°C (PACKAGE TYPE F,H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F,H	55 to +125°C
PACKAGE TYPE E,M	
STORAGE TEMPERATURE (T _{sto})	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79$ mm) from case for 10 s max	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII	UNITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} :*	· ·		
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	\
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	C
Input Rise and Fall Times, tr,tr:			
at 2 V	0	1000	
at 4.5 V	0 :	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD7	4HC4	059/C	:D54H	IC405	9				CD741	нст4	059/C	:D541	ICT40)59				
	1	TEST CONDITIONS			74HC/54HC TYPES			74HC 54HC TYPES TYPES			TEST CONDITIONS		74HCT/54HC				ICT PES	54HCT TYPES		UNITS	
CHARACTERISTIC	Vı	lo	Vcc		+25° C	;	-4 +85	0/ 5°C		5/ 5° C	V i	Vcc		+25°C	;	-40 +85		-55/ +125° C			
	V	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	v	Min	Тур	Max	Min	Max	Min	Max		
High-Level			2	1.5	_	=	1.5		1.5			4.5									
Input Voltage V _{IH}	1		4.5	3.15	=	<u> </u>	3.15	_	3.15	-		to	2	-	-	2	-	2	-	V	
	-	-	6	4.2	_	<u> -</u>	4.2	_	4.2			5.5			<u> </u>						
Low-Level			2	-		0.5	-	0.5	<u> </u>	0.5		4.5									
Input Voltage VIL	1		4.5	=	_	1.35		1.35	=	1.35	_	to	-	-	0.8	-	0.8	-	0.8	V	
 	┼	├	6	_	ļ=	1.8	<u> </u>	1.8	_	1.8		5.5		<u> </u>	ļ	<u> </u>	-	-	\vdash		
High-Level	VIL		2	1.9		_	1.9	-	1.9	-	VIL					Ì					
Output Voltage Von	or	-0.02	4.5	4.4	-	-	4.4	<u> </u>	4.4	-	or	4.5	4.4	-	-	4.4	-	4.4	-	V	
CMOS Loads	VIH		6	5.9	_	-	5.9	-	5.9	-	VIH	├	-	├			-	-	_		
TTL Loads	or	-4	4.5	3.98	_		3.84	-	3.7	\vdash	or	4.5	3.98		1	3.84	_	3.7	_	v	
TTE EDaus	V _{IH}	-5.2	6	5.48	-	=	5.34	=	5.2	=	ViH	4.5	3.90	_	-	3.64	_	3.7	_	·	
Low-Level	VIL	-5.2	2	J.40	=	0.1	3.34	0.1	3.2	0.1	VIII	 	 	 		-	-	-			
Output Voltage Vol	or	0.02	4.5			0.1		0.1	H	0.1	or	4.5	_		0.1		0.1	_	0.1	v	
CMOS Loads	VIH	0.02	6			0.1		0.1		0.1	ViH	7.5			0.,	_	0.1		"	·	
CINCO LOGOS	VIL		۰			0	_	0.1		0.1	VIL	 	H	 -	_	-	 		-		
TTL Loads	or	4	4.5	_	_	0.26		0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	v	
	VIH	5.2	6		_	0.26	_	0.33		0.4	ViH	"					1.00		-		
Input Leakage			Ť		-	-		1			Any			<u> </u>			_				
Current I	Vcc							1			Voltage			1							
	or		6	-	-	±0.1	-	±1	-	±1	Between	5.5	-	-	±0.1	-	±1	-	±1	μΑ	
	Gnd										Vcc & Gnd										
Quiescent	Vcc							<u> </u>			Vcc										
Device Current Icc	or	0	6	_	_	8	_	80	l –	160	or	5.5	_	_	8	_	80	_	160	μΑ	
	Gnd										Gnd										
Additional									•												
Quiescent Device												4.5									
Current per input											V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ	
pin: 1 unit load Δlcc*	1											5.5			1	1		1			

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
All J Inputs	0.5
CP	0.65
LE	1.65
Ka	1
Кь	1.5
Kc	0.85

^{*}Unit Load is Δl_{CC} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

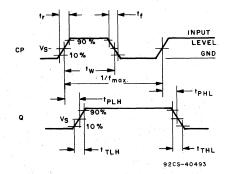
SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input tr,tr=6 ns)

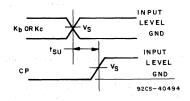
			TYPICA		
CHARACTERISTIC		C _L (pF)	нс	HCT	UNITS
Propagation Delay:	t _{PLH}	45	4.7	10	
CP to Q	tpHL	15	17	19	
LE to Q		1 1	14	19	ns
CP Frequency	f _{MAX}	15	54	50	MHz
Power Dissipation Capacitance*	C _{PD}		36	36	pF

 $^{^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per package. $P_D = C_{PD} \; V_{CC}^2 \; f_i + \Sigma \; C_L \; V_{CC}^2 \; f_o \; where \; f_i = input \; frequency$

fo = output frequency

C_L = output load capacitance

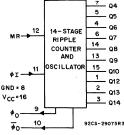

V_{cc} = supply voltage.


PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM	IITS						
		TEST		25	°C		-4	0°C t	o +85°	°C	-5	5°C to	+125	°C	1 "
CHARACTERISTIC		CONDITIONS	HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
		V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Pulse Width	tw	2	90	_	_	_	115	_	_	_	135	_	_		
CP		4.5	18	_	20	_	23		25	_	27	_	30	_	
		6	15	_	<u> </u>	_	20	_		_	23	_	_	_	
Setup Time	tsu	2	75	T —		_	95	_	_	_	110	_	_	_	ns
Kb, Kc to CP		4.5	15	l —	15	_	19	_	19	_	22	_	22	_	
		6	13	_	_	_	16	_	_	_	19	_	_	_	
CP Frequency	f _{MAX}	2	5	_	_	_	4	_		_	4	_	_	_	
		4.5	27	-	25	_	22	_	20	_	18	_	17	_	MHz
		6	32	_	_	_	26	_	_	_	21	_	l _	_	

SWITCHING CHARACTERISTICS (CL=50 pF, Input t, t=6 ns)

			LIMITS											
			25	°C		-4	0°C t	o +85	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	VCC	H	IC	H	CT	74	нС	74F	ICT	54	HC	54 F	ICT	UNITS
	(V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay tplh	2	Ι-	200	-	_	_	250	_	_	_	300	_	_	
t _{PHL}	4.5	-	40	_	46	_	50	_	58	_	60	—	69	
CP to Q	6	-	34			l —	43		_	-	51	_	-	
	2	T -	175	_	_	_	220	_	_		265	_	T -].
LE to Q	4.5	_	35	_	46		44		58	_	53	_	69	ns
	6	-	30		_		37		-	-	45	l –	-	
Output Transition ttlh	2	_	75	_		_	95		_	_	110	_	—	ŀ
Time t _{THL}	4.5	_	15	- ·	15		19	l —	19	_	22	l —	22	1
	6	_	13		-	-	16	_	-	_	19	-	-	
Input Capacitance C _I		_	10	_	10	_	10	_	10	_	10	T	10	pF



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{CC}	1.3 V

Fig. 2 - Transition times, propagation delay times, and setup times.

High-Speed CMOS Logic

14-Stage Binary Counter with Oscillator

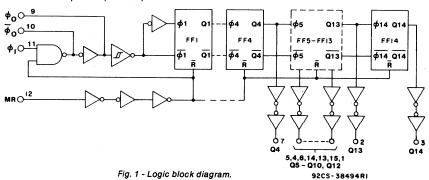
Type Features:

- Onboard oscillator
- Common reset
- Negative edge clocking
- Typical f_{MAX} = 50 MHz @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC4060 and CD54/74HCT4060 each consists of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A Master Reset input is provided which resets the counter to the all-0's state and disables the oscillator. A high level on the MR line accomplishes the reset function. All counter stages are master-slave flip-flops. The state of the counter is advanced one step in binary order on the negative transition of $\phi_{\rm I}$ (and $\phi_{\rm O}$). All inputs and outputs are buffered. Schmitt trigger action on the input-pulse line permits unlimited rise and fall times

In order to achieve a symmetrical waveform in the oscillator section the HCT4060 input pulse switchpoints are the same as in the HC4060; only the MR input in the HCT4060 has TTL switching levels.


The CD54HC4060 and CD54HCT4060 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4060 and CD74HCT4060 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity;

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

- N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility

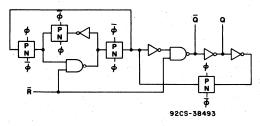


Fig. 2 - Flip-flop detail.

TRUTH TABLE

φι	MR	OUTPUT STATE
	L	No Change
~	L	Advance to Next State
х	н	All Outputs are Low

H = high level (steady state)

L = low level (steady state)

X = don't care

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} + 0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, Iox (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	
DC V _{CC} OR GROUND CURRENT, (I _{CC})	
POWER DISSIPATION PER PACKAGE (Pp):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	-55 to +125°C
PACKAGE TYPE E, M	-40 to +85° C
STORAGE TEMPERATURE (Tatg)	-65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max.	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tins only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	NITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNIIS
Supply-Voltage Range (For T _A =Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	00
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		CI	D74H0	C4060,	CD5	4HC40)60						CD7	74HC	Γ4060.	CD5	4HCT	4060		
CHARACTERISTIC		TEST NDITIONS			1C/54 TYPE:		74 TY		54 TYI	HC PE	TEST			CT/54		74F	ICT PE	54F TY	ICT PE	UNITS
	V _I	lo .	Vcc		+25° (;		10/ 5° C	1	5°C	V _I	V _{CC}		+25° C	;		i0/ i°C		55/ 5°C	
	٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5		1.5			4.5								
Input Voltage VIH	:		4.5	3.15	_	_	3.15		3.15		-	to	2	-		2	_	2	-	v
			6	4.2	_	_	4.2	_	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage VIL			4.5	_	_	1.35	<u> </u>	1.35	_	1.35	-	to	-	-	0.8	-	0.8	-	0.8	v
	· ·		6	_	_	1.8	<u>L-</u> .	1.8	<u> </u>	1.8		5.5	<u> </u>							
High-Level	VIL		2	1.9	_		1.9	_	1.9	_	V _{IL}									
Output Voltage Q Outputs Vон	or	-0.02	4.5	4.4	_	<u> </u>	4.4	_	4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	٧
CMOS Loads	V _{IH}		6	5.9	_		5.9	_	5.9	_	V _{IH}									
High-Level Output Voltage Von	VIL										V _{IL} **									
Q Outputs	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	٧
TTL Loads	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	VIL		2	_	_	0.1	_	0.1	_	0.1	V _{IL} **									
Output Voltage Q Outputs Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	٧
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
Low-Level	VIL										V _{IL} ···									
Output Voltage Vol. Q Outputs	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	٧
TTL Loads	VIH	5.2	6	-	-	0.26	-	0.33	l —	0.4	VIH		1							

^{**}For Pin 11 V_{IH} =3.15 V, V_{IL} =0.9 V.

STATIC ELECTRICAL CHARACTERISTICS (Cont'd)

	C	D74HC	24060	CD5	4HC4	060						CD	74HC	T4060	, CD5	4HCT	4060		
со	TEST NDITIONS		1			1						1					1		UNITS
Vı	lo	v cc		+25°C		i i	-40/ +85°C +						+25°C		:		-55/ +125°C		
V	mA	V	Min	Тур	Max	Min	Max	Min	Max	\ \ \	V	Min	Тур	Max	Min	Max	Min	Max	
Vcc		2	1.9	=	1_	1.9	_	1.9		Vcc				 	t^-	 	T	1 2	-
l	-0.02	45	†		<u> </u>	44	<u> </u>	44	_	or	45	44	_	-	14		14	<u> </u>	v
Gnd			+	_		 	<u> </u>	 	<u> </u>	Gnd	"	" '			7.7		7.7		'
Vcc	<u> </u>	Ť	10.0		<u> </u>	0.0	 	0.0		Vcc				 	<u> </u>			-	
	-26	45	3 98	_	<u> </u>	3.84		37	_	or	45	3 08			3 94		27		v
		-	+	-	 -	+					4.5	3.30		-	3.04	-	3.7	-	*
	-3.3	+	5.48	-		5.34	-	5.2				-		 	+		-	_	
		-	⊨	-	+	F	-	-	-					.					
	0.02		-	_		Ι-		-			4.5	_	-	0.1	-	0.1	-	0.1	V
Gna		6	<u> </u>	_	0.1	=	0.1	_	0.1	Gna		_			_				
Vcc			ļ							Vcc									
or	2.6	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	v
Gnd	3.3	6	_	_	0.26	_	0.33	_	0.4	Gnd									
V _{IL}										٧,١. ٠٠									
or	-3.2	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_	3.7	_	v
VIH	-4.2	6	5.48	_	_	5.34	_	5.2	_	VILL					ľ				
																			
	32	45			0.26		0.33		0.4		15		_	0.26		0.33		0.4	v
		 	-		-		-				4.5			0.20	_	0.33	-	0.4	ľ
	4.2	-	-		0.20	┝	0.33		0.4	Anv		<u> </u>		-					-
										between						١.			
		6	-	_	±0.1	_	±1	_	±1	V _{CC}	5.5	_	_	±0.1	_	±1	-	±1	μΑ
Gnd										Gnd		ļ		_			<u> </u>		
Vcc										Vcc									
or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Gnd										Gnd									
											4.5								
										V _{CC} -2.1	to	-	100	360	-	450	-	490	μΑ
										-	5.5								
	1	i					i							i i	i i	1	l	ıl	
	Vi Vcc or Gnd Vcc or Gnd ViL or ViH Vcc or Gnd Vcc or Gnd Vcc or Gnd Vcc or Gnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc or Cnd Vcc Or C	Vi	TEST CONDITIONS Vi lo VCC V VCC -0.02 4.5 6 VCC 0r -2.6 4.5 6 VCC 0r 2.6 4.5 6 VCC 0r 2.6 4.5 6 VCC 0r 2.6 4.5 Gnd 3.3 6 VIL 0r -3.2 4.5 VIL 0r -4.2 6 VIL 0r 3.2 4.5	TEST CONDITIONS	TEST CONDITIONS TYPE	TEST CONDITIONS Vi lo mA Vcc mA Vcc or -0.02	CONDITIONS TYPES	TEST CONDITIONS 74HC/54HC TYPE VI DO MA VCC V MIN Typ Max MIN Max VCC Or -0.02 4.5 4.4 4.4 6 5.9 0.1 0.1 Gnd -3.3 6 5.48 5.34 0.1 VCC Or 2.6 4.5 0.26 0.33 VCC Or 2.6 4.5 3.98 3.84 0.1 Gnd 3.3 6 5.48 0.1 0.1 VCC Or 2.6 4.5 0.26 0.33 VIL OR -3.2 4.5 3.98 3.84 VIL OR -3.2 4.5 3.98 5.34 0.33 VIL OR -3.2 4.5 3.98 5.34 0.33 VIL OR -3.2 4.5 3.98 5.34 0.33 VIL OR -3.2 4.5 3.98 5.34 0.33 VIL OR -3.2 4.5 3.98 3.84 0.33 VIL OR -3.2 4.5 3.98 3.84 0.33 VIL OR -3.2 4.5 3.98 3.84 0.33 VIL OR -3.2 4.5 3.98 3.84 0.33 VIL OR -3.2 4.5 3.98 3.84 0.33 VIL OR -3.2 4.5 3.98 3.84 0.33 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 3.84 VIL OR -3.2 4.5 3.98 3.84 VIL OR -3.2 4.5 3.98 3.84 VIL OR -3.2 4.5 3.98 3.84 VIL OR -3.2 4.5 3.98 3.84 VIL OR -3.2 4.5 3.98 3.84 VIL OR -3.2 4.5 3.98 VIL -3.2	TEST CONDITIONS 74HC/54HC TYPE 74HC TYPE 54 74 64 74 65 65 65 66 66 74 74HC TYPE 54 74HC TYPE 54 74 66 74 60 74 60 74 60 74 60 74 60 74 74 74 74 74 74 74 74 74 7	TEST CONDITIONS 74HC/54HC TYPE 74HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC TYPE 74HC/54HC TYPE 74HC/54HC TYPE 74HC TYPE 125°C 140/ -55/ +125°C -40/ +125°C -40/ +125°C -10,0 -55/ +125°C -40/ +125°C -10,0 -55/ +125°C -10,0 -55/ +125°C -10,0 -1	TEST CONDITIONS	TEST	TEST	TEST	TEST	TEST CONDITIONS	TEST CONDITIONS	TEST CONDITIONS	TEST

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{cc} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING

INPUT	UNIT LOADS*
MR	0.35

^{*}Unit load is Δ l_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

^{**}Pin II V_{IL} = 0.9V, V_{IH} = 3.15V

Limits not valid when pin 12 (instead of pin 11) is used as control input.

SWITCHING CHARACTERISTICS (V_{CC} =5 V, T_A =25°C, Input t_r , t_i =6 ns)

CHARACTERISTIC		CL	Тур	UNITS	
Characteristic		pF	нс	нст	UNITS
Propagation Delay φ ι to Q ₄	tpLH tpHL	15	25	25	ns
Propagation Delay Qn to Qn+1	t _{PLH}	15	6	6	ns
Propagation Delay MR to Qn Output	t _{PHL}	15	14	17	ns
Propagation Dissipation Capacitance*	C _{PD}	_	40	40	ρF

C_{PD} is used to determine the dynamic power consumption, per package.

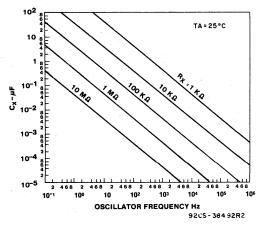
PD = $C_{PD} V_{CC}^2 f_1 + \sum (C_L V_{CC}^2 f_1/M)$ where: $M = 2^1, 2^2, 2^3, ... 2^{14}$

C_L = output load capacitance

fi = input frequency

Prerequisite for Switching Function

				25	°C			-40° C t	o +85° C			-55° C to	+125°	С	
CHARACTERISTIC	SYMBOL	V _{CC}	н	ıc	н	СТ	74	нс	74F	1CT	54	нс	54H	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Input Pulse		2	6		_	_	5	_	_	l -	4	_	_		
Frequency	t _{MAX}	4.5	30		30	_	25		25	_	20	-	20	_ '	MHZ
		6	35	_	_	_	29	_	_	_	23		_	_	
Input Pulse Width	t _w	2	80	_	_	_	100			_	120	_	_	_	
(Figure 4)		4.5	16	-	16	_	20	_	20	_	24	_	24	_	ns
		6	14	-	_	-	17	-	_	_	20	-	-	-	
Reset Removal Time	t _{REM}	2	100	_	_	_	125	_	_	_	150	_	_	_	
(Figure 5)		4.5	20	_	26	_	25	_	33	_	30	_	39	_	ns
		6	17	-		-	21		- '	-	26	-	- 1	_	
Reset Pulse Width	tw	2	80	_	_	_	100	_	_	_	120	_	_	1	
(Figure 5)	-	4.5	16	_	25	_	20	_	31	_	24		38	_	ns
		6	14	_	_	_	17	_	-	-	20	_		-	

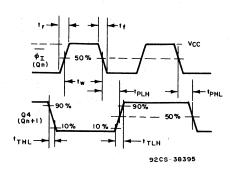

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r, t_f = 6ns)

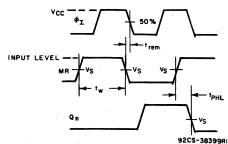
CHARACTERISTIC	SYMBOL			25	°C			-40°C t	o +85°C	;		1			
		V _{CC}	н	С	нс		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	300	_		_	375			_	450	_	-	
φ ₁ to Q ₄	t _{PHL}	4.5	-	60	_	66	-	75	_	83	_	90		100	ns
(Figure 4)	_	6	_	51			_	64	_		_	78	-		
Propagation Delay	t _{PLH}	2	_	80	_	_	_	100	_	_	_	120	_		
Q _n to Q _{n+1}	t _{PHL}	4.5	_	16	_	16	_	20		20	_	24	_	24	ns
(Figure 4)	_	6	_	14	_			17		_	_	20	-	-	
Propagation Delay	t _{PHL}	2	_	175	_		_	220	_	_	_	265	_	_	
MR to Q _n		4.5	_	35		44		44	_	55	-	53		66	ns
(Figure 5)		6	_	30	_	_	_	37	_	_		45	-	_	
Output Transition	t _{TLH}	2	_	75		_	_	95	_	_	_	110	_	_	
Time	t _{THL}	4.5	_	15	-	15		19	_	19	_	22	_	22	ns
(Figure 4)		. 6		13			_	16		_		19	_	_	
Input Capacitance	C _i *														

TYPICAL LIMIT VALUES FOR Rx AND Cx

CHARACTERISTIC	TEST CONDITIONS	VOLTAGE	TYPICAL Maximum Limits
R _x Min.	C _x > 1000 pF	2	
	C _x > 10 pF	4.5	1 ΚΩ
	C _x > 10 pF	6	
R _x Max.	C _x > 10 pF	2	
	C _x > 10 pF	4.5	20 ΜΩ
	C _x > 10 pF	6	
C _x Min.	R _x > 10 KΩ	2	
	$R_X > 10 \text{ K}\Omega$	4.5	10 pF
	$R_X > 10 \text{ K}\Omega$	6	
	R _x = 1 KΩ	2	1000 pF
	R _x = 1 KΩ	4.5	10 pF
and the second second	R _x = 1 KΩ	6	10 pF
Maximum Astable	C _x = 1000 pF, R _x = 1 KΩ	2	0.5 MHz*
Oscillator Frequency	$C_x = 100 \text{ pF}, R_x = 1 \text{ K}\Omega$	4.5	3 MHz*
	$C_x = 100 \text{ pF}, R_x = 1 \text{ K}\Omega$	6	3 MHz*

^{*}At very high frequencies f = 1/2.2 R_xC_x no longer gives an accurate approximation.



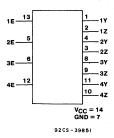

Fig. 4 - Input pulse pre-requisite times, propagation delays and output transition times for both HC and HCT types.

OSC FREQUENCY = 1/2.2 RXCX

FOR 1 M Ω > R χ > 1 K Ω ,

 $C_X > 10 pF$, 1 < 1 MHZ

Fig. 3 - Frequency of on-board oscillator as a function of C_X and R_X .



	54/74HC	54/74HCT
MR Input Level	VCC	3 V
Switching Voltage, V _S	50% V _{CC}	1.3 V

Fig. 5 - Master Reset pre-requisite and propagation delays.

File No. 1777

High-Speed CMOS Logic

Quad Bilateral Switch

Type Features:

- Wide analog-input-voltage range: 0-10 V
- Low "ON" resistance: 25 Ω @ V_{CC} = 4.5 V 15 Ω @ V_{CC} = 9 V
- Fast switching and propagation delay times
- Low "OFF" leakage current

FUNCTIONAL DIAGRAM

The RCA CD54/74 HC/HCT4066 contains four independent digitally controlled analog switches that use silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

These switches feature the characteristic linear "ON"-resistance of the metal-gate CD4066B. Each switch is turned on by a high-level voltage on its control input.

The CD54HC4066 and CD54HCT4066 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4066 and CD74HCT4066 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Alternate Source: Philips/Signetics
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- CD54HC/CD74HC types: 2 V to 10 V operation High noise immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V & 10 V
- CD54HCT/CD74HCT types:

 Direct LSTTL input logic compatibility

 V_{IL} = 0.8 V Max., V_{IH} = 2 V Min.

 CMOS input compatibility

 I_I ≤ 1 μA @ V_{OL}, V_{OH}

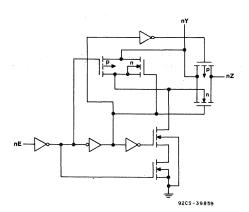
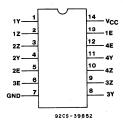


Fig. 1 - Logic diagram (one switch).

TRUTH TABLE


INPUT nE	SWITCH
L	off
Н	on

H = HIGH Level L = LOW Level

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (V _{cc}): (Voltages referenced to ground)	
HCT Types HC Types	0.5 to +7 V
HC Types	-0.5 to +10.5 V
DC INPUT DIODE CURRENT, IIK (FOR $V_1 < -0.5 \text{ V OR } V_1 > V_{CC} +0.5 \text{ V}) \dots$	
DC SWITCH DIODE CURRENT, lok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
• DC SWITCH CURRENT, Io, (FOR V₁ > -0.5 V OR V₁ < Vcc + 0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT (Icc)	
POWER DISSIPATION PER PACKAGE (Pn):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125° C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (T.)	
PACKAGE TYPE F. H	55 to +125°C
PACKAGE TYPE F, H PACKAGE TYPE E, M	-40 to +85°C
STORAGE TEMPERATURE (Tsta)	-65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

• In certain applications, the external load-resistor current may include both V_{CC} and signal-line components. To avoid drawing V_{CC} current when switch current flows into the transmission gate inputs, (terminals 1, 4, 8 and 11) the voltage drop across the bidirectional switch must not exceed 0.6 volt (calculated from R_{on} values shown in the Electrical Characteristics Chart). No V_{CC} current will flow through R_L if the switch current flows into terminals 2, 3, 9 and 10.

TERMINAL ASSIGNMENT

RECOMMENDED OPERATING CONDITIONS: For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN				
CHARACTERISTIC	MIN.	MAX.	UNITS		
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :*					
CD54/74HC Types	2	10			
CD54/74HCT Types	4.5	5.5	V		
DC Input Voltage, Vc, and Analog Switch Voltage, V _{I/O}	0	Vcc			
Operating Temperature T _A :					
CD74 Types	-40	+85			
CD54 Types	-55	+125	°c		
Input Rise and Fall Times tr, tr (Control Inputs)					
at 2 V	0	1000	-		
at 4.5 V	0	500	ns		
at 9 V	0	250			

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		CD74HC4066/CD54HC4066										CD74HCT4066/CD74HCT4066									
CHARACTERISTIC	1	TEST CONDITIONS			74HC/54HC TYPES					HC PES	TEST CONDITIONS			74HCT/54HCT TYPES			74HCT TYPES		54HCT TYPES		UNITS
	CON- TROL	SW-	Vcc	-	-25° C	•	-4 +85		-5 +12	5/ 5°C	CON- TROL	SW-	Vcc		+25°C	;		0/ 5°C	ł	5/ 5°C	* -
	v, v	V _{IS}	٧	Min	Тур	Max	Min	Max	Min	Max	V _i	V _{IS}	V	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	-	1.5	-	1.5	-			4.5					T			
Input Voltage V _{IH}	-	-	4.5	3.15	_	_	3.15	_	3.15	_	_	_	to	2	-	l –	2	-	2	-	
			9	6.3	_	-	6.3	_	6.3	-			5.5	l .					1	Ì	v
Low-Level			2	_	_	0.5	_	0.5	-	0.5			4.5								\
Input Voltage V _{IL}	-	-	4.5	L-		1.35	_	1.35	_	1.35	_	-	to	-	–	0.8	-	0.8	-	0.8	
			9	_	_	2.7	_	2.7		2.7			5.5	1						1	
Input Leakage Current (Any Control) I _{IL}	V _{cc} or Gnd	_	10	_	_	±0.1	_	±1	_	±1	Any Voltage Between V _{cc} & Gnd	<u>-</u>	5.5	_	_	±0.1	_	±1	-	±1	μΑ
Off-Switch		V _{cc}										Vcc								†	
Leakage	VIL	or	10		_	±0.1	-	±1	-	±1	ViL	or	5.5	-	—	±0.1	-	±1	-	±1	
Current Iz		Gnd		1		l				ľ		Gnd			l			Ì		1	
"On"	1	Vcc	4.5	_	25	80	_	106	_	128		Vcc	4.5	T-	25	80	_	106	_	128	
Resistance	Vcc	or	6	_	20	75	_	94	_	113	Vcc	or	_	-	_	_	_	—	_	-	l
lo = 1 mA		Gnd	9		15	60	_	78	_	95		Gnd	_	I –	_	_	_	Ι-	-	_	
(Fig. 2) Ron		Vcc	4.5		35	95	_	118	_	142		Vcc	4.5	_	35	95	-	118	_	142	
	Vcc	to	6	_	24	84	_	105	_	126	Vcc	to	_	I –	_	_	_	_	<u> </u>	-	Ω
		Gnd	9	<u> </u>	16	70	_	88	_	105		Gnd		_	_	_		 –	_	_	
"On" Resistance	1		4.5	_	1	_	_	_	_	<u> </u>			4.5	_	1	_	_	_	_	_	
Between Any Two	Vcc	-	6	<u> </u>	0.75	<u> </u>	_		_	_	Vcc	-	_	_	_	_	_		_	_	
Switches ΔR_{on}			9	_	0.5	<u> </u>	<u> </u>			1			_	<u> </u>	_	_	_	<u> </u>	_	_	
Quiescent	Vcc		6	_	_	2		20	_	40	V _{cc}										
Device	or	-	10	-	-	16	-	160	-	320	or	-	5.5	-	-	2	-	20	-	40	
Current Icc	Gnd			<u> </u>		<u> </u>	L	L		<u> </u>	Gnd									_	
Additional Quiescent Device Current per Input Pin:	_	_	-	_	_	_	_	_	_	-	V _{cc} -2.1	_	4.5 to 5.5	_	100	360	_	450	_	490	μΑ
1 Unit Load Δlcc*			<u> </u>		<u></u>	L	L	L	L	<u> </u>	L			<u> </u>			<u> </u>	<u> </u>	1	<u> </u>	

 $^{^{\}star}$ For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{cc} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads *
All	1

^{*} Unit load is Δl_{cc} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$, input t_r , $t_f = 6 \text{ ns}$)

CHARACTERISTIC			ТҮРІ			
CHARACTERISTIC		C∟ pF	нс	нст	UNITS	
Propagation Delay Time: Switch In to Out	t _{PHL}	15	4	4		
Switch Turn Off	t _{PHZ} , t _{PLZ}	15	12	14	ns	
Switch Turn On	t _{PZH} , t _{PZL}	15	8	9		
Power Dissipation Capacitance*	CPD	_	25	38	pF	

* CPD is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma (C_L + C_S) V_{CC}^2 f_o$ where: f_i = input frequency

C_L = load capacitance V_{cc} = supply voltage fo = output frequency Cs = switch capacitance

SWITCHING CHAARACTERISTICS (CL = 50 pF, Input tr, tr = 6 ns)

CHARACTERISTIC			25° C					0°C to	o +85°	°C	-5				
		Vcc	Н	С	н	СТ	74	нс	74F	ICT	54	54HC		ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay Time	t _{PLH}	2	_	60	_	_	_	75	_	_	_	90	_	_	
Switch In to Out	t _{PHL}	4.5	-	12	_	12	_	15	-	15	_	18	_	18	
		9		8	_	_	_	11		_	_	13	-		
Switch Turn On Delay	t _{PZH}	2	_	100	_	_	_	125	_	-	_	150	_	_	
	t _{PZL}	4.5	— ₁	20	—	24		25	-	30	—	30	_	36	ns
		9		12				15	<u> </u>			18			
Switch Turn Off Delay		2		150	_	-	_	190	_			225		—	
	t _{PHZ} , t _{PLZ}	4.5	—	30	_	35	-	38	_	44	—	45		53	
		9	<u> </u>	24			_	30	_	_	_	36	_		
Input (Control) Capacitance	Cı	_	_	10	_	10	_	10	_	10	_	10	_	10	pF

ANALOG CHANNEL CHARACTERISTICS - Typical Values at Tc = 25°C

CHARACTERISTIC	TEST C	CONDITIONS	V _{cc}	нс	нст	UNITS		
Switch Frequency Response Bandwidth at -3 dB (Fig. 12)	Fig. 3 Notes 1	& 2	4.5	200	200	MHz		
Cross Talk Between Any Two Switches (Fig. 13)	Fig. 4 Notes 2	& 3	4.5	-72	-72	dB		
Total Harmonic Distortion	1 KHz,	V _{IS} = 4 Vpp	4.5	0.022	0.023			
	Fig. 5	V _{IS} = 8 Vpp	9	0.008	N/A	%		
Control to Switch Feedthrough	Fig. 6		4.5	TBE	TBE			
Noise			9	TBE	TBE	m∨		
Switch "OFF" Signal Feedthrough (Fig. 13)	Fig. 7	& 3	4.5	-72	-72	dB		
Switch Input Capacitance Cs		_	_	5	5	pF		

Notes: 1. Adjust input level for 0 dBm at output, f = 1 MHz.

- 2. Vis is centered at Vcc/2.
- 3. Adjust input for 0 dBm at Vis.

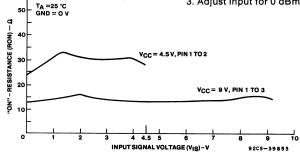
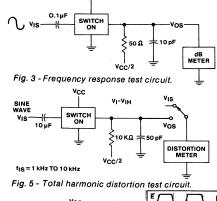



Fig. 2 - Typical "ON" resistance vs. input signal voltage.

VCC

SOOD SWITCH

ALTERNATING
ON AND OFF

Ir, It ≤ 6 ns
fCONT = 1 MHz
SO % DUTY
CYCLE

VCC/2

VCC/2

VCC/2

VCC/2

VCC/2

VCC/2

SCOPE

SCOPE

Fig. 6 - Control-to-switch feedthrough noise test circuit.

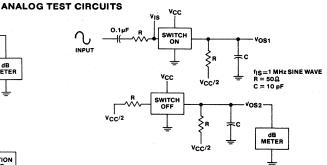


Fig. 4 - Crosstalk between two switches test circuit.

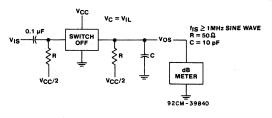
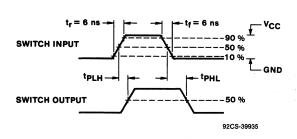



Fig. 7 - Switch off signal feedthrough.

t_r = 6 ns -INPUT LEVEL 90 % _ v_s Ε ---10% ^tPLZ OUTPUT --50 % LOW TO OFF --10 % tPHZ ^tPZH OUTPUT HIGH TO OFF SWITCH OFF SWITCH ON 92CS-39936

Fig. 8 - Switch propagation - delay times waveforms.

Fig. 9 - Switch turn-on and turn-off propagation delay times waveforms.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V₃	50% Vcc	1.3 V

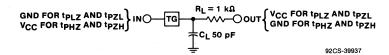


Fig. 10 - Switch on/off propagation delay time test circuit.

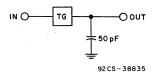


Fig. 11 - Switch-in to switch-out propagation delay time test circuit.

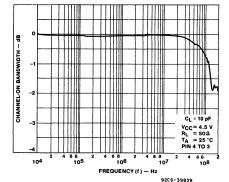


Fig. 12 - Switch frequency response, $V_{CC} = 4.5 \text{ V}$.

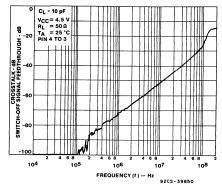
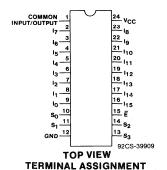



Fig. 13 - Switch-off signal feedthrough and crosstalk vs. frequency, $V_{\rm CC}$ = 4.5 V.

Advance Information/ Preliminary Data

High-Speed CMOS Logic

16-Channel Analog Multiplexer/Demultiplexer

Type Features:

- Wide analog input voltage range:
- Low "on" resistance: $70 \Omega \text{ typ } (V_{CC} = 4.5V)$ $60 \Omega \text{ typ } (V_{CC} = 6V)$
- Fast switching and propagation speeds
- "Break-before-make" switching: (6 ns typ @ 4.5V)
- Available in both narrow and wide-body plastic packages

The RCA-CD54/74HC/HCT4067 are digitally controlled analog switches which utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

These analog multiplexers/demultiplexers control analog voltages that may vary across the voltage supply range. They are bidirectional switches thus allowing any analog input to be used as an output and visa-versa. The switches have low "on" resistance and low "off" leakages. In addition, these devices have an enable control which when high will disable all switches to their "off" state.

The CD54HC4067 and CD54HCT4067 are supplied in 24-lead dual-in-line frit-seal ceramic packages (F suffix). The CD74HC4067 and CD74HCT4067 are supplied in 24-lead dual-in-line, narrow-body plastic packages (EN suffix), in 24-lead dual-in-line, wide-body plastic packages (E suffix), and in 24-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

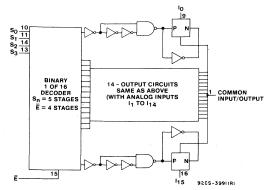


Fig. 1 - Functional diagram.

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54/74HC Types: 2 to 6 V Operation High Noise Immunity:
 - $N_{\rm IL}$ = 30%, $N_{\rm IH}$ = 30% of $V_{\rm CC}$; @ $V_{\rm CC}$ = 5V
- CD54/74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

TRUTH TABLE

s	0	S1	S2	S3	Ē	Selected Channel
1	(X 0 0	X 0 0 0	X 0 0	1 0 0	None 0 1 2
1 0)	1 0 0	0 1 1	0 0 0 0	0 0 0	3 4 5 6
1 0 1 0)	1 0 0 1	1 0 0 0	0 1 1 1	0 0 0 0	7 8 9 10 11
1 0)	0 0 1 1	1 1 1	1 1 1	0 0 0	12 13 14 15

- 1 = High Level 0 = Low Level
- X = Don't Care

MAXIMUM RATINGS, Absolute-Maximum Values:

OC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, IIK (FOR Vi < -0.5 V OR Vi > Vcc +0.5V)	±20mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
OC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	. Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	. Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
PERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
EAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{IN} , V _{OUT}	0	V _{CC}	V
Operating Temperature T _A :		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f (Control Inputs)			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	÷ .

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD74	HC/CI	D54H	C4067	,					CE	74HC	T/CE)54HC	T406	7			
CHARACTERISTIC	TEST CONDITIONS			ı	74HC/54HC TYPES		74I TY		54HC TYPE		TEST CONDITIONS		74HCT/54HCT TYPES			1	ICT PE	ı	ICT PE	UNITS
ONANAO TENIO NO	LOGIC SWITCH		V _{cc}		+25° C	;	-4 +85	0/ 5° C	-5 +12		LOGIC V, V	SWITCH	+25°C		;	-40/ +85° C		-55/ +125° C		UNITS
	V	V	V	Min	Тур	Max	Min	Max	Min	Max	'	"	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	-	1.5	_										
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_	_	-	2	-	-	2	_	2	_	
			6	4.2	-	-	4.2	_	4.2	_										
Low-Level			2		_	0.5	_	0.5	_	0.5										V
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	· —	-		-	0.8	-	0.8	_	0.8	
·			6	_	_	1.8	-	1.8	_	1.8								-		
Maximum "On"	V _{cc} or	V _{cc}	4.5	_	70	160	_	200	_	240	V _{cc} or	V _{cc}		70	160	_	200	_	240	
Resistance Ron	Gnd	Gnd	6	_	60	140	_	175	_	210	Gnd	Gnd	_	_	-	_		_	_	
I _o = ImA	V _{cc} to	V _{cc} to	4.5	_	90	180	_	225	_	270	V _{cc} to	V _{cc} to		90	180		225	_	270	Ω
	Gnd	Gnd	6	_	80	160	_	200	_	240	Gnd	Gnd	_	<u> </u>	_	_	_	_	_	
Maximum "On" resistance between			4.5	_	10	_	_	_	_	_				10	_	_	_	_	_	
any two switches △R _{ON}	_	_	6	_	8.5	_	_	_	_	_			_	_	_				_	
Switch "Off" Leakage Current I _{iz} 16 Channels	Ē = V _{cc}	V _{cc} or Gnd	6	-	_	±0.8	_	±8	_	±8	Ē = V _{cc}	V _{cc} or Gnd		_	±0.8	_	±8	_	±8	
Logic	V _{cc}												-							
Input Leakage	or	-	6	-	-	±0.1	-	±1	-	±1	**	-	-	-	±0.1	-	±1	-	±1	
Current I,	Gnd																			μΑ
Quiescent	V _{cc}										V _{cc}							-] "
Device Current	or	-	6	-	_	8	-	80	<u> </u>	160	or	_	-	-	8	-	80	-	160	
I _o = OmA I _{cc}	Gnd										Gnd									1
Additional Quiescent Device Current per input pin: 1 unit load	_		_	_	_	_	_	_			V _{cc} -2.1	_	_	100	360	_	450	_	490	

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS*
S ₀ <u>-</u> S ₃	0.5
Ē	0.3

^{*}Unit Load is ΔI_{cc} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

^{**}Any Voltage Between Vcc & Gnd.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns)

CHARACTE	RISTIC	21 (2)	CL	TYP	ICAL	UNITS
			(pF)	HC	HCT	0.11.0
Propagation Delay Time:			15	6	6	
Switch In to Switch Out		t_{PLH}, t_{PHL}	13	0		
Switch Turn Off						_
Ē to Out		t_{PLZ}, t_{PHZ}	15	23	23	no
Sn to Out		t _{PLZ} ,t _{PHZ}	15	21	21	ns
Switch Turn On						
Ē to Out		t_{PZL} , t_{PZH}	15	23	25	
Sn to Out		t_{PZL} , t_{PZH}	15	25	25	
Power Dissipation Capacitance*		C _{PD}	-	93	96	pF

* C_{PD} is used to determine the dynamic power consumption, per package. $P_D = C_{PD} \, V_{CC}^2 \, f_i + \Sigma \, (C_L + C_S) \, V_{CC}^2 \, f_0 \, where: \, f_i = input \, frequency \, f_C = load \, capacitance \, C_C$

V_{cc} = supply voltage

fo= output frequency Cs = switch capacitance

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_r, t_f = 6 ns)

				25	°C		4	l0°C te	+85°	С	-5	5°C to	+125	°C	-
CHARACTERISTIC	3	Vcc	Н	IC	H	СТ	74	НС	74H	ICT	54	HC	54F	ICT	UNITS
* *		V	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay Time	t _{PLH}	2	-	75	_	_	-	95	_	_	_	110		_	
Switch In to Out	t _{PHL}	4.5		15	-	15	_	19		19	—	22	_	22	
		6		13	_			16				19			
Switch Turn-On		2	_	275	_	_		345	_	_	_	415		_	I
E to Out		4.5	_	55	_	60		69	_	75	_	83		90	
et in the second of the second	t _{PZL}	6		47	_	_		59	_	_	'	71	_	l —	
	t_{PZH}	2	_	300	_	_		375		_	_	450	_		1
Sn to Out		4.5	_	60		60	-	75		75	-	90		90	ns
	er gedi.	6	-	51	_	_	_	64		-	_	76			
Switch Turn-Off		2	_	275		_	_	345	_	_	_	415		_	1
E to Out		4.5	-	55		55	_	69		69		83	-	83	
	t_{PLZ}	6	-	47	_	_		59		_	_	71	_		3 - 1/2
Sn to Out	t_{PHZ}	2	I —	290	_	_	_	365		_	_	435	_		1. 1
		4.5		58		58	_	73		73	_	87	1-2-1	87	
		6		49		_		62	_	_	-	74	-	·	
Input (Control) Capacitance	Cı	_	_	10	_	10		10	_	10	_	10	-	10	pF

ANALOG CHANNEL CHARACTERISTICS — Typical Values at TA = 25°C

CHARACTERISTICS	TEST CONDITION	V _{cc}	нс/нст	UNITS
Switch Frequency Response	Fig. 3	4.5	89	MHz
at - 3 dB (Fig. 12)	Notes 1 & 2	4.5	09	IVII IZ
Sine Wave Distortion	Fig. 4	4.5	0.051	%
Feedthrough Noise:				
E to Switch	Fig. 5	4.5	TBE	mV
S to Switch	Notes 2 & 3	4.5	TBE	
Switch "OFF" Signal Feedthrough	Fig. 6	4.5	-75	dB
(Fig. 13)	Fig. 6	4.5	-75	UB
Switch Input Capacitance	C _s	- .	5	
Common Capacitance	Ссом —	_	50	pF

NOTES: 1. Adjust input level for 0 dBm at output, f = 1 kHz.

- 2. V_{IS} is centered at V_{cc}/2.
- 3. Adjust input for 0 dBm. at Vis

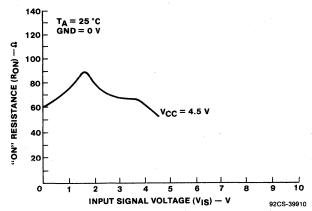


Fig. 2 - Typical "ON" resistance versus input signal voltage.

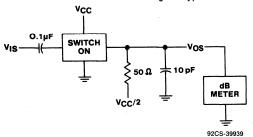


Fig. 3 - Frequency response test circuit.

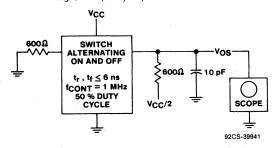


Fig. 5 - Control-to-switch feedthrough noise test circuit.

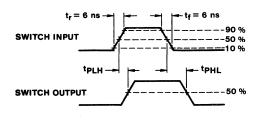


Fig. 7 - Switch propagation-delay times wave forms.

92CS-39914

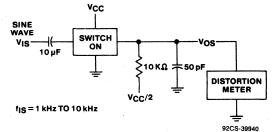


Fig. 4 - Sine wave distortion test circuit.

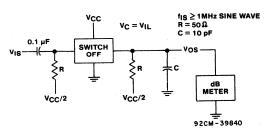


Fig. 6 - Switch off signal feedthrough test circuit.

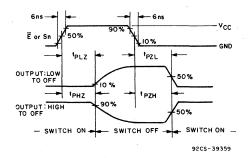


Fig. 8 - Switch turn-on and turn-off propagation delay times wareforms, for HC types.

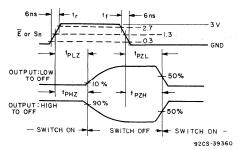


Fig. 9 - Switch turn-on and turn-off propagation delay times waveforms for HCT Types.

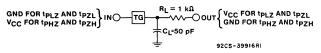


Fig. 10 - Switch on/off propagation delay time test circuit.

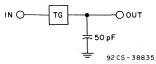


Fig. 11 - Switch In to Switch Out Propagation delay time test circuit.

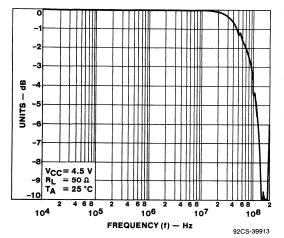


Fig. 12 - Typical switch frequency response.

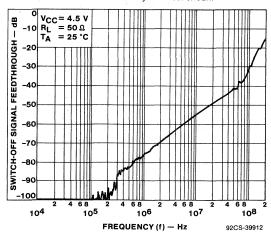
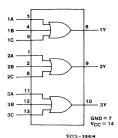



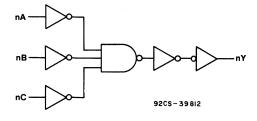
Fig. 13 - Typical switch-off signal feed through vs. frequency.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Triple 3-Input OR Gate

Type Features:


- Buffered inputs
- Typical CD54/74HC4075 Propagation Delay = 8ns @ V_{CC} = 5V, C_L = 15pF, T_A = 25° C

The RCA-CD54/74HC4075 and CD54/74HCT4075 logic gates utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The CD54/74HCT logic family is functionally as well as pin compatible with the standard 54LS/74LS logic family.

The CD54HC4075 and CD54HCT4075 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4075 and CD74HCT4075 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard Outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide Operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High noise immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL input logic compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V Min. CMOS input compatibility I₁ ≤ 1 µA @ V_{OL}, V_{OH}

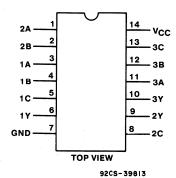
LOGIC DIAGRAM

TRUTH TABLE

nA	nB	nC	nΥ		
L	L	L	L		
Н	Х	Х	Н		
Х	Η	Х	Н		
Х	Х	Н	Н		

L = Low voltage Level H = High voltage Level X = Don't Care

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} + 0.5 \text{V}$)	
DC OUTPUT DIODE CURRENT, I_{OK} (FOR V_o $<$ -0.5 V OR V_o $>$ V_{CC} +0.5V) \ldots	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	. Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIM	LIMITS				
CHARACTERISTIC	MIN.	MAX.	UNITS			
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*						
CD54/74HC Types	2	6	V			
CD54/74HCT Types	4.5	5.5	V			
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V			
Operating Temperature T _A :						
CD74 Types	-40	+85	°c			
CD54 Types	-55	+125	1			
Input Rise and Fall Times t _r , t _f						
at 2 V	0	1000				
at 4.5 V	0	500	ns			
at 6 V	0	400				

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

STATIC ELECTRICAL CHARACTERISTICS

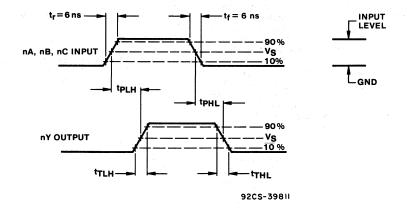
		C	074H0	24075	CD5	4HC40	75					CD	74HC1	T4075	/CD54	нст	4075			
		TEST NDITIONS			IC/54			HC PE	54HC TYPE		TEST CONDITIONS		1	CT/54 TYPE:		ı	ICT PE		ICT PE	
CHARACTERISTIC	V ₁	l _o	V _{cc}		+25°(;	-4 +85	0/ 5° C	-5 +12	5/ 5° C	V,	V _{cc}		+25° (;	ı	10/ 5° C		i5/ 5° C	UNITS
	V	mA	V	Min	Тур	Max	Min	Max	Min	Max	l v	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	-	1.5	_	1.5	-		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15	_	3.15	-	_	to	2	-		2	-	2	_	v
			6	4.2	-	_	4.2	_	4.2	_]	5.5								
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	-		1.35	_	1.35	-	1.35	_	to	_	_	0.8	_	8.0	-	0.8	V
			6	_	_	1.8	-	1.8	-	1.8		5.5			-					
High-Level	V _{IL}		2	1.9	_	_	1.9		1.9		V _{IL}									
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	-	or	4.5	4.4	_	- ·	4.4	-	4.4	_	V
CMOS Loads	V _{IH}		6	5.9	-,	_	5.9	_	5.9	_	V _{IH}		-						4	64
	V _{IL}			-							V _{IL}									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
TTL Loads	or	-4	4.5	3.98	-	_	3.84		3.7	_	or	4.5	3.98	-	-	3.84	-	3.7		v
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}			12						
Low-Level	V _{IL}		2	_	_	0.1	-	0.1	_	0.1	V _{IL}									
Output Voltage V _{OL}	or	0.02	4.5	_		0.1	_	0.1	-	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-		0.26	-	0.33	-	0.4	V
	V _{IH}	5.2	6	-	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}										Any Voltage		-							
Current I	or		6	-	-	±0.1		±1	-	±1	Between	5.5	_	-	±0.1	_	±1	-	±1	μΑ
	Gnd										V _{cc} & Grid						<u> </u>			
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	- 1	-	2	-	20	-	40	or	5.5	-	-	2	-	20	-	40	μΑ
Current I _{cc}	Gnd										Gnd									
Additional Quiescent												4.5								
Device Current per input pin: 1 unit load Δl_{cc}^*											V _{cc} -2.1	to 5.5	-	100	360	-	450	-	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, $V_{\rm CC}$ = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS*
All	16

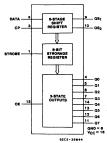
^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @25° C.


SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input t, t = 6 ns)

CHARAC	TERISTIC	94. []	CL	TYP	ICAL	UNITS
CHARAC		19.44	(pF)	НС	HCT	UNITS
Propagation Delay, Data Input to Outp	out Y (Fig. 1)	t _{PLH} , t _{PHL}	15	8	9	ns
Power Dissipation Capacitance*		C _{PD}		26	28	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per gate. $P_D = V_{CC}^2 fi \ (C_{PD} + C_L) \ where: \ fi = input \ frequency \\ C_L = load \ capacitance \\ V_{CC} = supply \ voltage$

SWITCHING CHARACTERISTICS (CL = 50 pF, input tr,tf = 6 ns)


			25	°C		-4	10°C to	o +85°	C	-5	5°C to	+125	°C	UNITS
CHARACTERISTIC	Vcc	Н	C	H	СТ	74	нс	74F	1CT	54	54HC		ICT	
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay, tp	_{LH} 2	_	100	_	_	_	125		-	_	150		_	
Input to Output t _P	нь 4.5	-	20	_	24		25	_	30	_	30	_	36	ns
(Fig. 1)	6	-	17	_	_	-	21		_	_	26	_		
Transition Times t _T	LH 2		75		_		95	-	_	_	110	_		
(Fig. 1)	нь 4.5		15	-	15	_	19	_	19	-	22	_	22	ns
2.44	6		13	l —	_		16	-	_	_	19		_	
Input Capacitance	Ci ·	_	10	_	10	_	10	_	10	-	10	_	10	pF

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, V _S	50% V _{CC}	1.3 V

Fig. 1 - Transition times and propagation delay times.

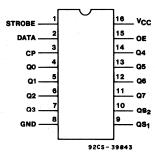
High-Speed CMOS Logic

8-Stage Shift-and-Store Bus Register — 3-State

Type Features:

- Buffered inputs
- Separate serial outputs synchronous to both positive and negative clock edges for cascading.

FUNCTIONAL DIAGRAM


The RCA-CD54/74HC4094 and CD54/74HCT4094 are 8-stage serial shift registers having a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3-state outputs. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive clock transitions. The data in each shift register stage is transferred to the storage register when the Strobe input is high. Data in the storage register appears at the outputs whenever the Output-Enable signal is high.

Two serial outputs are available for cascading a number of these devices. Data is available at the QS1 serial output terminal on positive clock edges to allow for high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information, available at the QS2 terminal on the next negative clock edge, provides a means for cascading these devices when the clock rise time is slow.

The CD54HC4094 and CD54HCT4094 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4094 and CD74HCT4094 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 - 2 to 6 V Operation
- High Noise Immunity: $N_{IL} = 30\%$, $N_{IH} = 30\%$ of V_{CC} , @ $V_{CC} = 5$ V
- $@ V_{CC} = 5 V$
- CD54HCT/CD74HCT Types:
 - 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - $V_{\rm IL}=0.8~V~Max.,~V_{\rm IH}=2~V~Min.$
 - CMOS Input Compatibility
 - $I_{\rm I}$, \leq 1 μ A @ $V_{\rm OL}$, $V_{\rm OH}$

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	$(x_1, x_2, x_3, \dots, x_n, x_n, x_n, \dots, x_n, x_n) = (x_1, x_1, \dots, x_n, x_n)$
(Voltages referenced to ground)	0,5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_{I}\!<\!-0.5$ V OR $V_{I}\!>\!V_{CC}+0.5$ V) $\ldots\ldots$	
DC OUTPUT DIODE CURRENT, l_{OK} (FOR $V_{\text{O}}\!<\!-0.5$ V OR $V_{\text{O}}\!>\!V_{\text{CC}}\!+\!0.5$ V) $\ldots\ldots$	±20mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V $<$ Vo $<$ Vcc $+$ 0.5 V) $\dots \dots$	±25mA
DC Vcc OR GROUND CURRENT (Icc)	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

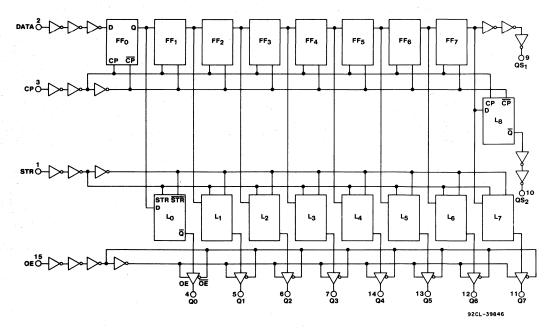


Fig. 1 - Logic diagram.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIA	AITS		
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*				
CD54/74HC Types	2	6	V 1	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O	0	Vcc	٧	
Operating Temperature T _A :				
CD74 Types	-40	+85	100	
CD54 Types	-55	+125	°C	
Input Rise and Fall Times t _r , t _f			, 43	
at 2 V	0	1000		
at 4.5 V	0	500	ns	
at 6 V	0	400		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

FUNCTION TABLE

	INPUTS				LLEL	SER OUTI	
СР	OE	STR	D	Q0	Qn	QS1*	QS2
	L	Х	Х	Z	. Z	Q'6	NC
_	L	Х	Х	Z	Z	NC	Q7
	н	L	Х	NC	NC	Q′6	NC
	Н	н	L	L	Qn-1	Q′6	NC
	н	Н	Н	н	Qn-1	Q'6	NC
\sim	Н	Н	н	NC	NC	NC	Q7

H = HIGH voltage level

L = LOW voltage level

X = don't care NC = No Change

Z = HIGH impedance OFF-state

= LOW-to-HIGH CP transition
= HIGH-to-LOW CP transition

Q'6 = the information in the seventh register stage

^{*}At the positive clock edge the information in the 7th register stage is transferred to the 8th register stage and QS1 output.

STATIC ELECTRICAL CHARACTERISTICS

		c	D74	1C409	4/CE	54HC	4094					CD7	4HC1	4094	/CD5	4НСТ	4094			
	COI	TEST CONDITIONS			74HC/54HC 74HC TYPES TYPE			ı	HC PE	TEST CONDITI		i	CT/54		l l	ICT PE		ICT PE		
CHARACTERISTIC	V ₁	lo	Vcc		+25°C	;	ł	10/ 5°C	l	5/ 5°C	Vı	Vcc		+25°(;		10/ 5°C		i5/ !5°C	UNITS
	V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	v	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	-	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15	_	_	3.15	_	3.15	_		to	2	_	-	2	_	2	_	٧
	1. 1		6	4.2		1_	4.2	_	4.2	_		5.5								
Low-Level			2	_	_	0.5	_	0.5		0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35	_	1.35	_	1.35	_	to	-	_	0.8	_	0.8	_	0.8	v
<u> </u>			6	-	_	1.8	_	1.8	_	1.8		5.5			ŀ					
High-Level	VIL		2	1.9	_	_	1.9		1.9	_	VIL									1000
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	<u> </u>	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	v
CMOS Loads	ViH		6	5.9	_	Ī —	5.9	-	5.9	_	V _{IH}									
	VıL										. VIL			-						
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	-	or	4.5	3.98		_	3.84	_	3.7	_	V
	ViH	-5.2	6	5.48	_	_	5.34	_	5.2	_	ViH									
Low-Level	VIL		2	_	_	0.1	_	0.1	<u> </u>	0.1	VıL									
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5		_	0.1	_	0.1	_	0.1	V
CMOS Loads	ViH		6	_	_	0.1	_	0.1	_	0.1	ViH									
	VIL										VIL									
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	V.
	V _{IH}	5.2	6	-	-	0.26	1	0.33	-	0.4	V _{IH}									
Input Leakage	Vcc					-					Any Voltage									
Current I	or		6	_	_	±0.1	_	±1	_	±1	Between V _{cc}	5.5	_	_	±0.1	-	±1	-	±1	μΑ
	Gnd								- 1		and Gnd									
Quiescent	Vcc										Vcc									
Device	or	0	6	-	-	8	_	80	_	160	or	5.5	_	_	8	_	80	-	160	μΑ
Current Icc	Gnd										Gnd					L		<u> </u>		
Additional Quiescent Device Current per input pin: 1 unit load											V _{CC} -2.1	4.5 to 5.5		100	360	_	450	_	490	μΑ
3-State Leakage Current loz	V _{IL} or V _{IH}	V _o =V _{cc} or Gnd	6	-	-	±0.5	-	±5	-	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	_	±5	-	±10	μΑ

^{*} For dual-supply systems theoretical worst case ($V_1 = 2.4 \text{ V}$, $V_{CC} = 5.5 \text{ V}$) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
D	0.40
CP, OE	1.50
STR	1.0

^{*}Unit load is $\Delta l_{\rm CC}$ limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25°C.

SWITCHING CHARACTERISTICS ($V_{\text{CC}}=5$ V, $T_{\text{A}}=25^{\circ}\text{C}$, input t_{r} , $t_{\text{f}}=6$ ns)

		C∟	TYP	ICAL	
CHARACTERISTIC	SYMBOL	(pF)	НС	HCT	UNITS
Propagation Delay CP to Qn	t _{PLH} t _{PHL}	15	16	18	
CP to QS1			12	16	
CP to QS2			11	15	ns
Output Enabling Time	t _{PZH} t _{PZL}		14	14	
Output Disabling Time	t _{PHZ}		10	14	1
Max. CP Frequency	fmax		60	60	MHz
Power Dissipation Capacitance*	C _{PD}	_	90	110	pF

 $^{^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per register. PD=C_{PD} V_{cc^2} fi + Σ (C_L V_{cc^2} fo) where:

fi=input frequency

C_L=output load capacitance V_{cc}=supply voltage

fo=output frequency

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_f = 6 \text{ ns}$)

				25	°C		-4	l0°C to	+85	°C	-5				
CHARACTERISTIC		Vcc	Н	IC	H	СТ	74	нс	74F	ICT.	54	нС	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	150	_	_	_	190		l –	_	225	_	_	
	t _{PHL}	4.5	-	30	_	39	-	38	_	49	-	45	—	59	ns
CP to QS1		6	_	26		_		33	_		_	38	_		
		2	-	135	l —	-	-	170	_		-	205	_	-	
		4.5	-	27	-	36	-	34		45	-	41	-	54	ns
CP to QS2		6	1=	23	_	_		29				35	_		
		2	-	195	-	-		245			-	295	-	—	
00.0		4.5	-	39	-	43		49	-	54	-	59	-	65	ns
CP to Qn		6	+-	33				42	_		_	50	_		
		2	-	180	_	_	_	225		_	-	270	-	_	
STR to Qn		4.5		36	-	39	-	45		49	_	54	-	-59	ns
		6	+-	31		_		38	_			46			
Output Enable	t _{PZH}	2	-	175		-	-	220	_	_		265		_	
to Qn	t _{PZL}	4.5 6		35	_	35	_	37	-	44	_	53 45	-	53	ns
Outrant Disable		 	·	 			 	 				-	=	 - -	
Output Disable to Qn	t _{PHZ}	4.5		125 25	-	35	-	155		44	_	190 38	_	53	
to Qii	t _{PLZ}	6	_	25	_	35	_	26	_	44	_	32	_	53	ns
Output Transition	t _{THL}	2	†_	75				95				110			
Time	t _{TLH}	4.5	_	15		15	_	19		19	_ ,	22		22	ns
	· icn	6		13	_	_	_	16	_	-	_	19	_	_	113
Input Capacitance	Cı	-		10	_	10	-	10		10	- .	10	-	10	pF
3-State Output															
Capacitance	Co		-	15		15	-	15	-	15	_	15	_	15	pF

PRE-REQUISITE FOR SWITCHING FUNCTION

				25	°C		-4	0°C to	+85	°C	-5	5°C to	+125	5°C		
CHARACTERISTIC		Vcc	Н	IC	С НСТ		74	нС	741	ICT	54	нС	54H	1CT	UNITS	
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
		2	80	_	_	_	100	3 <u>4 - 3 -</u>	-	_	120	_	_	_		
CP Pulse Width	tw	4.5	16	-	16	_	20	_	20		24	l –	24	-	ns	
		6	14				17	_	1 <u>-</u>		20		_			
		2	80	_		_	100	_	_	l —	120	_	_	_		
STR Pulse Width	twH	4.5	16	—	16	-	20	_	20	_	24	_	24	—	ns	
		6	14		_		17		-		20	_	_			
		2	50	_	-	_	65	_	_	_	75	l –	_	_		
Data Setup Time	tsu	4.5	10	—	10		13		13	_	15	l –	15		ns	
		6	9	<u> </u>	_		11	···	_	_	13	_	_			
		2	3	_	_	_	3		_		3	_	_	_		
Data Hold Time	t _H	4.5	3	l –	4	_	3	_	4	_	3	_	4	_	ns	
	12 L	6	3		_	_	3	_	-	_	3	_				
		2	100		_	_	125	_	_	_	150	_	_			
STR Setup Time	tsu	4.5	20	_	20	—	25		25	<u> </u>	30	<u> </u>	30	_	ns	
		6	17	_	_		21	_	_		26	_	_			
		2	0	_		_	0	_	14,25		0	_	_			
STR Hold Time	t _H	4.5	0	_	0	_	0		0	_	0	_	0	—	ns	
		6	0	_	_	_	0	_	_		0		_			
Max. CP		2	6	_	_	_	5	_	_	_	4	_	_	_		
Frequency	f _{CL(max.)}	4.5	30	_	30	—	24	_	24	-	20		20	_	MHz	
		6	35		_	—	28	_		-	24	-		_		

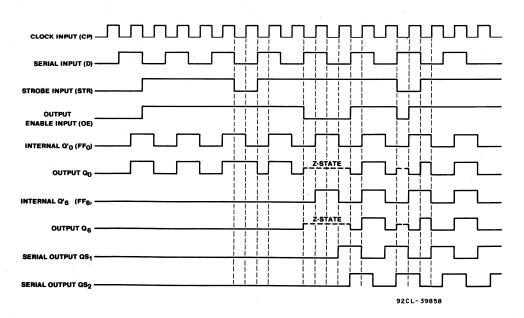


Fig. 2 — Timing Diagram

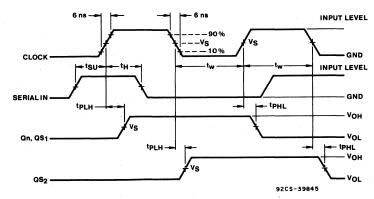
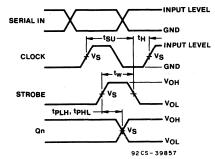



Fig. 3 - Data propagation delays, setup and hold times.

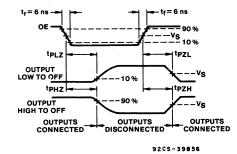
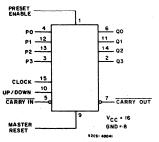



Fig. 4 - Strobe propagation delays, and setup and hold times.

Fig. 5 - Enable and Disable Times.

	54/74HC	54/74HCT
Input Level	. V _{cc}	3 V
Switching Voltage, V _S	50% V _{cc}	1.3 V

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

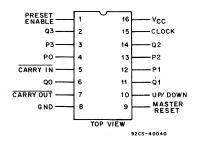
Presettable Synchronous 4-Bit Up/Down Counters

CD54/74HC/HCT4510 BCD Decade Counter, Asynchronous Reset CD54/74HC/HCT4516 4-Bit Binary Counter, Asynchronous Reset

Type Features:

- Synchronous counting and asynchronous loading
- Look-ahead carry for high-speed counting

The RCA CD54/74HC/HCT4510 presettable BCD up/down counter and the CD54/74HC/HCT4516 presettable binary up/down counter consist of four synchronously clocked D-type flip-flops (with a gating structure to provide T-type flip-flop capability) connected as counters. These counters can be cleared by a high level on the Master Reset line, and can be preset to any binary number present on the preset inputs by a high level on the Preset Enable line. The 4510 will count out of non-BCD counter states in a maximum of two clock pulses in the up mode, and a maximum of four clock pulses in the down mode.


If the Carry-In input is held low, the counter advances up or down on each positive-going clock transition. Synchronous cascading is accomplished by connecting all clock inputs in parallel and connecting the Carry-Out of a less significant stage to the Carry-In of a more significant stage.

The 4510 and 4516 can be cascaded in the ripple mode by connecting the Carry-Out to the clock of the next stage. If the Up/Down input changes during a terminal count, the Carry-Out must be gated with the clock, and the Up/Down input must change while the clock is high. This method provides a clean clock signal to the subsequent counting stage. (See Fig. 5.)

The CD54HC/HCT4510 and the CD54HC/HCT4516 are supplied in 16-lead ceramic dual-in-line frit-seal packages (F suffix). The CD74HC/HCT4510 and the CD74HC/HCT4516 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}=30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I_I≤1 µA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

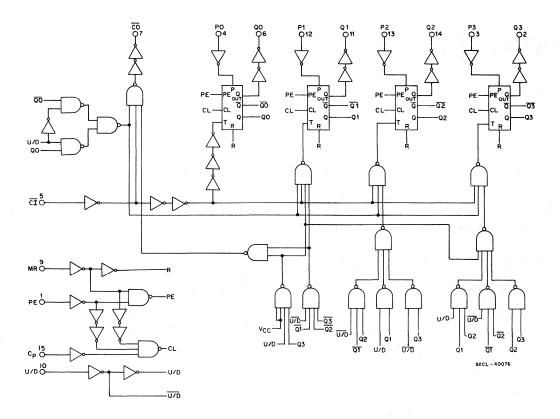


Fig. 1 - Logic diagram for HC/HCT4510.

TRUTH TABLE

CL	CI	U/D	PE	MR	ACTION
Х	Н	Х	L	L	NO COUNT
	L	Н	L	· L	COUNT UP
	L	L	L	L	COUNT DOWN
х	х	x	н	L	PRESET
X	х	х	х	н	RESET

X = Don't Care H = High Voltage Level L = Low Voltage Level

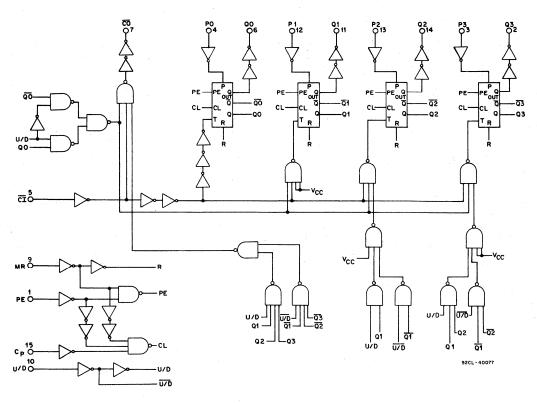


Fig. 2 - Logic diagram for HC/HCT4516.

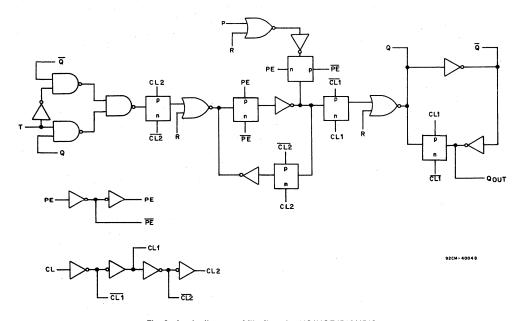


Fig. 3 - Logic diagram of flip-flops for HC/HCT4510/4516.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} +0.5$ V)	
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT (Icc)	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F,H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F,H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F,H	55 to +125°C
PACKAGE TYPE E,M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	MITS	UNITS
	MIN.	MAX.	UNIIS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} :*			•
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	\ v
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0 -	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	4

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

	CD74HC4510/4516/CD54HC4510/4516 CD74HCT4510/4518/CD54HCT4510/4518																			
	1	TEST IDITIO	NS	1	IC/54 YPE		741 TYF		541 TYE	HC PES	TEST	NS		T/54			HCT PES	54F TYI	ICT PES	
CHARACTERISTIC	V _i	lo	Vcc	,	25° C	;	-4 +85		_	5/ 5°C	Vı	V _∞		-25° C		i i	10/ 5°C	_	55/ 5° C	UNITS
	v	mA	V	Min	Тур	Max	Min	Max	Min	Max	٧	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	 -	1.5	_	1.5	=		4.5				-	T			
Input Voltage V _{IH}			4.5	3.15	_	—	3.15	_	3.15	_	4 i — 1	to	2	-	_	2	1-	2	-	v
			6	4.2	_	I —	4.2	-	4.2	-		5.5								1.0
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}	İ		4.5	_	_	1.35	_	1.35	_	1.35	-	to	l –	l –	0.8	-	0.8	-	0.8	V
			6	_	-	1.8		1.8	-	1.8		5.5				-				
High-Level	VIL		2	1.9	_	_	1.9	-	1.9	-	VIL									
Output Voltage Von	or	-0.02	4.5	4.4		<u> </u>	4.4	_	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	-	V
CMOS Loads	ViH		6	5.9	_	_	5.9	_	5.9	_	V _{IH}									
	VIL										VIL		l				l		ŀ	100
TTL Loads	or	-4	4.5	3.98		_	3.84	_	3.7	_	or	4.5	3.98	—	–	3.84	-	3.7	-	l v
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	VIL		2	_		0.1		0.1	_	0.1	VIL	l								
Output Voltage Vol.	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	-	— ·	0.1	-	0.1	-	0.1	V
CMOS Loads	V _{IH}		6	_	<u>-</u>	0.1		0.1		0.1	V _{IH} .									
	VIL										VIL						1			
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
	V _{IH}	5.2	6	<u> </u>	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	Vcc										Any						į			
Current I ₁	or		6	l _	_	±0.1	_	±1	_	±1	Voltage	5.5	-	_	±0.1	_	±1	_	±1	μА
	Gnd										Between							1		
	 				-	<u> </u>	<u> </u>			-	V _{cc} & Gnd			ļ	<u> </u>	├-	┼	<u> </u>		
Quiescent	Vcc										Vcc								400	
Device Current Icc	or	0	6	-	_	8	_	80	-	160	or Gnd	5.5	_	_	8	-	80	-	160	μΑ
Additional	Gnd	L		L	L	L	L	L	L	L	Gna	-		<u> </u>	<u> </u>	-	 	 	+	
Additional Quiescent Device												4.5								
											V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ
Current per input	l											5.5				1		1	1	l

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
P0-P3	0.75
MR	1.5
U/D, PE, CI	1
СР	1.25

^{*}Unit Load is ΔI_{cc} limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input tr,tr=6 ns)

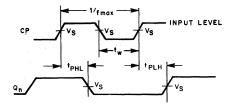
				TYPICAL	. VALUES		
CHARACTERISTIC		C _L (pF)	45	10	45	16	UNITS
			НС	HCT	нс	нст	-
Propagation Delay:							
CP to Qn	t _{PLH} , t _{PHL}	15	18	21	18	21	
CP to CO	t _{PLH} , t _{PHL}	15	22	24	22	24	
PE to Qn	t _{PLH} , t _{PHL}	15	21	22	21	22	r of
PE to CO	t _{PLH} , t _{PHL}	15	25	28	25	28	ns
MR to Qn	t _{PHL}	15	18	18	18	18	
MR to CO	t _{PLH}	15	20	20	20	20	
CI to CO	t _{PLH} , t _{PHL}	15	10	13	10	13	
Power Dissipation Capacitance	C _{PD} *		59	65	68	72	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

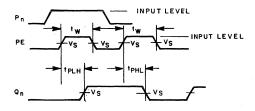
 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where f_i = input frequency

fo = output frequency

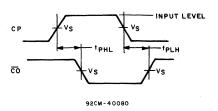
C_L = output load capacitance

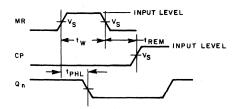

V_{cc} = supply voltage.

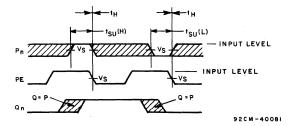
PRE-REQUISITE FOR SWITCHING FUNCTION


								LIM	IITS						
		TEST		25	°C		-4	0°C t	o +85°	,C	-5	5°C to	+125	°C	1
CHARACTERISTI	С	CONDITIONS	Н	С	H	CT	74	НС	74F	ICT	54	нС	54H	ICT	UNITS
		V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Pulse Width:		2	80	_	_		100		_	_	120	_	_	_	
CP	tw	4.5	16	_	16	_	20		20	l —	24	 -	24	_	
		6	14	_	_	_	17	_	l —	_	20	_	-	_	
		2	100	_	_	_	125	_	_	_	150	_		_	
MR	tw	4.5	20	_	20	_	25	_	25	_	30	_	30	-	
		6	17		-	_	21	—	—		26	_	_	_	
		2	80	<u> </u>		T -	100	Γ-	—	_	120	_	-	_	
PE	$t_{\mathbf{w}}$	4.5	16		16	-	20	-	20	-	24	_	24	-	
		6	14		_		.17			_	20			_	
Setup Time,	tsu	2	100	_		T -	125	-		_	150		_	_	
Pn to PE,		4.5	20		20	-	25		25	—	30		30	-	ns
CI to CP		6	17		_	—	21	—	-	—	26	_	_	-	
Hold Time,	tн	2	3	_			3	_	_	_	3	_	_	_	
Pn to PE		4.5	3	—	3	-	3	l —	3	_	3	-	3		
		6	3	_	_	_	3			—	3	-	_	_	
		2	5	_			5	_	_	_	5	_	_	_	
CI to CP	t _H	4.5	5	_	5	-	5	_	5		5	-	5	-	
		6	5	_	_	_	5	_		—	5	-	—	-	
		2	0	_	_		0	-		_	0	T —	_	_	
U/D to CP	t _H	4.5	0	—	0	_	0		0	-	0	-	0		
		6	0	_			0				0	_	_	_	
Removal Time:		2	80		_		100	_	_		120	I	_	T	
MR to CP	t _{REM}	4.5	16		16	-	20		20	_	24		24	-	
		6	14	_			17				20	_	_	_	
Maximum Frequency		2	6	_	_	_	5	_	_	_	4	_	_	_	
CP	f _{MAX}	4.5	30	_	30	-	24	-	24	_	20		20	-	MHz
		6	35	_	—	-	28	_	_	_	24	_	_	-	

SWITCHING CHARACTERISTICS (CL=50 pF, input tr,tr=6 ns)


								-	LIM	IITS						
•					25	°C		-4	0°C t	o +85	°C	-5	5°C to	+125	°C]
CHA	RACTERIST	IC	V _C C	Н	C	H	CT	74	нс	74h			нС		ICT	UNITS
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation		t _{PLH}	2	-	220	_	-	-	275	_	_	_	330	- I	_	
CP to 0	Qn	t _{PHL}	4.5	-	44	-	50	_	55	 	63	-	66		75	
			6	<u> </u>	37				47			<u> </u>	56			
		t _{PLH}	2	-	260	-	-	_	325	—	_	_	390	—	-	
CP to	co	t _{PHL}	4.5	-	52	-	58	-	65	-	73		78		87	
			6		44	<u> </u>	_		55	_			66		_	ŀ
		t _{PLH}	2	_	250	-		_	315	-	_	_	375	-	_	
PE to C	Σn	t _{PHL}	4.5	-	50	-	53	_	63	 	66		75		80	
			6		43		_		54		_	_	64	_	_	
_	_ :	t _{PLH}	2	-	300	-	_	_	375	-	_	-	450	_	_	
PE to C	00	t _{PHL}	4.5	_	60	l –	68	—	75	_	85		90	_	102	
			6	_	51				64	<u> </u>	_	_	76	_	_	ns
l			2	_	210	_	_	-	265	_	_	_	315	_	_	""
MR to	Qn	t _{PHL}	4.5	<u> </u>	42	—	42	-	53	_	53		63	ı—,	63	
			6		36	<u></u>			45	<u> </u>			54			
Ι.			2	-	235	<u> </u>	_	_	295	_	_		355	_	-	
MR to	co	tpLH	4.5	-	47	_	47	_	59	·—	59		71	_	71	
			6		40		_		50				60			
l		t _{PLH}	2	-	125		-	_	155	-		_	190	—	_	
Ci to C	0	t _{PHL}	4.5	-	25	_	31	_	31	—	39	-	38	_	47	
			6	_	21	_	_	_	26				32	_	_	
Transition T	ime:	t _{THL}	2	_	75	_	-	, , , , ,,	95	_	_	_	110	_	_	
Qn, C	0	t _{TLH}	4.5	-	15	—	15		19	-	19	—	22	_	22	
			6	<u> </u>	13		-		16				19	_		
Input Capac	itance	Cı		<u> </u>	10		10		10		10		10	_	10	pF


(a) Clock to output delays and clock pulse width.


(c) Preset Enable pulse width and Preset Enable to output delays.

(b) Clock to carry out delays.

(d) Master reset pulse width, master reset to output delay and master reset to clock removal time.

(e) Setup and hold times data to Preset Enable (PE).

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

Fig. 4 - AC waveforms.

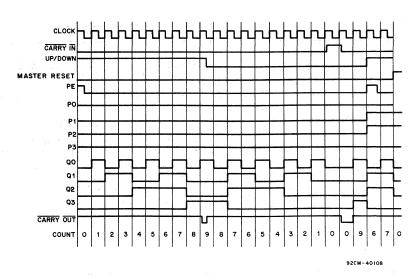


Fig. 5 - Timing diagram for CD54/74HC/HCT4510.

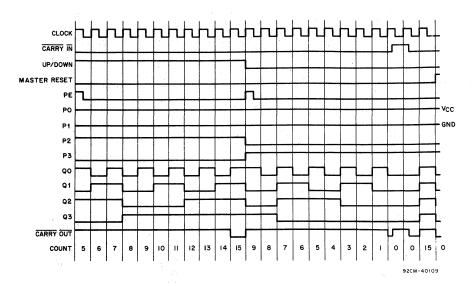
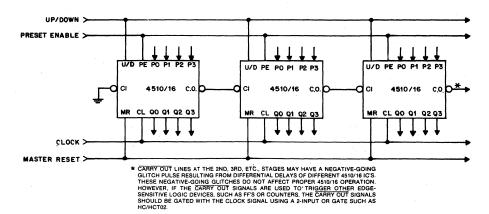
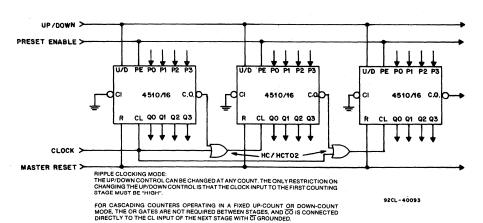




Fig. 6 - Timing diagram for CD54/74HC/HCT4516.

(a) Parallel clocking.

(b) Ripple clocking.

Fig. 7 - Cascading counter packages.

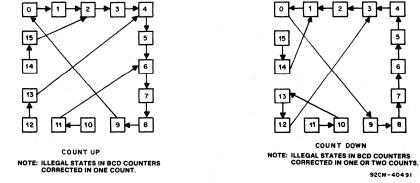


Fig. 8 - HC/HCT4510 State Diagrams.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

BCD-to-7 Segment Latch/ Decoder/Drivers

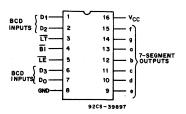
Type Features:

- 92CS-25087
- High-output sourcing capability-7.5 mA @ 4.5 V, 10 mA @ 6 V (HC4511)
- Input latches for BCD code storage
- Lamp test and blanking capability

The RCA CD54/74HC4511 and CD54/74HCT4511 are BCD-to-7 segment latch/decoder/drivers having four address inputs (D₀-D₃), active "Low" blanking and lamp test inputs, and a latch enable input which, when "High", enables the latches to store the BCD inputs. When Latch Enable is "Low", the latches are disabled, making the outputs transparent to the BCD inputs.

These devices have standard-size output transistors but are capable of sourcing (at standard V_{OH} levels) up to 7.5 mA at 4.5 V. The HC types can supply up to 10 mA at 6 V.

The CD54HC/HCT4511 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT4511 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).


TRUTH TABLE

	LE	BI	ΪŤ	D3	D ₂	D ₁	D ₀	а	b	С	d	e	f	g	Display	
١	Х	X	L	х	X	х	Х	Н	Н	Н	Н	Н	Н	Н	8	1
	Х	L	н	Х	Х	Х	Х	L	L	L	L	L	L	L	Blank	١
1	L	н	н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0	1
	L	н	н	L	L	L	Н	L	Н	Н	L	L	L	L	1 1	ı
١	L	н	Н	L	L	Н	L	Н	Н	L	Н	Н	L	н	2	L
1	L	н	н	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3	ı
	L	н	H.	L	Н	L	L	L	Н	Н	L	L	Н	Н	4	ı
	L	Н	Н	L	Н	L	Н	Н	L	Н	Н	L	Η	Н	5	l
	L	н	Н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6	ı
1	L	н	Н	L	Н	H	H	H	Н	Н	L	L	L	L	7	1
1	L	н	H	Ή.	L	L	L	Н	Н	Н	H	Н	Н	Н	8	1
	L	н	Н	Н	L	L	Н	H	Н	Н	L	L	Н	Н	9	ı
	L	Н	Н	Н	L	Н	L	L	L	L	L	Ŀ	L	L	Blank	ŀ
	L	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	Blank	ı
	L	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	Blank	ı
	L	Н	H	Н	Н	٠L	Н	L	L	L	L	L	L	L	Blank	
	L	Н	H	Н	H	Н	L	L	Ļ	L	L	L	L	L	Blank	1
	L	Н	H	Н	Н	Н	Н	L	L	L	L	L	L	L	Blank	١
	н	Н	H	X.	Х	X	Х	L.			*				١.	١

X = Don't Care.

*Depends on BCD code previously appied when $\overline{\text{LE}}$ = L. Note: Display is blank for all illegal input codes (BCD > HLLH). Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85°C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}=30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I_I≤1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} +0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V	/)
DC Vcc OR GROUND CURRENT (Icc)	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F,H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F,H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F,H	
PACKAGE TYPE E,M	
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	

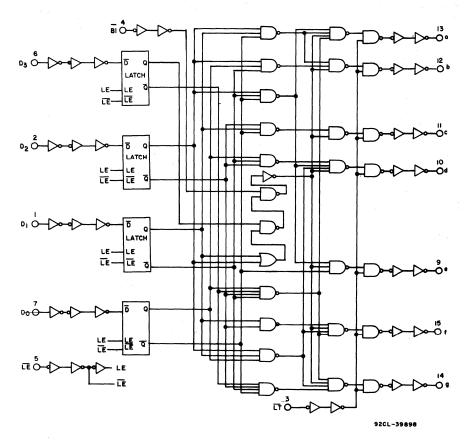


Fig. 1 - Logic diagram.

STATIC ELECTRICAL CHARACTERISTICS

				CD7	4HC4	511/C	:D54F	IC451	1			C	D74I	нст4	511/C	:D54H	ICT4	511			
		1	TEST	VS.		IC/54		741 TYF		54l	-	TEST CONDITIO	NS		T/54		1	HCT PES		ICT PES	
CHARACTERIST	'ic	Vı	l _o	Vcc		•25° C	;	-4 +85		-5: +12!		Vı	Vcc		+25° C	25°C		10/ 5° C	-55/ +125°C		UNITS
		V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	=	1.5	_		4.5								
Input Voltage	VIH			4.5	3.15		_	3.15	_	3.15	_		to	2	-		2	-	2	-	V
· · · · · · · · · · · · · · · · · · ·				6	4.2	_	<u> </u>	4.2	_	4.2	_		5.5								
Low-Level				2	-	-	0.5	_	0.5	ı	0.5	•	4.5								
Input Voltage	VIL			4.5	_	_	1.35	_	1.35	1	1.35	_	to	-	-	0.8	-	0.8	-	0.8	V
		<u> </u>		6	-	-	1.8	_	1.8	-	1.8		5.5						<u> </u>		
High-Level		VIL		2	1.9	_	_	1.9		1.9	_	VIL									-
Output Voltage	V_{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	-		4.4	-	4.4	-	V
CMOS Loads		ViH		6	5.9	_	_	5.9	_	5.9	_	V _{IH}	<u> </u>		<u> </u>						
TTL Loads		VıL										VıL						1	1		
Non-Standard		or	-7.5	4.5	3.98		<u> </u>	3.84	_	3.7	_	or	4.5	3.98	-	_	3.84	-	3.7	-	V
Output		V _{IH}	-10	6	5.48	_	_	5.34	_	5.2	_	V _{IH}			<u> </u>		L		L_		
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	VIL		ĺ							
Output Voltage	Vol	or	0.02	4.5	_		0.1	<u></u>	0.1	_	0.1	or	4.5	-	—	0.1	-	0.1		0.1	V
CMOS Loads		V _{IH}		6		_	0.1	_	0.1	_	0.1	V _{IH}							-		
		Vil	L									VIL				1		1			
TTL Loads		or	4	4.5	_		0.26	_	0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	٧
Standard Output		V _{IH}	5.2	6	l =_	_	0.26	_	0.33	_	0.4	ViH						<u> </u>		ļ	
Input Leakage Current	lı ,	V _{cc} or Gnd	-	6	-	_	±0.1		±1	_	±1	Any Voltage Between	5.5	_	_	±0.1	_	±1	_	±1	μΑ
		-			-	<u> </u>	_	<u> </u>				V _{cc} & Gnd		├	<u> </u>	-	<u> </u>	├—	-	 	
Quiescent		Vcc										V _{cc}			1.0			00	1	100	
Device Current	lcc	or Gnd	0	6	-	-	8	-	80	-	160	or Gnd	5.5	-	_	8	-	80	-	160	μΑ
Additional		T			L	L	L														
Quiescent Device													4.5			000		150		400	
Current per input												V _{cc} -2.1	to	_	100	360	-	450	-	490	μΑ
pin: 1 unit load	Δl _{cc} *												5.5					1			

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
LT, LE	1.5
Bl, Dn	0.3

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERICTIC	LIN	AITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNIIS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} .*			4
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	'
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25° C, Input tr,tr=6 ns)

			TYPICAL		
CHARACTERISTIC		C _L (pF)	НС	HCT	UNITS
Propagation Delay:	t _{PLH}	15	25	25	
D _n to Output	t _{PHL}	15	25	25	
	t _{PLH}	15	23	23	
LE to Output	t _{PHL}	15	23	23	
	t _{PLH}	15	18	18	ns
BI to Output	t _{PHL}	13	10	10	
	t _{PLH}	15	13	13	
LT to Output	t _{PHL}	13	13	13	
Power Dissipation Capacitance*	, C _{PD}		114	110	pF

^{*}CPD is used to determine the dynamic power consumption, per package.

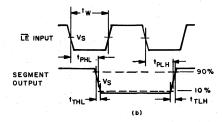
 $P_D = C_{PD} V_{CC}^2 fi + \sum C_L V_{CC}^2 f_o$ where $f_i = input$ frequency

fo = output frequency

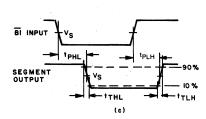
C_L = output load capacitance

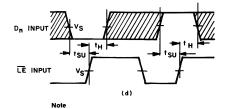

V_{cc} = supply voltage.

PRE-REQUISITE FOR SWITCHING FUNCTION


			LIMITS												
		TEST	25°C -40°C to +85°C							-5	1				
CHARACTERI	STIC	CONDITIONS	нс		нст		74HC		74HCT		54HC		54HCT		UNITS
		V _{CC} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.]
Setup Time,	tsu	2	60	_	_	I —	75	_	_	_	90	_		_	
D _n to LE		4.5	12	-	12	_	15	_	15	_	18	_	18		
		6	10	_	_	-	13	 	_	—	15	-		_	
Hold Time,	t _H	2	3	T -	_	_	3	_	_	_	3	_	_	T-	ns
D _n to LE		4.5	3	_ ·	5		3	_	5	_	3	_	5	l —	1
		6	3	_	-	_	3		_		3		_	_	
Latch Enable		2	80	_	I -	_	100		_	_	120		_	T	
Pulse Width,	tw	4.5	16	_	16	_	20	-	20		24	_	24	_	MHz
		6	14		_	1 <u>-</u>	17	l —	_	_	20	_	_	_	

SWITCHING CHARACTERISTICS (CL=50 pF, Input tr, tr=6 ns)

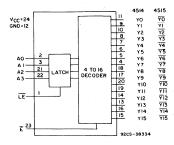

								LIM	IITS						1 1 1
				25	°C		-4	0°C t	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERI	STIC	VCC	Н	C	H	CT	74	НС	74F	ICT	54	НС	54H	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.].
Propagation Delay,	tplH	2	-	300	_	_	_	375	_	_	_	450	_		
D _n to Output	t _{PHL}	4.5	_	60	-	60	-	75	_	75	_	90	_	90	ns
		6		51	_		_	64			_	77	_		
	t _{PLH}	2	T	270		_	_	340	_	_	_	405	_		
LE to Output	tpHL	4.5	_	54	_	54	 	68	_	68	_	81	_	81	ns
		6	_	46	l —	_	l — .	58	_	_	_	69	_	_	
	t _{PLH}	2	-	220	=	_	_	275		_	_	330	_	T-	
BI to Output	t _{PHL}	4.5	l —	44	_	44	_	55	_	55	l —	66	_	66	ns
		6		37	_	_		47	_	_	_	56	_		
	t _{PLH}	2	T-	160	_	T_	_	200	_		_	240	_	_	
LT to Output	t _{PHL}	4.5	_	32	_	33	 	40	-	41	l —	48		50	ns
		6	l –	27	l —	-	—	34	_	l —		41		_	<u> </u> :
	t _{THL}	2	_	75	_	 	_	95	_	_	_	110	_		
Transition Time	t _{TLH}	4.5	—	15	_	15	-	19		19	_	22		22	ns
		6		13	— ·	l —	—	16	-			19	_	-	
Input Capacitance	Cı		_	10	_	10	_	10	_	10	_	10	_	10	pF


Input (Dn, LT) to output propagation delays and output transition times

Input (LE) to output propagation delays and latch enable pulse width

Input $(\overline{B1})$ to output propagation delays.

The shaded areas indicate when the input is permitted to change for predictable output performance.


92CM-39899

Waveforms showing the data set-up and hold times for Dn input to LE input.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

Fig. 2 - AC waveforms.

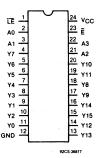
High-Speed CMOS Logic

4-to-16 Line Decoder/Demultiplexer with Input Latches

Type Features:

 Multifunction capability: Binary to 1-of-16 decoder 1-to-16 line demultiplexer

FUNCTIONAL DIAGRAM


The RCA CD54/74HC4514, 4515 and CD54/74HCT4514, 4515 are high-speed silicon gate devices consisting of a 4-bit strobed latch and a 4-to-16 line decoder. The selected output is enabled by a low on the enable input (E). A high on E inhibits selection of any output. Demultiplexing is accomplished by using the E input as the data input and the select inputs (A0-A3) as addresses. This E input also serves as a chip select when these devices are cascaded.

When Latch Enable $\overline{(LE)}$ is high the output follows changes in the inputs (see truth table). When \overline{LE} is low the output is isolated from changes in the input and remains at the level (high for the 4514, low for the 4515) it had before the latches were enabled. These devices, enhanced versions of the equivalent CMOS types, can drive 10 LSTTL loads.

The CD54HC4514, 4515 and CD54HCT4514, 4515 are supplied in 24-lead dual-in-line frit-seal ceramic packages (F suffix). The CD74HC4514, 4515 and CD74HCT4514, are supplied in 24-lead dual-in-line, narrow-body plastic packages (EN suffix), in 24-lead dual-in-line, wide-body plastic packages (E suffix), and in 24-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features

- Fanout (over temperature range): Standard outputs — 10 LSTTL loads Bus driver outputs — 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL} = 30%, N_{IH} = 30%; @ V_{CC} = 5V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V min. CMOS input compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE (Vcc): (Voltages referenced to ground)-0.5 to +7 V POWER DISSIPATION PER PACKAGE (PD): OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE E, M-40 to +85°C STORAGE TEMPERATURE (Tsta) .-65 to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max. +265 °C

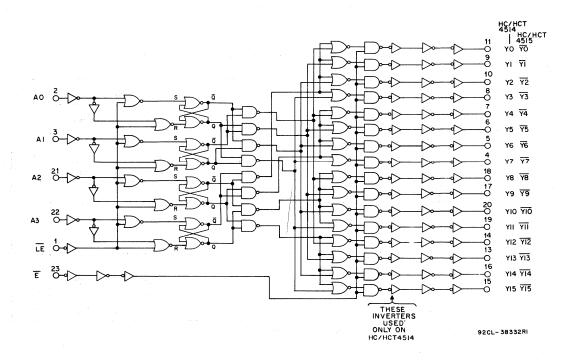


Fig. - Logic diagram for CD54/74HC4514, 4515 and CD54/74HCT4514, 4515.

DECODE TRUTH TABLE ($\tilde{L}E = 1$)

			ODEI UTS	R	ADDRESSED OUTPUT
ENABLE	А3	A2	A1	A0	4514 = Logic 1 (High) 4515 = Logic 0 (Low)
0 0 0 0	0 0 0	0 0 0	0 0 1 1	0 1 0 1	Y0 Y1 Y2 Y3
0 0 0	0 0 0	1 1 1 1	0 0 1 1	0 1 0 1	Y4 Y5 Y6 Y7
0 0 0	1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	Y8 Y9 Y10 Y11
0 0 0	1 1 1	1 1 1 1	0 0 1	0 1 0 1	Y12 Y13 Y14 Y15
1	Х	Х	Х	Х	All Outputs = 0, 4514 All Outputs = 1, 4515

X = Don't Care

Logic 1 = High

Logic 0 = Low

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	Vcc	V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t _r , t _f			
at 2V	О	1000	ns
at 4.5 V	o	500	ns
at 6V	О	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			CD7	4HC4	514/0	CD54	1C45	15				(CD74I	НСТ4	514/C	D54I	ICT4	515		
	co	TEST NDITION	s	1	IC/54		I	HC PE	1 .	HC PE	TEST CONDITI			CT/54		1	ICT PE		ICT PE	
CHARACTERISTIC	V _i	lo	V _{CC}		+25°C			-40/ -55/ +85°C +125°			V _i	Vcc	+25°C		-40/ +85°C		-55/ +125°C		UNITS	
		mA	*	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_		1.5	_	1.5	_		4.5								
Input Voltage V _{II}			4.5	3.15	_	_	3.15	-	3.15	_]	to	2	_	_	2	_	2		v
			6	4.2	_	_	4.2	_	4.2	_		5.5					ļ.,			
Low-Level			2	_	_	0.5		0.5		0.5		4.5								A. 37
Input Voltage V _{II}			4.5	_		1.35	_	1.35	_	1.35	_	to	-	_	0.8	-	0.8	-	0.8	v
			6	_	_	1.8	_	1.8	_	1.8		5.5	-							
High-Level	VIL		2	1.9	_	_	1.9	_	1.9	_	VıL									
Output Voltage Vol	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	-	or	4.5	4.4	_	-	4.4	-	4.4	_	v
CMOS Loads	ViH		6	5.9	_	_	5.9	_	5.9	-	- V _{IH}									-
	VIL										VIL									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	_	3.84		3.7		- , v
	ViH	-5.2	6	5.48	_	_	5.34	_	5.2	1 - 1	ViH									
Low-Level	VıL		2	_	_	0.1	_	0.1	-	0.1	VıL	-								
Output Voltage Vol	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	ViH	-								
	VıL										VIL		-							:
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	- 1	0.26	-	0.33	-	0.4	. v
	V _{iH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									4
Input Leakage	Vcc										Any Voltage									
Current I	or		6	_	-	±0.1	-	±1	-	±1	Between V _{cc}	5.5	_	_	±0.1	_	±1	-	±1	μΑ
	Gnd										& Gnd									
Quiescent	Vcc								- 47		Vcc									
Device	or	0	6	-	-	8	_	80	-	160	or	5.5	_	_	8	_	80	_	160	μΑ
Current loc	Gnd	1.					<u> </u>				Gnd			100						1.1
Additional Quiescent Device Current per input pin: 1 unit load \(\Delta \) loc*											V _{cc} -2.1	4.5 to 5.5	_	100	360		450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
A0 — A3	0.15
LE	0.85
E	0.3

*Unit load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25°C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A 25^{\circ}\text{C}, Input t_r, t_f = 6 \text{ ns}$)

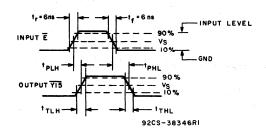
		C _L	Typical		
CHARACTERISTIC	SYMBOL	(pF)	нс	нст	UNITS
Propagation Delay Select to Output	t _{PHL}	15	23	25	ns
Select to Output	t _{PLH}	15	20	25	115
EE to Output	t _{PHL}	15	19	21	
Le to Output	t _{PLH}	15	19	21	ns
Et Out	t _{PHL}	15	44	17	
E to Output	t _{PLH}	15	14	17	ns
Power Dissipation Capacitance*	СРД	_	70	75	pF

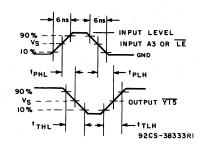
 $^{{}^{\}star}C_{PD}$ is used to determine the dynamic power consumption, per package.

PREREQUISITE FOR SWITCHING FUNCTION

				25	°C		-4	0°C to	+85	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	H	CT	74	HC	741	I CT	54	HC	54F	1CT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
***		2	75	_	_	_	95	_	_		110		_	I —	
LE Pulse Width	tw	4.5	15	 —	30	_	19	_	38		22		45	_	ns
		6	13		 		16	—	-		19	-			
Select to LE		2	100	_	_	_	125	_	_	_	150	_	_	_	
Set-up time	t _{su}	4.5	20	_	20	l —	25	_	25	l —	30	<u> </u>	30		ns
		6	17			_	21	l —	-	-	26	-	l –	-	
Select to LE		2	0	_	_		0	_	_	_	0	_	_	_	-
Hold Time	t _H	4.5	0	-	5	—	0	—	5		0	-	5		ns
		6	0	<u> </u>	_	_	0	_	_		0	_		_	

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_f = 6 \text{ ns}$)

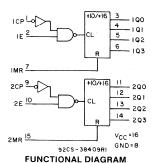

			· ·	25	°C		-4	0°C to	+85	°C	-5				
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	СТ	74	нс	·74F	ICT	54	нС	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	275	_	_	l —	345	-	_	_	415	_	_	
Select to Outputs	t _{PHL}	4.5	_	55	_	55	_	69	_	69	_	83	-	83	ns
		6	_	47				59	-		_	71	—	-	
	t _{PLH}	2	_	225		_		280	_		_	340		_	
LE to Outputs	t _{PHL}	4.5	l —	45	-	50		56	_	63	_	68		75	ns
		6	_	38		_	_	48	<u> </u>			58	_	_	
	t _{PLH}	2	_	175	_	_	_	220	_	_		265	_	_	
Ē to Outputs	t _{PHL}	4.5	l —	35	_	40		44	_	50	_	53		60	ns
		6		30	 -	l —	_	37	-	-	_	45	_		
Output Transition	t _{TLH}	2	l —	75		_		95	_	_	_	110		_	
Time	t _{THL}	4.5	<u> </u>	15	_	15	_	19	_	19	_	22	_	22	ns
		6	—	13	l —	—	_	16	—	_	_	19	_	—	
Input Capacitance	Cı		_	10	_	10	_	10	_	10		10	_	10	ρF


PD = $V_{CC}^2 f_i (C_{PD} + C_L)$ where:

 f_i = input frequency,

C_L = output load capacitance

V_{cc} = supply voltage



	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, Vs	50% V _{CC}	1.3 V

Propagation delay times and transition times for HC/HCT4515.

High-Speed CMOS Logic

Dual Synchronous Counters

CD54/74HC/HCT4518 — BCD CD54/74HC/HCT4520 — Binary

Type Features:

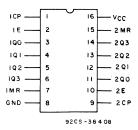
- Positive or Negative Edge Triggering
- Synchronous Internal Carry Propagation

The RCA CD54/74HC4518 and CD54/74HCT4518 are dual BCD up-counters. The RCA CD54/74HC4520 and CD54/74HC4520 are dual binary up-counters. Each device consists of two independent internally synchronous 4-stage counters. The counter stages are D-type flip-flops having interchangeable CLOCK and ENABLE lines for incrementing on either the positive-going or the negative-going transition of CLOCK. The counters are cleared by high levels on the MASTER RESET lines. The counter can be cascaded in the ripple mode by connecting Q3 to the ENABLE input of the subsequent counter while the CLOCK input of the latter is held low.

The CD54HC/HCT4518 and CD54HC/HCT4520 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT4518 and CD74HC/HCT4520 are supplied in a 16-lead plastic dual-in-line packages (E suffix), and in 16-lead surface mount plastic dual-in-line packages (M suffix). The CD54/74HC/HCT4518/4520 are also supplied in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation


High Noise Immunity:

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5$ V

N_{IL} = 30%, N_{IH} = 30% of V_{CC}, @ V_{CC} = 5

■ CD54HCT/CD74HCT Types:
4.5 to 5.5 V Operation
Direct LSTTL Input Logic Compatibility
V_{IL} = 0.8 V Max., V_{IH} = 2 V Min.
CMOS Input Compatibility

TERMINAL ASSIGNMENT

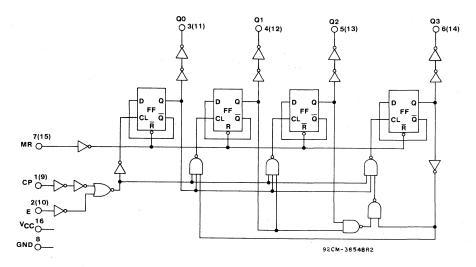


Fig. 1 — CD54/74HC/HCT4518 Logic Diagram

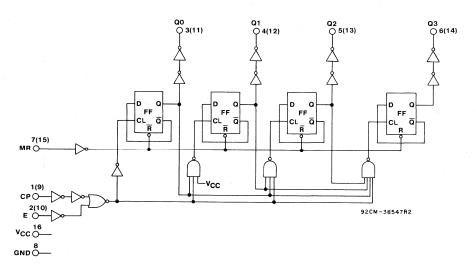


Fig. 2 — CD54/74HC/HCT4520 Logic Diagram

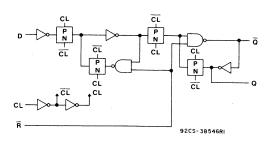


Fig. 3 - Detail of each D Flip-Flop

	1	RUTH T	ABLE						
CP	E	MR	ACTION						
	Н	L	Increment Counter						
L	~	L Increment Counte							
~	X	L	No Change						
Х	~	L	No Change						
~	L	L	No Change						
Н	~	L	No Change						
X	Х	Н	Q0 thru Q3 = L						

X = Don't Care H = High State

= low-to-high transition

= high-to-low transition

L = Low State

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR V_i < -0.5 V OR V_i > V_{CC} +0.5V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_o < -0.5 \ V$ OR $V_o > V_{CC} + 0.5 V)$	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT, PER PIN (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (Pp):	
For T ₂ = -40 to +60°C (PACKAGE TYPE F)	
For T _* = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T ₄ = -55 to +100°C (PACKAGE TYPE F. H)	
For T _A = +100 to +125°C (PACKAGE TYPE F. H)	Derate Linearly at 8 mw/ C to 300 mw
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE F M	40 to +85°C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	2000
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CUADACTERICTIC	LIM	ITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _{IN} , V _{OUT}	0	V _{cc}	· V
Operating Temperature T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

	4	CI	D74H0	4518 4520	/CD54	4HC4!	518 520					CD7	4HC	Г4518 Г4520	/CD54	4HCT	4518 4520			
CHARACTERISTIC	1	TEST			IC/54 ERIE		1	HC NES		HC HES	TEST CONDITIONS		74HCT/54HCT SERIES			74HCT SERIES		54HCT SERIES		UNITS
	V.	I _o mA	V _{cc}		+25° C	:	1	10/ 5° C	-5 +12	5/ 5°C	V.	V _{cc}		+25° C	:	1	10/ 5°C	1.	5°C	OMITS
		""	•	Min	Тур	Max	Min	Max	Min	Max	*		Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V	,		4.5	3.15	_	-	3.15	-	3.15	_	_	to	2	_	-	2	-	2	-	v
			6	4.2	_	-	4.2	-	4.2	_		5.5								-
Low-Level			2	_	_	0.5	_	0.5	-	0.5		4.5								
Input Voltage V		-	4.5	_	_	1.35	_	1.35	-	1.35	-	to	_		0.8		0.8		0.8	v
			6	_	_	1.8	_	1.8	_	1.8		5.5						L		
High-Level	Vil		2	1.9	-	_	1.9	_	1.9	_	V _{IL}									
Output Voltage Vo	, or	-0.02	4.5	4.4	_	-	4.4	-	4.4	_	or	4.5	4.4	_	-	4.4	-	4.4	-	V
CMOS Loads	VIH		6	5.9	_	-	5.9	—	5.9	-	V _{IH}									
	VIL										V _{IL}									
TTL Loads	or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	-	3.84	-	3.7	-	V
	V _{IH}	-5.2	6	5.48	_	-	5.34	_	5.2	_	V _{IH}									
Low-Level	ViL		2	_	_	0.1	_	0.1	_	0.1	V _{IL}									
Output Voltage Vo	or	0.02	4.5	_	-	0.1	-	0.1	-	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	v
CMOS Loads	V _{IH}		6	_	_	0.1	_	0.1	_	0.1	V _{IH} .									
	V _{IL}		Π								VIL				-					
TTL Loads	or	4	4.5	-	_	0.26	_	0.33	-	0.4	or	4.5	_	_	0.26	-	0.33	-	0.4	v
	V _{IH}	5.2	6	_	-	0.26	<u> </u>	0.33	_	0.4	V_{1H}								L	
Input Leakage	V _{cc}										Any									
Current	or		6	-	_	±0.1	_	±1	-	±1	Voltage Between	5.5	-		±0.1	-	±1	-	±1	μA
	Gnd										V _{cc} & Gnd									
Quiescent	V _{cc}										V _{cc}									
Device	or	0	6	-	-	8	<u> </u>	80	-	160	or	5.5	-	-	8	_	80	-	160	μA
Current I _c	Gnd										Gnd									
Additional								- 2				4.5								
Quiescent Device Current per input pin: 1 unit load											V _{cc} -2.1	to 5.5	-	100	360	_	450	_	490	μА

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
MR	1.2
CP	0.25
ENABLE	0.5

^{*}Unit Load is $\Delta I_{\rm CC}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, input t_s $t_t = 6 \text{ ns}$)

CHARACTERISTIC	CL	SYMBOL	TYP	ICAL	UNITS
OHANACIENISTIC	(pF)	STMBOL	HC	HCT	UNITS
Maximum Clock Frequency	15	f _{MAX}	60	50	MHz
Propagation Delay CP to Qn	15	t _{PLH} t _{PHL}	20	22	ns
Enable to Qn	15	t _{PLH} t _{PHL}	20	23	ns
MR to Qn	15	t _{PLH} t _{PHL}	12	14	ns
Power Dissipation Capacitance*	_	C _{PD}	33	33	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per counter.

PREREQUISITE FOR SWITCHING FUNCTION

			L	25	°C		-4	0°C to	+85°	C	-5	5°C to	+125	°C	1
CHARACTERISTIC	SYMBOL	Vcc	Н	C	H	CT	741	НС	74F	ICT	54	HC	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6		_		5			_	4		_	_	
Frequency	fmax	4.5	30	_	25	-	24	-	20	— ⁻	20	_	17	_	MHz
rrequency	l	6	35				28				24				
		2	80	-	1-	—	100	-	—	-	120	_	_		l ·
Clock Pulse Width	tw	4.5	16	-	20	_	20		25	-	24	-	30	-	ns
		6	14				17	<u> </u>		<u> </u>	20	<u> </u>			<u> </u>
		2	100	_	_	_	125	_	-	_	150	_	-	_	
MR Pulse Width	tw	4.5	20	-	20	_	25		25	-	30	_	30	_	ns
		6	17			_	21	_	_		26				
Catua Tima	J	2	80	_	_	-	100	_	_	_	120	_		-	
Setup Time Enable to CP	t _{su}	4.5	16	-	16		20	_	20	—	24	_	24	-	ns
Enable to CP		6	14	_	_		17				20	_			
Removal Time		2	0	_	_	_	0	_	_	_	0	I —	_	_	
	t _{REM}	4.5	0	-	0	_	0	_	0	-	0	-	0	_	ns
MR to CP		6	0	_			0				0			_	
Catura Tima		2	80	_	_	_	100	-	-		120	-	-	_	
Setup Time CP to Enable	t _{su}	4.5	16	-	16	-	20	-	20	—	24	-	24	_	ns
CP to Enable		6	14	_			17				20				
Domewal Time		2	0	_	_	_	0	_	_	_	0	-	_	_	
Removal Time	t _{REM}	4.5	0	-	0	-	0	-	0	—	0	-	0	-	ns
MR to Enable		6	0	_	-	_	0	l —		_	0	_	l –	_	

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t,t = 6 ns)

	1			25	°C		-4	0°C to	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	YMBOL Vcc		C	Н	CT	74	НС	741	ICT	54	НС	54F	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1144
Propagation Delay,	t _{PLH}	2	T -	240	_	_		300	_	_	_	360	_	_	
CP to Qn	t _{PHL}	4.5	-	48	—	53	_	60	_	66	-	72		80	ns
CP to QII		6	_	41		_		51				61			
		2	_	240	_	-	-	300	_	-	_	360	_	_	
Enable to Qn	t _{PLH}	4.5		48		55	_	60	_	69	_	72		83	ns
	t _{PHL}	6	_	41	_	_		51	_	_	_	61			
		2		150	_	_	I –	190	_	_	_	225	_	T	
MR to Qn	t _{PHL}	4.5	-	30	_	35	-	38	_	44	-	45	_	53	ns
		6		26				33	_	_	_	38	-	_	
0.45.4		2	_	75	T -	-	-	95	_	I -	_	110	Ι –		
Output	t _{THL}	4.5	-	15	_	15	— 1	19		19	—	22	_	22	ns
Transition Time	t _{TLH}	6	-	13	l —			16		_	_	19	_	_	
Input Capacitance	Cı		-	10	_	10		10	_	10	_	10	I –	10	pF

 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma C_L V_{CC}^2 f_o$ where

f, = input frequency,

fo = output frequency,

C_L = output load capacitance

V_{cc} = supply voltage

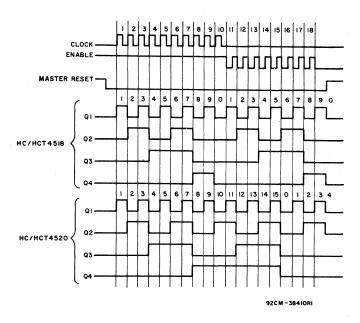
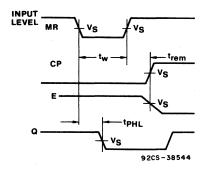
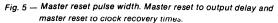




Fig. 4 — Timing Diagrams for CD54/74HC/HCT4518/4520.

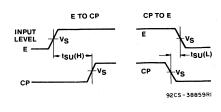
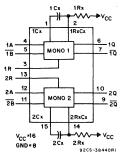



Fig. 6 — Setup Times: E to CP and CP to E.

	54/74HC	54/74HCT
Input Level	V _{cc}	3V
Switching Voltage, Vs	50% V _{CC}	1.3 V

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Dual Retriggerable Precision Monostable Multivibrator

Type Features:

- Retriggerable/resettable capability
- Trigger and Reset propagation delays independent of R_x, C_x
- Triggering from the leading or trailing edge
- Q and Q Buffered Outputs available
- Separate Resets
- Wide Range of Output-Pulse Widths
- Schmitt Trigger input on A and B inputs
- Retrigger Time is independent of C_x.

The RCA-CD54/74HC4538 and CD54/74HCT4538 are dual retriggerable/resettable monostable precision multivibrators for fixed voltage timing applications. An external resistor (Rx) and an external capacitor (Cx) control the timing and the accuracy for the circuit. Adjustment of Rx and Cx provides a wide range of output pulse widths from the Q and $\overline{\bf Q}$ terminals. The propagation delay from trigger input-to-output transition and the propagation delay from reset input-to-output transition are independent of Rx and Cx.

Leading-edge triggering (A) and trailing edge triggering (\overline{B}) inputs are provided for triggering from either edge of the input pulse. An unused "A" input should be tied to Gnd and an unused \overline{B} should be tied to V_{CC}. On power up the IC is reset. Unused resets and sections must be terminated. In normal operation the circuit retriggers on the application of each new trigger pulse. To operate in the non-retriggerable mode $\overline{\Omega}$ is connected to \overline{B} when leading edge triggering (A) is used or Ω is connected to A when trailing edge triggering (\overline{B}) is used. The period (τ) can be calculated from $\tau = (0.7) R_x C_x$; R_{min} is 5k ohms. C_{min} is 0 pF.

The CD54HC/HCT4538 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT4538 are supplied in 16-lead dual-in-line plastic packages (E suffix), also in 16-lead dual-in-line surface mount plastic packages (M suffix). The CD54/74HC/HCT4538 are also available in chip form (H suffix).

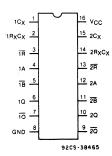
Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation

High Noise Immunity:

 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5~V$

■ CD54HCT/CD74HCT Types:


4.5 to 5.5 V Operation

Direct LSTTL Input Logic Compatibility

 $V_{\rm IL}=0.8~V$ Max., $V_{\rm IH}=2~V$ Min.

CMOS Input Compatibility

 $I_1 \leq 1 \ \mu A \ @ \ V_{OL}, \ V_{OH}$

TERMINAL ASSIGNMENT

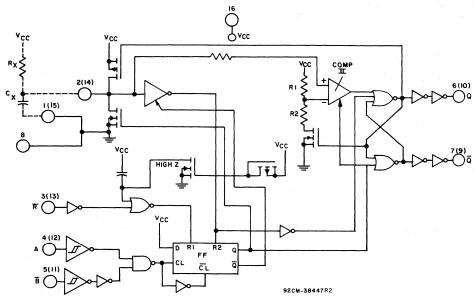
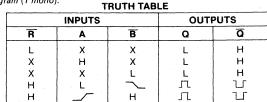
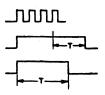



Fig. 1 - Logic diagram (1 mono).

	VCC THE P P P P P P P P P P P P P P P P P P P	
--	---	--

H = High Level
L = Low Level
= Transition from Low to High
= Transition from High to Low
√ = One High Level Pulse
Lf = One Low Level Pulse
X = Irrelevant


	HC/H	CT4538 FUN	CTIONAL TE	RMINAL CO	NNECTIONS				
FUNCTION	1	V _{cc} TO TERM. NO.		d TO M. NO.		PULSE RM. NO.	OTHER CONNECTIONS		
	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	
Leading-Edge Trigger/ Retriggerable	3, 5	11, 13			4	12			
Leading-Edge Trigger/ Non-Retriggerable	3	13			4	12	5-7	11-9	
Trailing-Edge Trigger/ Retriggerable	3	13	4	12	5	11			
Trailing-Edge Trigger/ Non-Retriggerable	3	13			5	11	4-6	12-10	

NOTES

- A RETRIGGERABLE ONE-SHOT MULTIVIBRATOR HAS AN OUTPUT PULSE WIDTH WHICH IS EXTENDED ONE FULL TIME PERIOD (T) AFTER APPLICATION OF THE LAST TRIGGER PULSE.
- 2. A NON-RETRIGGERABLE ONE-SHOT MULTIVIBRATOR HAS A TIME PERIOD (T) REFERENCED FROM THE APPLICATION OF THE FIRST TRIGGER PULSE.

INPUT PULSE TRAIN

RETRIGGERABLE MODE PULSE WIDTH (A MODE) NON-RETRIGGERABLE MODE PULSE WIDTH (A MODE)

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	
*DC INPUT DIODE CURRENT, I_{IK} (FOR $V_i < -0.5\ V$ OR $V_i > V_{CC} + 0.5\ V)$ $\dots \dots \dots$	±20mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E. M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Roard (min. thickness 1/16 in. 1.59 mm)	
with solder contacting lead tips only	+300° C
*DC INPUT CURRENT FOR C _x R _x PIN = 30 mA	

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LII		
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	l v
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage V _I , V _O	0	V _{cc}	V
Operating Temperature T _A :			
CD74 Types	-40	+85	l ∘c
CD54 Types	-55	+125	
Input Rise and Fall Times t _r , t _f			
Reset Input			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	
Trigger Inputs	*.		
A or B		-	
at 2 V	0	Unlimited	
at 4.5 V	0	Unlimited	ns
at 6 V	0	Unlimited	
External Timing Resistor, R _x	5kΩ	#	
External Timing Capacitor, C _x	0	#	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

[#]The maximum allowable values of R_x and C_x are a function of leakage of capacitor C_x , the leakage of the HC4538, and leakage due to board layout and surface resistance. Values of R_x and C_x should be chosen so that the maximum current into pin 2 or pin 14 is 30 mA. Susceptibility to externally induced noise signals may occur for $R_x > 1$ $M\Omega$.

STATIC ELECTRICAL CHARACTERISTICS

	TEST				CD74HC4538/CD54HC4538											CD74HCT4538/CD54HCT4538								
	IDITIONS		74HC/54HC 74HC 54HC TYPE TYPE TYPE C		TEST 74HCT/54HCT CONDITIONS TYPE								54HCT TYPE											
V,	l _o m≜	Vcc		+25° C	:		0/ 5° C	-5 +12		V,	Vcc	•	+25° C	;		0/ 5° C		5/ 5° C	UNITS					
•		•	Min	Тур	Max	Min	Max	Min	Max		ľ	Min	Тур	Max	Min	Max	Min	Max						
		2	1.5	_	-	1.5	-	1.5	-		4.5													
		4.5	3.15	_	-	3.15	_	3.15	_	1 -	to	2		-	2	_	2	-	v					
		6	4.2	_	_	4.2	_	4.2	_	1	5.5													
		2	-	_	0.5	_	0.5	-	0.5		4.5													
		4.5	-	_	1.35	-	1.35	_	1.35] _	to	_	_	0.8	_	0.8	_	0.8	V					
		6	_	_	1.8	_	1.8	_	1.8	1	5.5					١.								
VıL		2	1.9	_		1.9	-	1.9	_	V _{IL}														
or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	-	v					
V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IM}	l													
V _{IL}										V _{IL}														
or	-4	4.5	3.98	_	_	3.84	<u> </u>	3.7	_	or	4.5	3.98	_	_	3.84		3.7	-	v					
V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}														
V _{IL}		2	-	_	0.1	_	0.1	_	0.1	Vil														
or	0.02	4.5	_	_	0.1	-	0.1	_	0.1	or	4.5			-0,1	_	0.1	-	0.1	v					
V _{IH}		6	_	_	0.1	-	0.1	-	0.1	V _{iH}			,											
V _{IL}										ViL														
or	4	45	_	-	0.26	_	0.33	_	0.4	or	4.5	- "	-	0.26	-	0.33	-	0.4	v					
V _{IH}	5.2	6	_	_	0.26	-	0.33	_	0.4	V _{IH}														
V _{cc}		6			+0.1		+1		+1	Any Voltage	5.5			+0.1		+1	_	+1	μА					
or Gnd		6	-	_	±0.05	-	±0.5	-	±0.5	Between V _{cc} & Gnd	5.5		-		┼	±0.5	-	±0.5	μА					
V _{cc}						<u> </u>			-															
or	0	6	_	_	8	_	80	_	160	or	5.5	_	_	8	_	80	_	160	μА					
Gnd										Gnd					-									
Vcc		†								Vcc														
or	0	6	_	_	0.6	l _	0.8	_	1	or	5.5	_	_	0.6	_	0.8	_	1	mA					
Gnd										Gnd														
,		1	i		L	L	L	1			4.5						_							
										V _{cq} -2.1	to	-	100	360	-	450	-	490	μΑ					
	VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF OF GIND VCC OF GIND VCC OF GIND VCC OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL OF VIL O	V mA VIL	V mA V 2 4.5 6 2 4.5 6 V _{1L} 2 or -0.02 4.5 V ₃₊₁ 5.2 6 V _{1L} 0r -4 4.5 V ₃₊₁ 5.2 6 V _{1L} 0r 4 4.5 V ₃₊₁ 0r 4 4.5 V ₃₊₁ 0r 4 4.5 V ₃₊₁ 0r 4 4.5 V ₃₊₁ 0r 4 4.5 V ₃₊₁ 0r 6 V ₄ 0r 6 0r 6 Gnd 6 V ₅ 0r 0 6 Gnd V ₅ 0r 0 6	V mA V min 2 1.5 4.5 3.15 6 4.2 2 4.5 6 V _{1,}	V mA V Min Typ 2 1.5 — 4.5 3.15 — 6 4.2 — 2 — — 4.5 — — 6 — — V _{II} — — Or — 4.5 3.98 — V _{II} — — — Or — 4.5 3.98 — V _{II} — — — Or — — — V _{II} — — — V _{II} — — — V _{II} — — — V _{II} — — — V _{II} — — — V _{II} — — — V _{II} — — — V _{II} — — — V _{II}	V mA V min Typ max 2 1.5	V mA V min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Min Typ Mi	V Min Typ Max Min Max 2 1.5 — — 1.5 — 4.5 3.15 — — 3.15 — 6 4.2 — — 4.2 — 2 — — 0.5 — 0.5 4.5 — — 1.35 — 1.35 6 — — 1.8 — 1.35 6 — — 1.8 — 1.35 6 — — 1.8 — 1.35 6 — — 1.8 — 1.35 7 — 1.8 — — 1.35 8 — — 1.8 — 1.35 9 — — 1.8 — 1.8 1.8 — — 1.8 — — 1.8 — — — 5.9 <td>V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min</td> <td>V mA V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Image: Control of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of</td> <td>V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min</td> <td>V mA V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Min Min Max Min Min Min Min Min Min Min Min Min Min Min Min Min</td> <td>V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min</td> <td> Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max</td> <td> Min Typ Max Min Max Min Max Max Max Min Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max</td> <td> V</td> <td> Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max</td> <td> Name</td> <td> Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max</td>	V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min	V mA V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Image: Control of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of the point of	V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min	V mA V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Min Min Max Min Min Min Min Min Min Min Min Min Min Min Min Min	V Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min	Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max	Min Typ Max Min Max Min Max Max Max Min Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max Max	V	Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max	Name	Min Typ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max					

HCT Input Loading Table

Input	Unit Loads*
All	0.5

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{cc} = 5.5 V) specification is 1.8 mA.

When testing I_{IL} the Q output must be high. If Q is low (device not triggered) the pull-up P device will be ON and the low resistance path from V_{DD} to the test pin will cause a current far exceeding the specification.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, input t_s , $t_t = 6 \text{ ns}$)

CHARACTERISTIC		CL	TYP	ICAL	UNITS
CHARACTERISTIC		(pF)	54/74HC	54/74HCT	UNITS
Propagation Delay					
A, \overline{B} to Q	t _{PLH}	15	21	23	ns
A, B to Q	t _{PHL}	15	21	23	ns
R to Q	t _{PHL}	15	21	17	ns
R to Q	t _{PLH}	15	21	21	ns
Power Dissipation Capacitance	C _{PD} *		136	134	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per one shot.

V_{cc} = supply voltage.

assuming $f_i \ll \frac{\perp}{\tau}$

PREREQUISITE FOR SWITCHING FUNCTION

								LIM	IITS						
				25°	°C		-4	0° C t	o +85°	С	-55	° C to	+125	° C	
CHARACTERISTIC	SYMBOL	V _{cc}	HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Input Pulse Widths		2	80	_	_	_	100	—	_	T	120		_	_	
A, B	twn	4.5	16	-	16	-	20	_	20	-	24	-	24	_	ns
	twL	6	14	_	_	_	17	_	_	_	20	_	_	_	
		2	80	_			100	T -	_	_	120	_	Ī-	_	
R	twL	4.5	16	_	20	_	20	-	25	-	24	_	30	_	ns
		6	14	_	_	_	17	—	_	_	20	_	_	 	
Reset Recovery		2	5	_		_	5	_	_	_	5	_	_	_	
Time	t _{REC}	4.5	5	_	5		5		5	-	5	-	5	 	ns
		6	5	_	_		5	_	_		5			_	
Retrigger Time				Тур	ical										
(See Fig. 5)	t _{rr}	5		17	75	-									ns

 $P_D = (C_{PD} + C_x) V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where:

f_i = input frequency.

fo = output frequency.

C_L = output load capacitance.

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t_n t_f = 6 ns)

				25	°C		-4	0°C t	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	CT	74	НС	74F	ICT		НС	54F		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	-
Propagation Delay,	t _{PLH}	2		250	_	_	_	315	_	_	_	375	_	_	
A, B to Q	1 - 4.	4.5	_	50	_	55	_	63	_	69		75		83	ns
		6		43	_	_	-	54	l —	_	_	64		_	
		,2	-	250	_	_		315		_	_	375	_		
A, B to Q	t _{PHL}	4.5	-	50	_	55	-	63	_	69	_	75	_	83	ns
		6	-	43			_	54	_		_	64	_		
		2	_	250		I	_	315	_	_	I —	375		_	
\overline{R} to Q	t _{PHL}	4.5	l –	50	l —	40	-	63	—	50	· —	75	_	60	ns
		6	_	43	_	_	_	54	_		_	64	_	_	
		2	_	250	_	_	_	315	_	_		375	_	_	
R to Q	t _{PLH}	4.5		50	_	50	_	63	_	63	—	75		75	ns
		6		43		_	_	54			l —	64	_	_	
Output	t _{TLH}	2	_	75	_	_	_	95		_	_	110	_		
Transition Time	t _{THL}	4.5		15	-	15	—	19		19	_	22		22	ns
		6		13	_	_	_	16	_	-		19	_	_	
Output Pulse		3	0.64	0.78	_	_	0.612	0.812		_	0 605	0.819			
Width	τ	5	0.63	0.77	0.63	ı			1		l .	0.805	1	0.005	ms
$R_x=10\Omega$, $C_x=0.1 \mu F$			0.00	0.77	0.00	0.77	0.002	0.790	0.002	0.790	0.595	0.605	0.595	0.605	1115
Output Pulse Width															
Match, Same Pkg.				Тур	± 1%										
Input Capacitance	Ci		_	10	_	10	_	10	_	10	_	10	_	10	pF

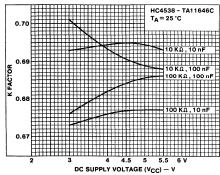


Fig. 2 - K Factor Vs DC Supply Voltage (Vcc)-V.

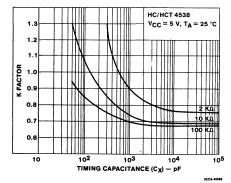


Fig. 4 - K Factor Vs Cx.

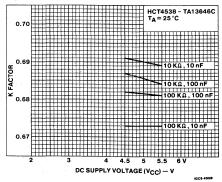


Fig. 3 - K Factor Vs DC Supply Voltage (Vcc)-V.

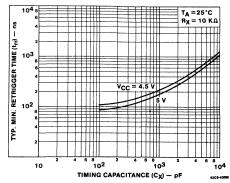
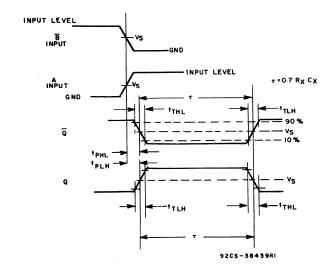
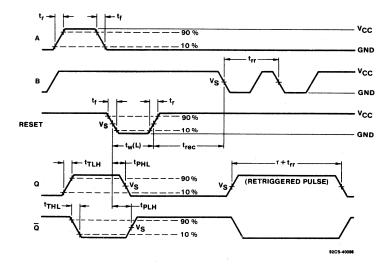




Fig. 5 - Minimum Retrigger Time Vs Timing Capacitance.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% VCC	1.3 V

Fig. 6 — Switching Waveforms

Power-Down Mode

During a rapid power-down condition, as would occur with a power-supply short circuit or with a poorly filtered power supply, the energy stored in C_X could discharge into Pin 2 or 14. To avoid possible device damage in this mode, when C_X is ≥ 0.5 microfarad, a protection diode with a 1-ampere or higher rating (1N5395 or equivalent) and a separate ground return for C_X should be provided as shown in Fig. 7.

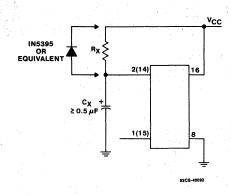


Fig. 7 — Rapid power-down protection circuit.

An alternate protection method is shown in Fig. 8, where a 51-ohm current-limiting resistor is inserted in series with $C_{\rm x}$. Note that a small pulse width decrease will occur however, and $R_{\rm x}$ must be appropriately increased to obtain the originally desired pulse width.

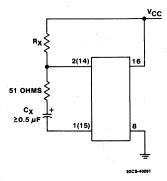
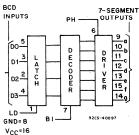



Fig. 8 — Alternate rapid power-down protection circuit.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

BCD-to-7 Segment Latch/ Decoder/Driver for LCDs

b

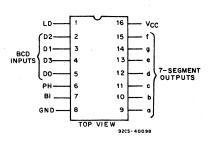
Type Features:

- Input latches for BCD code storage
- Blanking capability
- Phase input for complementing outputs

The RCA CD54/74HC4543 and CD54/74HCT4543 high-speed silicon-gate devices are BCD-to-7 segment latch/decoder/drivers designed primarily for directly driving liquid-crystal displays. They have an active-high disable input (LD), an active high blanking input (BI) and a phase input (PH) to which a square wave is applied for liquid-crystal applications. This square wave is also applied to the backplane of the liquid-crystal display.

These devices can also be used, in conjunction with current amplifying devices, for driving LEDs, incandescent, fluorescent, and gas-discharge displays. For these applications the phase input provides a means for obtaining active-high or active-low segment outputs. (See Function Table.)

The CD54HC/HCT4543 are supplied in 16-lead ceramic dual-in-line frit-seal packages (F suffix). The CD74HC/HCT-4543 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).


Family Features:

- Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity:
- N_{IL}=30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V ■ CD54HCT/CD74HCT types: 4.5 to 5.5 V operation
- Direct LSTTL input logic compatibility V_{IL} =0.8 V max., V_{IH} =2 V min. CMOS input compatibility $I_{I} \le 1 \mu A @ V_{OL} V_{OH}$

FUNCTION TABLE

		11	NPUT	S					OI	JTPU	TS			DISPLAY
LD	BI	PH	D3	D2	D1	DO	a	b	C.	d	е	f	g	DISPLAT
Х	Н	L	Х	Х	Х	Х	L	L	L	L	L	L	L	Blank
н	L	L	L	L	L	L	н	Н	н	Н	н	Н	L	0
н	L	L	L	L	L	н	L	н	н	L	L	L.	L	1
н	L	L	L	L	Η.	L	н	н	L	н	н	L	н	2
н	L	L	L	Ł	н	н	н	н	H	н	L	L	· H	3
н	L	L	L	н	Ĺ	L	L	н	н	L	L	н	н	4
н	L	L	L	н	L	н	н	L	н	н	L	н	н	5
н	L	L	L	н	н	L	н	L	н	н	н	н	н	6
н	L	L	L	н	н	н	н	н	н	L	L	L	L	7
н	L	L	н	L	L	L	н	н	н	н	н	н	н	8
н	L	L	н	L	L	н	н	н	н	н	Ł	н	н	9
н	L	L	н	L	н	L	L	L	L	L	L	L	L	Blank
H	L	L	н	L	. н	н	L	L	L	L	L	L	L	Blank
н	L	L	н	н	L	L	L	L	L	L	L	L	L	Blank
н	L	L	н	н	L	н	L	L	L	L	L	L	L	Blank
н	L	L	Н	н	н	L	L	L	L	L	L	L	L	Blank
н	L	L	н	н	н	н	L	L	L	L	L.	L	L	Blank
L	L	L	X		. X	Х	x							
as a	bove	Н		as a	bove	inverse of above as above						as above		

^{**}Depends upon the BCD code previously applied when LD = High.

TERMINAL ASSIGNMENT

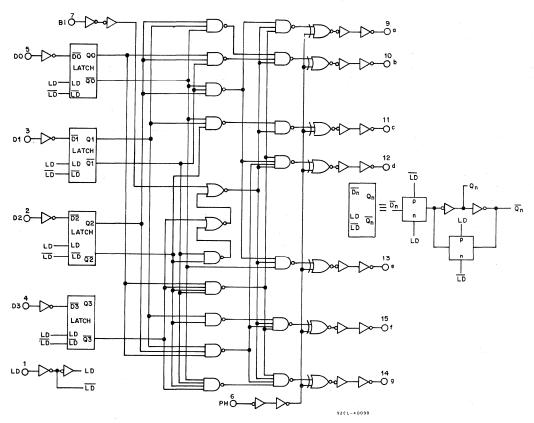


Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE, (V_{CC}):

BO SOFF ET-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	-0.5 to +7 V
DC INPUT DIODE CURRENT, I_{ik} (FOR $V_i < -0.5$ V OR $V_i > V_{cc} + 0.5$ V)	+20 mΔ
DC OUTPUT DIODE CURRENT, l_{OK} (FOR $V_o < -0.5$ V OR $V_o > V_{cc} + 0.5$ V)	+20 mΔ
DC DRAIN CURRENT, PER OUTPUT (I_o) (FOR -0.5 V $<$ V _o $<$ V _{cc} +0.5 V)	+25 mΔ
DC V _{cc} OR GROUND CURRENT (I _{cc})	±50 mA
FOWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
FOR TA = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
FOI 1455 to +100°C (PACKAGE TYPE F,H)	500 mW
101 14 - +100 to +125 C (PACKAGE TYPE F,H)	Derate Linearly at 8 mW/°C to 300 mW
TOT TA40 TO TO C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OFERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F.H	-55 to +125° C
PACKAGE TYPE E,M	-40 to ±85° C
OTORAGE TEMPERATURE (1stg)	65 to ±150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	+36E0 C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	+203 C
with solder contacting lead tips only	13000 C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII	VITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			
V _{cc} :*			
CD54/74HC Types	2	6	l v
CD54/74HCT Types	4.5	5.5	\ \ \
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	-0
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input t,t=6 ns)

			TYPICAL		
CHARACTERISTIC		C _L (pF)	HÇ	нст	UNITS
Propagation Delay:	t _{PLH}	4.5	00	00	
D _n to Output	t _{PHL}	15	28	33	
	t _{PLH}	15	31	32	
LD to Output	t _{PHL}	15	31	32	-
	t _{PLH}	15	22	27	- ns
BI to Output	t _{PHL}	15	22	21	
	t _{PLH}	15	17	27	
PH to Output	t _{PHL}	15	17	21	
Power Dissipation Capacitance*	CPD	_	52	54	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{CC}^2 fi + \Sigma C_L V_{CC}^2 f_0$ where f_i = input frequency

fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage.

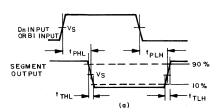
PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM	ITS						
		TEST		25	°C		-4	0°C t	o +85°	°C	-5]			
CHARACTERIS	STIC	CONDITIONS	HC		HC HC		T 74HC		C 74HCT		54HC		54HCT		UNITS
		V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Setup Time,	tsu	2	60	_	_	_	75	_	_	_	90	_	_	_	
D _n to LD		4.5	12	_	12	_	15	-	15	_	18	_	18		
		6	10	-	_	-	13		 	_	15	l —	_		
Hold Time,	tн	2	30	_		_	40	_	_	_	45	-	_	T-	1
D _n to LD		4.5	6	_	8	_	8		10	l —	9	_	12	_	ns
		6	5	_	l —	l –	7	_		_	8	_	l —	-	
Latch Disable		2	50	_		_	65	T	_	_	75	_	_	_	1
Pulse Width,	tw	4.5	10	_	10	l —	13	l — :	13	_	15	_	15	_	
		6	9	-	_	_	11	_	_	_	13		l –	_	

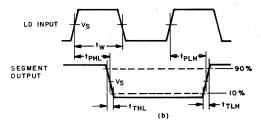
STATIC ELECTRICAL CHARACTERISTICS

			CD7	4HC4	543/C	:D54H	IC454	3				CD74	HCT4	543/C	D54F	ICT4	543			
		TEST IDITIOI	NS	l · ···	74HC/54HC TYPES			74HC 54HC TYPES TYPES		TEST CONDITIONS		74HCT/54HCT TYPES			74HCT TYPES		54HCT TYPES			
CHARACTERISTIC	Vı	lo lo	Vcc		+25° C		-40/ +85°C		1 -	5/ 5°C	V ₁	Vcc	+25° C		;	-40/ +85°C		-55/ +125°C		UNITS
	٧	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	-	_	1.5	-	1.5	_		4.5				T	T-			
Input Voltage V _{IH}		1.	4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	_	-	2	l –	2	-	V
			6	4.2	_	_	4.2	_	4.2	_		5.5				L	L			
Low-Level			2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage V _{IL}			4.5	_	_	1.35		1.35	_	1.35	_	to	-	-	0.8	-	0.8	-	0.8	V
			6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level	ViL		2	1.9	_	_	1.9	_	1.9	_	VIL									N 14
Output Voltage V _{OH}	or	-0.02	4.5	4.4	-	_	4.4		4.4	_	or	4.5	4.4	-	-	4.4	-	4.4	-	V
CMOS Loads	VIH		6	5.9	_	_	5.9	_	5.9	-	V _{IH}					L	<u> </u>			
	VIL										VIL				ĺ	1	1			
TTL Loads	or	-1	4.5	3.98	_	<u> </u>	3.84	_	3.7	_	. or	4.5	3.98	_	-	3.84	-	3.7	-	V
Non-Standard Output	V _{IH}	-1.3	6	5.48	_	_	5.34	_	5.2	_	V _{IH}		<u> </u>		<u> </u>	<u> </u>	<u> </u>			
Low-Level	VIL		2	<u> </u>	_	0.1	_	0.1	_	0.1	VIL					[
Output Voltage Vol	or	0.02	4.5		_	0.1	_	0.1	_	0.1	or	4.5	-	_	0.1	-	0.1	-	0.1	V
CMOS Loads	V _{IH}		6		_	0.1	_	0.1	_	0.1	V _{IH}		<u> </u>		Ŀ	<u> </u>	<u> </u>			
	VIL		L	<u> </u>	<u> </u>		L		<u> </u>		VIL		1	İ	1	1			١	
TTL Loads	or	1	4.5	=	_	0.26	_	0.33	느	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	V
Non-Standard Output	V _{IH}	1.3	6	_	_	0.26	二	0.33	_	0.4	V _{IH}		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		
Input Leakage	Vcc										Any				١					
Current I ₁	or		6	_	_	±0.1	_	±1	_	±1	Voltage	5.5	_	_	±0.1	_	±1	_	±1	μΑ
	Gnd										Between						1			
	 			<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-	V _{cc} & Gnd		├	<u> </u>	├	<u> </u>	├	├	<u> </u>	
Quiescent	Vcc	١.	١.			١.					Vcc									
Device Current Icc	or	0	6	-	-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
Additional	Gnd		<u> </u>	L		L	L	L	<u> </u>		Gnd	-	\vdash		-		-			
Additional												4.5	1							
Quiescent Device											V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ
Current per input	İ											5.5							l	
pin: 1 unit load Δlcc*														L	1		L		L	

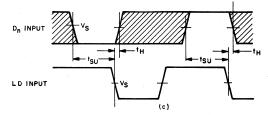
^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.


HCT Input Loading Table

Input	Unit Loads*
D0, D1, D2	1
D3, BI	0.5
PH	1.25
LD	1.5


^{*}Unit Load is Δ loc limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25°C.

SWITCHING CHARACTERISTICS (CL=50 pF, Input tr, tr=6 ns)


								LIN	IITS					1. 1	
				25	°C		-4	0°C t	o +85°	°C	-5	°C]		
CHARACTERIS	STIC	Vcc	Н	IC	Н	CT	74	НС	74F	ICT	54	HC	54F	ICT	UNITS
**			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2	I -	340	_	—	_	425	_	_	_	510	_	_	
D _n to Output	tPHL	4.5	-	68		80	—	85	_	100	-	102	— ·	120	ns
		6	-	58	_	_	l –	72	—	—	_	87	— ·	_	
	t _{PLH}	2	—	370	_	_	—	465		_	_	555	_	_	
LD to Output	t _{PHL}	4.5	-	74	_	77	—	93	_	96	l –	111	—	116	ns
•		6	-	63	_	-	1-	79	_	_	_	94	_	_	
	t _{PLH}	2	1-	265		_	_	330	_	_	_	400	-	_	
BI to Output	tehl	4.5	_	53	_	66	l —	66	-	83	 	80	_	99	ns
		6		45	_	_	—	56	_		 	68	_	l –	
	t _{PLH}	2	 	200	_	_	_	250	_		_	300	_	_	
PH to Output	tpHL	4.5	-	40	_	66	l —	50	_	83	_	60	— ·	99	ns
		6	_	34	_	_	l –	43	_	_	_	51		_	
	t _{TLH}	2	_	250	_		T -	315	_			375	_	T-	
Transition Time	t _{THL}	4.5		50		50	l —	63	_	63	 	75		75	ns
		6	_	43	_	_	l —	54	_		l —	64	_	_	
Input Capacitance	Cı		T -	10	-	10	_	10	_	10	T -	10	_	10	pF

(a) WAVEFORMS SHOWING THE ADDRESS AND BLANKING (Dn. BI) TO OUTPUT PROPAGATION DELAYS AND THE OUTPUT TRANSITION TIMES.

(b) WAVEFORMS SHOWING THE LATCH DISABLE INPUT (LD) TO OUTPUT PROPAGATION DELAYS AND THE OUTPUT TRANSITION TIMES.

NOTE: THE SHADED AREAS INDICATE WHEN THE INPUT IS PERMITTED TO CHANGE FOR PREDICTABLE OUTPUT PERFORMANCE.

(C) WAVEFORMS SHOWING THE ADDRESS (D_n) TO LATCH DISABLE (LD) INPUT SET-UP AND HOLD TIMES.

92CM-40103

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

Fig. 2 - AC waveforms.

APPLICATION CIRCUITS

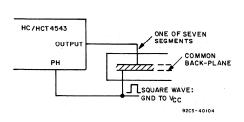


Fig. 3 - Connection to liquid-crystal (LCD) display readout.

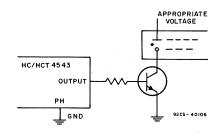


Fig. 5 - Connection to gas-discharge display readout.

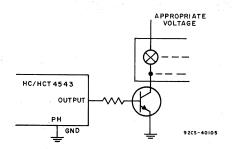


Fig. 4 - Connection to incandescent display readout.

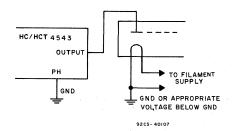
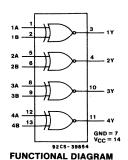



Fig. 6 - Connection to fluorescent display readout.

High-Speed CMOS Logic

Quad 2-Input Exclusive-NOR Gate

Type Features:

- Four independent Exclusive-NOR gates
- Buffered inputs and outputs

Applications

- Logical comparators
- Parity generators and checkers
- Adders/Subtracters

The RCA CD54/74HC7266 contains four independent EXCLUSIVE-NOR gates in one package. They provide the system designer with a means for implementation of the EXCLUSIVE-NOR function.

This device is functionally the same as the TTL226. They differ in that the HC7266 has active high and low outputs whereas the 226 has open collector outputs.

The CD54HC7266 is supplied in 14-lead ceramic dual-inline packages (F suffix). The CD74HC7266 is supplied in 14-lead plastic dual-in-line package (E suffix), in a 14-lead dual-in-line surface-mount plastic package (M-suffix), and is also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- 2 to 6 V Operation
- High Noise Immunity: $N_{IL} = 30\%$, $N_{IH} = 30\%$ of V_{CC} , @ $V_{CC} = 5$ V
- CMOS Input Compatibility I_I, ≤ 1 µA @ V_{OL}, V_{OH}

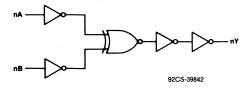


Fig. 1 - Logic diagram each gate.

TRUTH TABLE

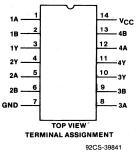
INP	UTS	OUTPUT
nA	nB	nY
L	L	Н
L	Н	L
Н	L.	L
Н	н -	Н

H = HIGH voltage level.

L = LOW voltage level.

CD54/74HC7266

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR V_I <-0.5 V OR V_I > V_{CC} + 0.5 V)	±20mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} + 0.5$ V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V $<$ V _o $<$ V _{cc} $+$ 0.5 V)	±25mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIM	ITS			
CHARACTERISTIC	MIN.	MAX.	UNITS		
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :*	2	6	V		
DC Input or Output Voltage V _I , V _O	0	Vcc	V		
Operating Temperature T _A : CD74 Types CD54 Types	-40 -55	+85 +125	°C		
Input Rise and Fall Times t _r , t _f at 2 V at 4.5 V at 6 V	0 0 0	1000 500 400	ns		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

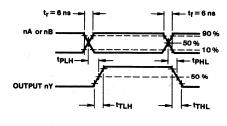
TERMINAL ASSIGNMENT

CD54/74HC7266

STATIC ELECTRIC CHARACTERISTICS

				(CD54/	74HC	7266					
CHARACTERISTIC		cc	TEST NDITIO	NS		HC/54 TYPE:		74HC TYPE			HC PE	UNITS
		V _i	lo	V _{cc}		+25°(>		10/ 5°C		5/ 5°C	
		V	mA	V	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
				2	1.5		_	1.5	_	1.5	_	
High-Level Input Voltage	V_{1H}			4.5	3.15	_	_	3.15	_	3.15	_] v
				6	4.2	_	_	4.2	_	4.2	_	
				2		_	0.5	-	0.5	_	0.5	
Low-Level Input Voltage	VIL			4.5	I —	_	1.35	_	1.35	_	1.35] v .
				6	_	_	1.8		1.8	_	1.8	
		VIL		2	1.9	_	_	1.9	_	1.9	_	
High-Level Output Voltage	V_{OH}	or	-0.02	4.5	4.4	-	_	4.4	_	4.4		V
CMOS Loads		V _{IH}		6	5.9		_	5.9	_	5.9	_	
TTL Loads		V _{IL} or	-4	4.5	3.98	_	-	3.84	_	3.7	_	V
		V _{IH}	-5.2	6	5.48	_		5.34		5.2	_	
		VIL		2		_	0.1	-	0.1	-	0.1	
Low-Level Output Voltage	V_{OL}	or	0.02	4.5	_	_	0.1		0.1	_	0.1] v
CMOS Loads		V _{IH}		6	_		0.1	_	0.1	_	0.1	
TTL Loads		V _{IL} or	4	4.5	-	_	0.26	_	0.33	_	0.4	v
		V _{IH}	5.2	6		_	0.26	_	0.33		0.4	1 *
Input Leakage Current	lı	V _{cc} or Gnd		6 —	_	_	±0.1	_	±1 —	_	±1	μΑ
Quiescent Device Current	Icc	V _{cc} or Gnd	0	6	_	_	2		20	_	40	μΑ

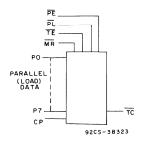
SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, Input t_r, t_f = 6 \text{ ns}$)


CHARACTERISTIC		C∟ pF	TYPICAL VALUES 54/74HC	UNITS
Propagation Delay, Any Input	t _{PLH} t _{PHL}	15	9	ns
Power Dissipation Capacitance*	C _{PD}		33	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per gate. $P_D = V_{CC}^2$ fi $(C_{PD} + C_L)$ where: f_i = input frequency. C_L = output load capacitance. V_{CC} = supply voltage.

SWITCHING CHARACTERISTICS (C $_{\!\scriptscriptstyle L}=50$ pF, Input $t_{\!\scriptscriptstyle r},\,t_{\!\scriptscriptstyle f}=6$ ns)

			25	°C	-40°C t	o +85°C	-55°C to	UNITS	
CHARACTERISTIC		V _{cc}	H	IC	74	НС	54		
			Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH} , t _{PHL}	2	_	115	_	145	_	150	
		4.5	-	23	<u> </u>	29	_ '	35	ns
		6	_	30	_	25		30	
Output Transition Time	t _{TLH} , t _{THL}	2	_	75	_	95	_	110	
		4.5	-	15		19	_	22	ns
		6	_	13	_	16	-	19	
Input Capacitance	Cı	-	_	10	_	10	_	10	pF


CD54/74HC7266

92CS-3843OR2

Fig. 2 - Transition times and propagation delay times.

High-Speed CMOS Logic

8-Stage Synchronous Down Counters

40102 - 2-Decade BCD Type 40103 - 8-Bit Binary Type

Type Features:

- Synchronous or asynchronous preset
- Cascadable in synchronous or ripple mode

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC40102, 40103 and CD54/74HCT40102, 40103 are manufactured with high speed silicon gate technology and consist of an 8-stage synchronous down counter with a single output which is active when the internal count is zero. The 40102 is configured as two cascaded 4-bit BCD counters, and the 40103 contains a single 8-bit binary counter. Each type has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the TC output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK (CP). Counting is inhibited when the $\overline{\text{TE}}$ input is high. The $\overline{\text{TC}}$ output goes low when the count reaches zero if the $\overline{\text{TE}}$ input is low, and remains low for one full clock period.

When the \overline{PE} input is low, data at the P0-P7 inputs are clocked into the counter on the next positive clock transition regardless of the state of the \overline{TE} input. When the \overline{PL} input is low, data at the P0-P7 inputs are asynchronously forced into the counter regardless of the state of the \overline{PE} , \overline{TE} , or CLOCK inputs. Input P0-P7 represent two 4-bit BCD words for the 40102 and a single 8-bit binary word for the 40103. When the MR input is low, the counter is asynchronously cleared to its maximum count (99₁₀ for the 40102 and 225₁₀ for the 40103) regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except \overline{TE} are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 100 or 256 clock pulses long.

The $40\underline{102}$ and 40103 may be cascaded using the $\overline{\text{TE}}$ input and the $\overline{\text{TC}}$ output, in either a synchronous or ripple mode.

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 μA @ V_{OL}, V_{OH}

These circuits possess the low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits and can drive up to 10 LSTTL loads.

The CD54HC40102, 40103, and CD54HCT40102, 40103 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC40102, 40103 and CD74HCT40102, 40103 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + 7 V
DC INPUT DIODE CURRENT, I_{ik} (FOR $V_i < -0.5$ V OR $V_i > V_{cc} + 0.5$ V)	±20mA
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} + 0.5V)	
DC Vcc OR GROUND CURRENT (Icc)	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For T _A = +60 to +85° C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII		
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For TA = Full Package Temperature Range) VCC:*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage VI, Vo	0	Vcc	V
Operating Temperature TA:			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, tr, tr			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*}Unless otherwise specified, all voltages are referenced to Ground.

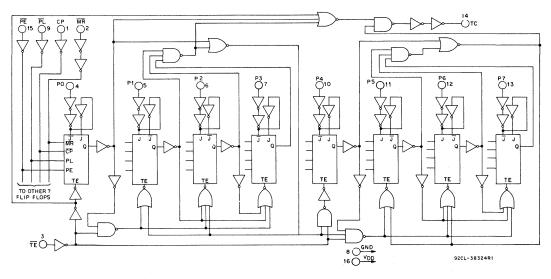


Fig. 1 - Logic diagram for the CD54/74HC/HCT40102.

TRUTH TABLE

C	ONTRO	L INPUT	s	PDECET	
MR	PL	PE	TE	PRESET MODE	ACTION
1	1	1	1		Inhibit Counter
1	1	1	0	0	Count Down
1	1	0	х	Synchronous	Preset On Next Positive Clock Transition
1	0	х	Х		Preset Asynchronously
0	Х	Х	Х	Asynchronously	Clear to Maximum Count

Notes:

- 1. 0 = Low Level 1 = High Level X = Don't Care
- 2. Clock Connected to Clock Input.
- 3. Synchronous operation: Changes Occur on Negative-to-Positive Clock Transitions.
- 4. Load Inputs: 40102 BCD: MSD = P7, P6, P5, P4 (P7 is MSB) LSD = P3, P2, P1, P0 (P3 is MSB)

40103 Binary: MSB = P7, LSB = P0

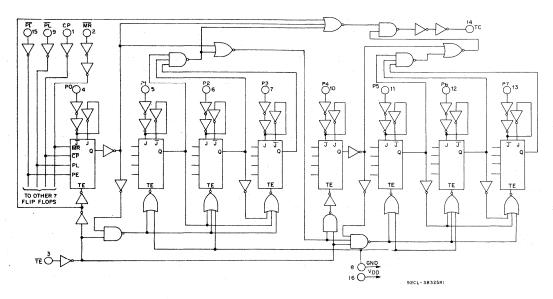
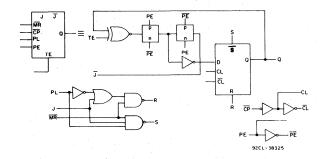



Fig. 2 - Logic diagram for the CD54/74HC/HCT40103.

Flip-Flop detail.

STATIC ELECTRICAL CHARACTERISTICS

			CD74H	C401	02-40	103/C	D54H	C401	02-40	103		CD74H	CT401	02-40	103/0	D54F	ICT4	0102-	40103	ı			
		i	TEST IDITIOI	vs	ł	IC/54 TYPE		741 TY		54H TY		TEST CONDITIO		1	74HCT/54HCT TYPE					ICT PE	1	ICT PE	UNITS
CHARACTERISTI	cs	V _i	l _o	Vcc	,	•25° C	;	-4 +85		-5: +12!		V,	Vcc		+25° C	÷		0/ 5° C	-55/ +125°C				
		٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max			
High-Level				2	1.5	_	_	1.5	_	1.5			4.5			 							
Input Voltage	VIH			4.5	3.15	_	_	3.15		3.15	-	_	to	2	_	_	2	l –	2	_	. v		
				6	4.2	_	_	4.2	-	4.2	_	-	5.5										
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5										
Input Voltage	V_{IL}			4.5	_	_	1.35		1.35		1.35	-	to	-	-	0.8	-	0.8	-	0.8	v		
-				6		_	1.8	_	1.8	-	1.8		5.5										
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	ViL											
Output Voltage	V _{OH}	or	-0.02	4.5	4.4	_	_	4.4		4.4	_	or	4.5	4.4	-		4.4	-	4.4	-	v		
CMOS Loads		V _{tH}		6	5.9	_	_	5.9	_	5.9	_	ViH											
		VIL	-									VIL											
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	cr	4.5	3.98	-	-	3.84	_	3.7	-	v		
Ţ		V _{tH}	-5.2	6	5.48	_		5.34	_	5.2	_	ViH											
Low-Level		VIL		2			0.1	_	0.1	_	0.1	ViL											
Output Voltage	V_{OL}	or	0.02	4.5	_	_	0.1		0.1	-	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	v		
CMOS Loads		VIH		6	_	_	0.1	_	0.1	_	0.1	ViH											
		VIL										VIL											
TTL Loads		or	4	4.5	_	_	0.26		0.33	_	0.4	or	4.5	-	-	0.26	-	0.33	_	0.4	v		
		ViH	5.2	6			0.26		0.33	_	0.4	ViH							<u> </u>				
Input Leakage Current	l _i	V _{cc} or Gnd		6		_	±0.1		±1	_	±1	Any Voltage Between V _{cc} and Gnd	5.5	_	_	±0.1	_	±1	_	±1	μΑ		
Quiescent Device Current	lcc	V _{cc} or Gnd	0	6	_	_	8	_	80	_	160	V _{cc} or Gnd	5.5	_	_	8	_	80	_	160	μΑ		
Additional Quiescent Device Current per Input Pin: 1 Unit Load	ΔΙςς.							<u> </u>				V _{cc} -2.1	4.5 to 5.5	-	100	360	_	450	_	490	μΑ		

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads *
<u>P0 - P7</u> TE, MR	0.20 0.40
CP PE PL	0.60 0.80
PL	1.35

^{*} Unit load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, Input t_r , t_f = 6 ns)

			TYPICAL		
CHARACTERISTIC	SYMBOL	C∟ (pF)	нс	нст	UNITS
Propagation Delay	t _{PHL}	4.5	0.5	0.5	ns
CP to TC (Sync. Preset)	t _{PLH}	15	25	25	
	t _{PHL}				ns
CP to TC (Async. Preset)	t _{PLH}	15	25	26	
	t _{PHL}				
TE to TC	t _{PLH}	15	17	21	ns
	t _{PHL}			-	
PL to TC	t _{PLH}	15	23	28	ns
1	t _{PHL}			-	
MR to TC	t _{PLH}	15	23	23	ns
CP Max. Frequency	f _{MAX} .	15	25	25	MHz
Power Dissipation Capacitance*	СРД	_	25	27	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

V_{cc} = supply voltage.

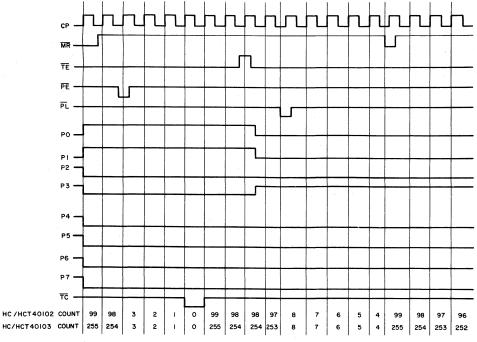


Fig. 3 - Timing diagram for HC/HCT40102 and HC/HCT40103.

 $P_D = C_{PD} V_{CC}^2 f_i + C_L V_{CC}^2 f_o$ where:

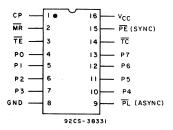
f_i = input frequency.

fo = output frequency.

C_L = output load capacitance.

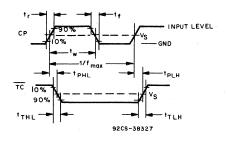
PREREQUISITE FOR SWITCHING FUNCTION

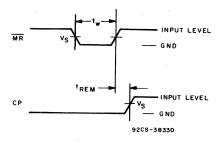
CHARACTERISTIC	SYMBOL	Vcc	25° C			-40°C to +85°C				-55°C to +125°C					
			HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
		2	165	_			205	_	_	_	250	-	_	_	
CP Pulse Width	t _w	4.5	33		35	_	41	_	44	l —	50	_	53		ns
		6	28				35	_	_	l —	43		_	_	
PL Pulse Width		2	125	_	_		155	_	_	_	190			_	
	tw	4.5	25	_	43		31	_	54	<u> </u>	38	_	65	_	ns
		6	21			_	26	l —	l —	—	32	_	_	_	
MR Pulse Width		2	125	_			135	_			190	_	—	_	
	tw	4.5	25	_	35	—	31		44	_	38	_	53	_	ns
		6	21			_	26		_		32				
CP Max. Frequency*		2	3	_		_	2	_	_	_	2		_	_	
	f _{CP(Max.)}	4.5	15		14	 	12	_	11	_	10		9	_	MHz
		6	18		_	_	14	_	_	-	12		l —	_	
P to CP Setup Time		2	100	T-		I —	125	_	_	_	150	-	_	_	
	t _{su}	4.5	20		24	—	25	_	30	_	30		36	_	ns
		6	17		_	_	21	_	l —	—	26	_	_	-	
PE to CP Setup Time		2	75	_	_		95	_	_	_	110	_	_	_	
	t _{su}	4.5	15	_	20	_	19		25	-	22	_	30		ns
		6	13				16			_	19	_	_	_	
TE to CP Setup Time		2	150	_	_	_	190			_	225	_	_	_	
	t _{su}	4.5	30	_	40	—	38		50		45	—	60	_	ns
		6	26		_	_	33	_	_	_	38	_	_	_	
P to CP Hold Time		2	5	_			5	_	_	_	5		_		
	t _H	4.5	5	_	5		5	_	5	—	5	-	5	_	ns
		6	5			_	5	_			5	_	_	_	-
TE to CP Hold Time		2	0	_	_	_	0		_		0	_	_	_	
	t _H	4.5	0	_	0	_	0	_	0	_	0		0		ns
		6	0		_		0	_	_	 	0	_		_	
MR to CP Removal Time		2	50	_	_	_	65	_	_	I -	75	Γ —	_	_	
	t _{REM}	4.5	10		10		13	_	13		15	_	15	_	ns
		6	9			_	11				13	_	_	_	
PE to CP Hold Time		2	2	_	_		2		_	_	2	_	_	_	
	t _H	4.5	2	_	2	_	2	-	2	_	2	—	2	-	ns
		6	2	-			2				2		_	_	

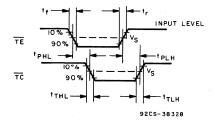

CD54/74HC40102, CD54/74HCT40102 CD54/74HC40103, CD54/74HCT40103

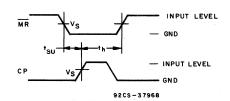
SWITCHING CHARACTERISTICS (CL = 50 pF, Input tr, tr = 6 ns)

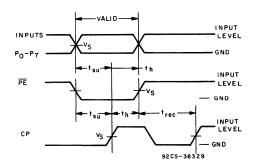
				25	°C		-4	0°C to	+85°	C	-5	5°C to	+125	°C .	
CHARACTERISTIC	SYMBOL	Vcc	Н	С	Н	CT	74	нс	74F	ICT	54	нс	54H	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2		300	_	_	_	375	_	_	_	450	_	_	
CP to TC	tpHL	4.5		60	_	60	_	75		75		90		90	ns
(Async Preset)		6		51		_	_	64	_	_		77	_		
		2		300	_	_	_	375	_	_	_	450	_	_	
CP to TC	t _{PLH}	4.5		60	_	63	_	75	_	79	_	90	_	95	ns
(Sync Preset)	t _{PHL}	6	_	51	_	_	_	64		_	_	77	_		
		2	_	200				250	_	_	_	300	_	_	
TE to TC	t _{PLH}	4.5		40		50	— <u>.</u>	50	_	63		60		75	ns
	t _{PHL}	6	_	34	_		_	43	_	_		51	_	_	
		2	_	275	_	_		345	_	_		415		_	
PL to TC	t _{PLH}	4.5		55	_	68	_	69	<u> </u>	85	_	83	_	102	ns
	t _{PHL}	6	_	47	_	_	-	59	_	_		71			
		2	_	275		_	_	345	_	_	_	415	_		-
MR to TC	t _{PLH}	4.5	_	55	_	55	_	69	_	69	· —	83		83	ns
	t _{PHL}	6	_	47	_		_	59	_			71		_	
		2	_	75	_	_	_	95		_	_	110	_	-	
Output Transition Time	t _{TLH}	4.5		15	_	15		19		19	-	22	_	22	ns
	t _{THL}	6		13		_	_	16	_	_		19			
Input Capacitance	Cı			10		10	_	10	_	10		10		10	pF

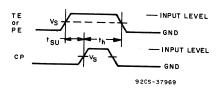

^{*}Noncascaded operation only. With cascaded counters clock-to-terminal count propagation delays, count enables (PE or TE)-to-clock SETUP TIMES, and count enables (PE or TE)-to-clock HOLD TIMES determine max. clock frequency. For example, with these HC devices:

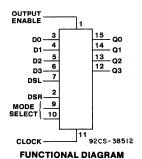

$$C_{P} f_{MAX} = \frac{1}{CP-to-\overline{TC} \text{ prop delay + } \overline{TE}-to-CP \text{ Setup Time + } \overline{TE}-to-CP \text{ Hold Time}} = \frac{1}{60+30+0} \approx 11 \text{ MHz}$$




TERMINAL ASSIGNMENT


CD54/74HC40102, CD54/74HCT40102 CD54/74HC40103, CD54/74HCT40103

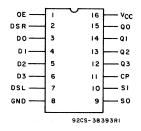




	CD54/74HC	CD54/74HCT
Input Level	Vcc	3 V
Vs	0.5 Vcc	1.3 V

Transition times, propagation delay times, setup and hold times, and removal times.

High-Speed CMOS Logic


4-Bit Universal Bidirectional Shift Register

Type Features:

- Four operating modes: shift right, shift left, hold and reset
- Three-state outputs
- Synchronous parallel or serial operation
- Typical f_{MAX} =50 MHz @ V_{CC} = 5 V, C_L = 15 pF, T_A = 25° C

The RCA-CD54/74HC40104 and CD54/74HCT40104 are 4-bit shift registers with 3-state bus interface capability. In the parallel mode (S0 and S1 are high), data is loaded into the associated flip-flop and appears at the output after the positive transition of the clock input. During parallel loading serial data flow is inhibited. Shift left and Shift right are accomplished synchronously on the positive clock edge with serial data entered at the SHIFT RIGHT and the SHIFT LEFT serial inputs, respectively. Clearing the register is accomplished by setting both mode controls low and clocking the register. When the output enable input is low, all outputs assume the high impedance state.

The CD54HC/HCT40104 are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC/HCT40104 are supplied in 16-lead plastic dual-in-line packages (E suffix), also in 16-lead surface mount plastic dual-in-line packages (M suffix). These types are also available in chip form (H suffix).

TERMINAL ASSIGNMENT

Family Features:

- Fanout (over temperature range):
 Standard outputs 10 LSTTL loads
 Bus driver outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N_{IL}= 30%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I₁ ≤ 1 μA @ Vo_L, V_{OH}

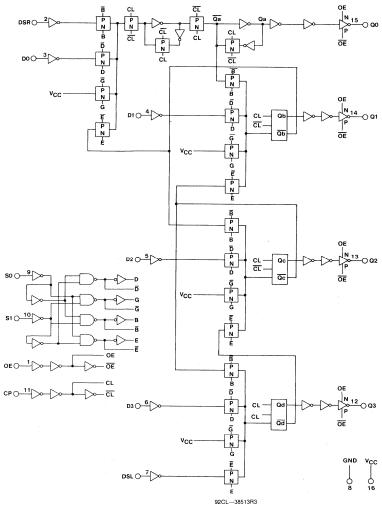


Fig. 1 - Logic diagram.

TRUTH TABLE

	MODE	SELECT	OUTPUT	
CLOCK	S0	S1	ENABLE OE	ACTION
	L	L	Н	Reset
	н	L	Н	Shift right (Q0 toward Q3)
	L	Н	Н	Shift left (Q3 toward Q0)
	Н	Н	Н	Parallel load
X	x	х	L	Operations occur as shown above, but outputs assume high impedance

L = Low Voltage Level

H = High Voltage Level

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, IIK (FOR VI < 0.5 V OR VI > VCC +0.5 V)	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	±35 mA
DC Vcc OR GROUND CURRENT, (Icc)	±70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	
OPERATING-TEMPERATURE RANGE (Ta):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	65 to +150°C
STORAGE TEMPERATURE (Tsto)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIM	UNITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range) V _{cc} :*			
CD54/74HC Types	2	. 6	V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	U
Input Rise and Fall Times, t,tf:			
at 2 V	0	1000	į.
at 4.5 V	0	500	ns
e grand grat 6 V in the control of t	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			c	D74	1C401	104/C	D54H	C401	04				CD74H	CT40	104/C	D54H	ICT40	0104			
		1	TEST IDITIOI	vs.	1	IC/54 TYPE		741 TY		54H TYI		TEST		1	TYPE		1	ICT PE		ICT PE	
CHARACTERISTI	CS	V,	lo	Vcc	,	-25° C	;	-4 +85		-5! +125		V i	Vcc		+25° C	;	1	0/ 5° C	1 -	5/ 5°C	UNITS
		٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	_	1.5	_		4.5							† —	
Input Voltage	ViH			4.5	3.15	_	Ī	3.15	_	3.15	_	_	to	2	_	_	2	-	2	_	v
				6	4.2	_	_	4.2	<u> </u>	4.2	_		5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_	_	1.35	_	1.35	_	1.35	_	to	_	_	0.8	-	0.8	_	0.8	l v
				6	_	_	1.8	_	1.8	_	1.8		5.5			! .					
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	VIL									
Output Voltage	Vон	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4	_	v .
CMOS Loads		VIH		6	5.9	_	_	5.9	_	5.9	_	ViH									
		VIL										VIL		T							
TTL Loads		or	-6	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_	3.7	_	v
(Bus Driver)		V _{IH}	-7.8	6	5.48	_	_	5.34	_	5.2	_	ViH									
Low-Level		VIL		2	_	_	0.1	_	0.1	_	0.1	VIL									
Output Voltage	VoL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads		VIH		6	_	_	0.1	_	0.1	_	0.1	VIH									
		VIL										ViL									
TTL Loads		or	6	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	l v
(Bus Driver)		VIH	7.8	6	_	_	0.26	_	0.33	_	0.4	VIH						1			
Input Leakage Current	, Iı	V _{cc} or Gnd		6	_	_	±0.1	-	±1	-	±1	Any Voltage Between V _{cc} and Gnd	5.5		-	±0.1		±1	_	±1	μΑ
Quiescent Device Current	Icc	V _{cc} or Gnd	0	6		_	8	_	80	_	160	V _{cc} or Gnd	5.5	_	_	8	_	80	_	160	μА
Additional Quiescent Device Current per Input Pin: 1 Unit Load	Δlcc*							•				V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ
3-State Leakage Current		V _{IL} or V _{IH}	V _o = V _{cc} or Gnd	6	-	_	±0.5	_	±5	-	±10	V _{IL} or V _{IH}	5.5	-	_	±0.5	_	±5	-	±10	μΑ

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
OE	1.4
DSR, DSL, D0-D3	0.3
S1, S2	0.7
СР	0.3

^{*}Unit load is Δ loc limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input t,t=6 ns)

CHARACTERISTIC	OVERDOL		ICAL UES	UNITS
CHARACTERISTIC	SYMBOL	HC	HCT	UNITS
Maximum Frequency (C _L = 15 pF)	f _{MAX}	56	50	MHz
Propagation Delay: (C _L = 15 pF) CP to Qn	t _{PLH} t _{PHL}	17	18	
Output Disable Time	t _{PLZ} t _{PHZ}	14	18	ns
Output Enable Time	t _{PZL}	12	12	
Power Dissipation Capacitance	C _{PD} *	84	85	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per device. PD= C_{PD} V_{Cc}^2 fi + Σ (C_L V_{Cc}^2 fo) where: f_i=input frequency f_o=output frequency C_L=output load capacitance V_{Cc} =supply voltage

Pre-requisite for Switching Function

			T	25	°C		-4	0°C to	+85	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Maximum Clock		2	6	_	_		5	_	_	_	4	_	_	_	
Frequency	f _{MAX}	4.5	28	 -	25	_	22	_	20	 -	19	_	17		MHz
	in the west	6	33	—	_	_	26		_	 —	22	 	_	_	
Clock Pulse		2	80	_	_	_	100	_	_	_	120	_	_	_	
Width	tw	4.5	16	-	16	_	20	 -	20	_	24		24	-	
		6	14	-	_		17	_	_	-	20	l —		_	
Setup Times Dn,		2	80	-	_	_	100	_	_	_	120	-	_	_	1
DSL, DSR, S1,	tsu	4.5	16	-	20	_	20	-	25	_	24	_	30		ns
and S0 to Clock		6	14	-		_	17		_		20	-	-	_	<u> </u>
Hold Times Dn,		2	2	_	_	_	2	_	_	_	2	_	_	_	1
DSO, DSI, S1,	t _H	4.5	2		2	-	2		2	_	2	_	2	_	
and S0 to Clock		6	2	<u> </u>	<u> </u>	_	2	_		-	2				<u> </u>

SWITCHING CHARACTERISTICS (CL=50 pF, input t,,t,=6 ns)

			T	25	°C		-4	0°C t	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	VCC	HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Propagation Delay	tplH	2	T-	200	_	_	_	250	T —	T	_	300	_	_	
CP to Qn	t _{PHL}	4.5	-	40	—	42	—	50	-	53	-	60	_	63	
		6	-	34	_	_	_	43	_ '	-	_	51	l —	-	
Output Disable	t _{PLZ}	2		175	_		_	219	_	_	_	263	_	_	1
Time	t _{PHZ}	4.5	_	35	-	44	_	44	-	55	_	53	_	66	
		6	<u> </u>	30	_	_	_	37	_	_	_	45	_	_	ns
Output Enable	t _{PZL}	2	T -	150	_	T —	_	188	_	_	_	225	_	_	""
Time	tpzH	4.5	_	30	_	30	_	38	-	38	_	45	_	45	l
		6	-	26	_	_		32	<u> </u>	 —	-	38		_	
Output Transition	t _{TLH}	2	_	60	_	_	_	75	_	_		90	_	_	1 .
Time	t _{THL}	4.5	_	12	_	12	 _	15	_	15	_	18	_	18	
		6		10	_		_	13	 		_	15			
3-State Output	Co		1	20		20		20		20		20		20	
Capacitance				20		20	_	20	l	20		20		20	рF
Input Capacitance	Cı			10	_	10	_	10	_	10	,	10	_	10	

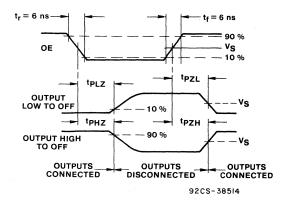


Fig. 2 - Output enable and disable times.

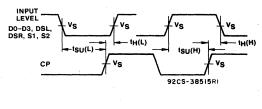
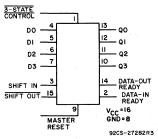



Fig. 3 - Setup and hold times.

	54/74HC	54/74HCT
Input Level	VCC	3 V
Switching Voltage, Vs	50% V _C C	1.3 V

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

4-Bit x 16-Word FIFO Register

Type Features:

- Independent asynchronous inputs and outputs
- Expandable in either direction
- Reset capability
- Status indicators on inputs
- and outputs
- 3-state outputs
- Shift-out independent of 3-state control

Applications:

- Bit-rate smoothing
- CPU/terminal buffering
- Data communications
- Peripheral buffering
- Line printer input buffers
- Auto-dialers
- CRT buffer memories
- Radar data acquisition

The RCA-CD54/74HC40105 and CD54/74HCT40105 are high-speed silicon-gate CMOS devices that are compatible, except for "shift-out" circuitry, with the RCA-CD40105B. They are low-power first-in-first-out (FIFO) "elastic" storage registers that can store 16 four-bit words. The 40105 is capable of handling input and output data at different shifting rates. This feature makes it particularly useful as a buffer between asynchronous systems.

Each word position in the register is clocked by a control flip-flop, which stores a marker bit. A "1" signifies that the position's data is filled and a "0" denotes a vacancy in that position. The control flip-flop detects the state of the preceding flip-flop and communicates its own status to the succeeding flip-flop. When a control flip-flop is in the "0" state and sees a "1" in the preceding flip-flop, it generates a clock pulse that transfers data from the preceding four data latches into its own four data latches and resets the preceding flip-flop to "0". The first and last control flip-flops have buffered outputs. Since all empty locations "bubble" automatically to the input end, and all valid data ripple through to the output end, the status of the first control flip-flop (DATA-IN READY) indicates if the FIFO is full, and the status of the last flip-flop (DATA-OUT READY) indicates if the FIFO contains data. As the earliest data are removed from the bottom of the data stack (the output end), all data entered later will automatically propagate (ripple) toward the output.

Loading Data

Data can be entered whenever the DATA-IN READY (DIR) flag is high, by a low to high transition on the SHIFT-IN (SI) input. This input must go low momentarily before the next word is accepted by the FIFO. The DIR flag will go low momentarily, until the data have been transferred to the second location. The flag will remain low when all 16-word locations are filled with valid data, and further pulses on the SI input will be ignored until DIR goes high.

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 - 2 to 6 V Operation High Noise Immunity: $N_{\rm IL}=30\%$, $N_{\rm IH}=30\%$ of $V_{\rm CC}$,
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility
 - $V_{\rm IL}=0.8\ V\ Max.,\ V_{\rm IH}=2\ V\ Min.$
 - CMOS Input Compatibility $I_1 \leq 1 \mu A \otimes V_{OL}$, V_{OH}
- **Unloading Data**

As soon as the first word has rippled to the output, the data-out ready output (DOR) goes HIGH and data of the first word is available on the outputs. Data of other words can be removed by a negative-going transition on the shift-out input (SO). This negative-going transition causes the DOR signal to go LOW while the next word moves to the output. As long as valid data is available in the FIFO, the DOR signal will go high again, signifying that the next word is ready at the output. When the FIFO is empty, DOR will remain LOW, and any further commands will be ignored until a "1" marker ripples down to the last control register and DOR goes HIGH.

If during unloading SI is HIGH, (FIFO is full) data on the data input of the FIFO is entered in the first location.

Master Rese

A high on the MASTER RESET (MR) sets all the control logic marker bits to "0". DOR goes low and DIR goes high. The contents of the data register are not changed, only declared invalid, and will be superseded when the first word is loaded. Thus, MR does not clear data within the register but only the control logic. If the shift-in flag (SI) is HIGH during the master reset pulse, data present at the input (D0 to D3) are immediately moved into the first location upon completion of the reset process.

3-State Outputs

In order to facilitate data busing, 3-state outputs (Q0 to Q3) are provided on the data output lines, while the load condition of the register can be detected by the state of the DOR output. A HIGH on the 3-state control flag (output enable input OE) forces the outputs into the high-impedance OFF-state mode. Note that the shift-out signal, unlike that in

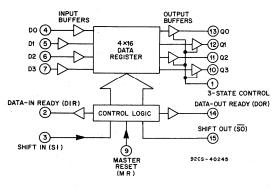
the RCA-CD40105B, is independent of the 3-state output control. In the CD40105B, the 3-state control must not be shifted from High to Low when the shift-out signal is Low (data loss would occur). In the high-speed CMOS version this restriction has been eliminated.

Cascading

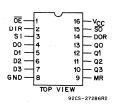
The 40105 can be cascaded to form longer registers simply by connecting the DIR to SO and DOR to SI. In the cascaded mode, a MASTER RESET pulse must be applied after the supply voltage is turned on. For words wider than four bits, the DIR and the DOR outputs must be gated together with AND gates. Their outputs drive the SI and SO inputs in parallel, if expanding is done in both directions (see Figs. 3 and 4).

The CD54HC40105 and CD54HCT40105 are supplied in 16-lead hermetic dual-in-line frit-seal ceramic packages (F suffix). The CD74HC40105 and CD74HCT40105 are supplied in 16-lead dual-in-line plastic packages (E suffix) and 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:


DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5$ V OR $V_i > V_{CC} +0.5$ V)	±20 mA
DC OUTPUT DIODE CURRENT, IOK (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	
DC DRAIN CURRENT, PER OUTPUT (I _o) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT (Icc)	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85° C (PACKAGE TYPE E)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125° C
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	L	MITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range) V _{cc} :*		2	
CD54/74HC Types	2	6	V V
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°c
CD54 Types	-55	+125	
Input Rise and Fall Times, tr,tr:			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

TERMINAL ASSIGNMENT

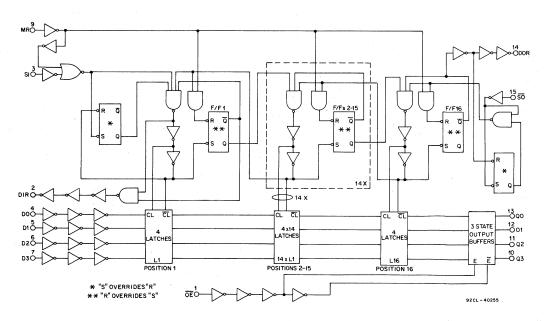


Fig. 2 - Logic diagram.

STATIC ELECTRICAL CHARACTERISTICS

			CD74HC40105/CD54HC40105						CI	D74H	CT40	105/C	:D54H	ICT4	0105						
	CHARACTERISTIC		TEST CONDITIONS		74HC/54HC TYPES		741 TYF		541 TYF		TEST CONDITIO	NS	74HCT/54HCT TYPES			74HCT TYPES		54HCT TYPES			
CHARACTERIS	iic .	V _i	lo	Vcc		-25° C	;	-4 +85		-5 +12!		V 1	Vcc		+25° C	;	1	0/ 5°C	_	5/ 5° C	UNITS
		٧	mA	٧	Min	Тур	Max	Min	Max	Min	Max	٧	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			<u> </u>	2	1.5	_	_	1.5	_	1.5	_		4.5					T	<u> </u>		
Input Voltage	ViH			4.5	3.15	_	_	3.15	_	3.15	_	_	to	2	-	_	2	l _	2	_	v
				6	4.2	_	Ι	4.2	_	4.2	_		5.5		Ì			ļ	1		
Low-Level				2	_	_	0.5	_	0.5	_	0.5		4.5								
Input Voltage	VIL			4.5	_	_	1.35	_	1.35	_	1.35	_	to	-	 	0.8	_	0.8	-	0.8	٧
				6	_	_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	_	1.9	_	1.9	_	V _{IL}									:
Output Voltage	VoH	or	-0.02	4.5	4.4	_		4.4	_	4.4	_	or	4.5	4.4	l –	l –	4.4	-	4.4	-	٧
CMOS Loads		VIH		6	5.9		L-	5.9		5.9	_	Vim									
		VIL.										, V _{IL}			l			l	l		
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	V
		ViH	-5.2	6	5.48	<u> </u>	<u> </u>	5.34	_	5.2		V _{IH}					<u></u>	.			
Low-Level		VIL		2	-	_	0.1		0.1		0.1	VIL			l			l			
Output Voltage	Vol	or	0.02	4.5	<u> </u>	<u> </u>	0.1	<u> </u>	0.1		0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	٧
CMOS Loads		VIH		6	_	느	0.1	_	0.1	_	0.1	V _{IH}	<u> </u>					<u> </u>			
		VIL			<u> </u>	<u> </u>						VIL							l		
TTL Loads		or	4	4.5	_	_	0.26	<u> </u>	0.33	<u> </u>	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	٧
· · · · · · · · · · · · · · · · · · ·		VIH	5.2	6	<u> </u>	_	0.26		0.33	<u> </u>	0.4	V _{IH}		L_	<u> </u>			L_		L	
Input Leakage		Vcc			1		1					Any			l			1		ł	
Current	h	or	l	6	l _	l _	±0.1	_	±1	_	±1	Voltage	5.5	_	l –	±0.1	_	±1	l –	±1	μΑ
		Gnd			1							Between			1			1		1	
Quiescent		Vcc			├-	-					-	V _{cc} & Gnd	_	├	┼	├-		├		├ -	
Device Current	loc	or	0	6	-		8		80		160	V _{cc} or	5.5	_	_	8	_	80	_	160	μΑ
Dovice Ourient	·CC	Gnd	"			_	"	-	80	_	100	Gnd	3.3	-	_	ľ	-	80	_	100	μΛ
Additional		Gilu	Ь		Ь	L	Ь	Ь	L	L	L	Gilu	-	+	 	-	 	-	-	+	
Quiescent Device		1											4.5		1		١.				
Current per input												V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ
pin: 1 unit load	Δlcc*												5.5		l					1	
3-State Leakage		VIL	Vo=Vcc	Γ.	Т	Γ.	Γ	Г				VIL	\vdash	-	 	 	\vdash	 	-		
Current	loz	or	or	6	_	_	±0.5	l_	±5	_	±10	or	5.5	_	_	±0.5	_	±5	_	±10	μA
		VIH	Gnd			1			_		"	ViH	"					_			

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
ŌĒ	0.75
sı, so	0.4
Dn	0.3
MR	1.5

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (VCC = 5 V, TA = 25°C, Input tr,tf = 6 ns)

CHARACTERISTIC	SYMBOL	CL	TYP	CAL	LINUTE
CHARACTERISTIC	SIMBOL	(pF)	HC .	HCT	UNITS
Propagation Delay	tplH				
	t _{PHL}				
MR to DIR, DOR			15	15	
SO to Qn	1	- 15	35	35	ns
SI to DIR	t _{PHL}		18	18	1
SO to DOR		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	18	18	1
Maximum SI, SO Frequency	f _{max} .	15	32	32	MHz
Power Dissipation Capacitance*	CPD	_	83	83	pF

^{*}CPD is used to determine the dynamic power consumption, per package.

PD = $C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where: f_i = input frequency

f_o = output frequency

C_L = output load capacitance

V_{cc} = supply voltage

PRE-REQUISITE FOR SWITCHING FUNCTION

								LIM	IITS						
		TEST		25°C -40°C to +85°C -55°C to +125°C							°C				
CHARACTER	ISTIC	CONDITIONS	HC			HCT		74HC		74HCT		54HC		ICT	UNITS
		V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
SI Pulse Width:	t _w	2	80	_	-	I —	100	_	_	_	120	_	_	_	
HIGH or LOW	Fig. 6	4.5	16.	-	16		20	_	20	—	24	—	24	—	
		6	14	_	_	_	17	_	_		20	l —	_	l —	
SO Pulse Width	tw	2	120	_	_	_	150	-	_	_	180		_	_	
HIGH or LOW	Fig. 7	4.5	24	-	16	<u> </u>	30	_	20		36		24	-	
		6	20			_	26		_	_	31	_			
DIR Pulse Width	tw	2	200	_	_	-	250	_	_	_	300	_	_	_	
HIGH or LOW	Fig. 6	4.5	40	-	40		50	-	50		60	-	60		
		6	34				43	_			51	_			
DOR Pulse Width		2	200	-		—	250	-	—	_	300	_			
HIGH or LOW	Fig. 7	4.5	40	-	40	-	50		50	_	60	-	60	_	ns
		6	34		_		43	_		_	51	_	_	_	
MR Pulse Width	t _w	2	120	_	_	-	150	-	_	_	180	-	-	-	
HIGH	Fig. 5	4.5	24	—	24	—	30		30	_	36	-	36	-	-
		6	20		_		26		_	_	31	_		_	
Removal Time	t _{REM}	2	50	-	_	—	65	-	—	_	75	_	_		
MR to SI	Fig. 12	4.5	10	-	15	-	13	-	19	-	15	-	22	-	
		6	9	_			11	_			13				
Setup Time	tsu	2	5	_	_	-	5	_	_	-	5	_	_	_	
Dn to SI	Fig. 13	4.5	5	_	0	-	5	-	0	-	5	-	0	<u> </u>	
11.1.1 =	<u>-</u>	6	5		_		5			_	5		_	_	
Hold Time	t _H	2	125	_	_	_	155	7	_	- -	190	_	_		
Dn to SI	Fig. 13	4.5	25	-	25	-	31	_	31		38	_	38	_	
Maximum Pulse		6	21				26				32				
	f _{MAX}	2	3			-	2	-	_		2	_			
Frequency SI, SO	Figs. 6, 7	4.5	15	-	15	-	12	-	12	-	10	_	10		MHz
31, 30		6	18		_		14			<u> </u>	12				

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t,t = 6 ns)

			·					LIM	IITS						
CHARACTERIS	STIC C	V		25	°C		-4	0°C t	o +85°	,C	-5	5°C to	+125	°C	
CHARACTERIS	STIC	VCC	Н	С	H	CT	74	нс	74F	ICT		нС		ICT	UNITS
		(V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PHL}	2	—	175	_	T -	T -	220	—	_	_	265	-	_	
	t _{PLH}	4.5	_	35	—	36	l –	44	_	45	-	53	'	54	
MR to DIR, DOR	Fig. 5	6		30		<u> </u>	<u> </u>	37				45	<u> </u>	<u> </u>	
Propagation Delay,	tPHL	2	-	210	— .	-	l –	265	_		l –	315	-	-	
		4.5	-	42	-	42	_	53	-	53		63	_	63	
SI to DIR	Fig. 6	6		36		_		45			_	54		_	
Propagation Delay,	t _{PHL}	2	_	210	-		_	265	—	—	_	315	-	-	
		4.5	-	42	-	42	-	53	—	53	_	63	· —	63	1
SO to DOR	Fig. 7	6		36	_		_	45				54		_	
Propagation Delay,	tpHL	2		400	 -	\ —	_	500	 -	l —	_	600	-	-	
	t _{PLH}	4.5		80	l —	80	-	100	-	100	_	120	_	120	
SO to Qn	Fig. 8	6	<u> </u>	68			<u> </u>	85	<u> </u>		_	102		<u> </u>]
Propagation Delay/	t _{PLH}	2	-	2000	_	—	-	2500	l –	—	-	3000	—		i .
Ripple thru Delay		4.5	—	400	_	400	-	500	_	500	_	600	-	600	
SI to DOR	Fig. 9	6		340				425		_		510	<u> </u>		ns
Propagation Delay/	t _{PLH}	2	_	2500	_		-	3125	-	_		3750	-		113
Ripple thru Delay		4.5	-	500	-	500	_	625	—	625	-	750	—	750	
SO to DIR	Fig. 10	6		425	_		_	532				638	<u></u>	<u> </u>	
Propagation Delay/	t _{PHL}	2	_	1500	-		-	1900	-	-	 -	2250	-	-	
Ripple thru Delay	t _{PLH}	4.5	1	300	_	300	—	380	-	380	-	450	—	450	
SI to Qn		6	<u> </u>	260	<u> </u>	<u> </u>		330				380	<u> </u>	<u> </u>	
3-State Output	t _{PZH}	2	-	150	-	-	-	190	-	-		225		-	ŀ
Enable	t _{PZL}	4.5	-	30	-	35	-	38	-	44	-	45	-	53	
OE to Qn	Fig. 11	6	_	26		_	<u> </u>	33	_			38	_	<u> </u>	
3-State Output	t _{PHZ}	2	-	140	-	-	_	175	—		-	210	-	-	
Disable	t _{PLZ}	4.5	— ·	28	-	30	-	35	-	38	-	42	-	45	
OE to Qn	Fig. 11	6		24			<u> </u>	30	<u> </u>	_	<u> </u>	36	<u> </u>	1=	
Output Transition	t _{THL}	2	-	75	 -	-	-	95	- '	-	-	110	-	-	
Time	t _{TLH}	4.5	-	15	-	15	-	19	-	19	-	22	-	22	
	Fig. 8	6	<u> </u>	13	<u> </u>	_		16	<u> </u>	\vdash	ᄂ	19	<u> </u>	1-	
Input Capacitance	Cı		<u> </u>	10	<u> </u>	10	$\downarrow =$	10	<u> </u>	10		10	<u> </u>	10	DF
3-State Output Capaci	tance Co		<u> </u>	15		15	<u></u>	15	L-	15	<u> </u>	15	<u> </u>	15	ρ,

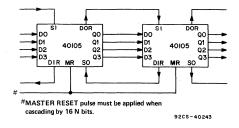


Fig. 3 - Expansion, 4-bits wide by 16 N-bits long.

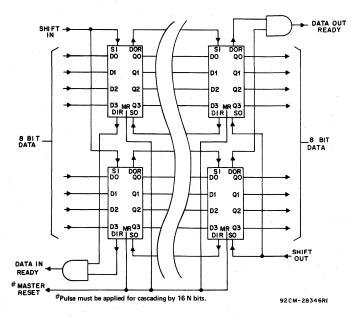


Fig. 4 - Expansion, 8-bits wide by 16 N-bits long using HC/HCT40105.

AC WAVEFORMS

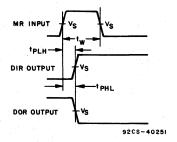


Fig. 5 - Waveforms showing the MR input to DIR, DOR output propagation delays and the MR pulse width.

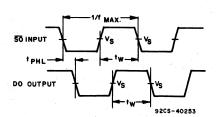


Fig. 7 - Waveforms showing the \$\overline{SO}\$ input to DOR output propagation delay. The \$\overline{SO}\$, DOR pulse widths and \$\overline{SO}\$ maximum pulse frequency.

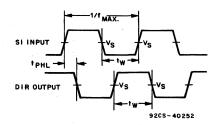


Fig. 6 - Waveforms showing the SI input to DIR output propagation delay. The SI, DIR pulse widths and SI maximum pulse frequency.

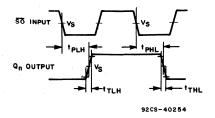


Fig. 8 - Waveforms showing SO input to Q_n output propagation delays and output transition time.

AC WAVEFORMS (Cont'd)

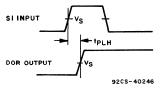


Fig. 9 - Waveforms showing the SI input to DOR output propagation/ripple-through delay.

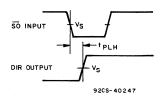


Fig. 10 - Waveforms showing the SO input to DIR output propagation/ripple-through delay.

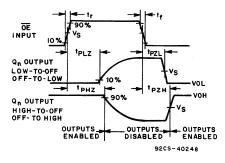


Fig. 11 - Waveforms showing the 3-state enable and disable times for input \overline{OE} .

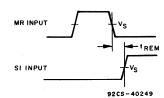
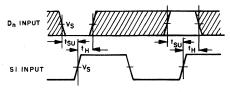



Fig. 12 - Waveforms showing the MR input to SI input removal time.

NOTE

THE SHADED AREAS INDICATE WHEN THE INPUT IS PERMITTED TO CHANGE FOR PREDICTABLE OUTPUT PERFORMANCE. 92CS-40250

Fig. 13 - Waveforms showing hold and set-up times for D_n input to SI input.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

 \bullet DATA VALID GOES TO HIGH LEVEL IN ADVANCE OF THE DATA OUT BY A MAXIMUM OF 38 ns AT VCC = 4.5 V, FOR CL = 50 pF AND TA = 25°C

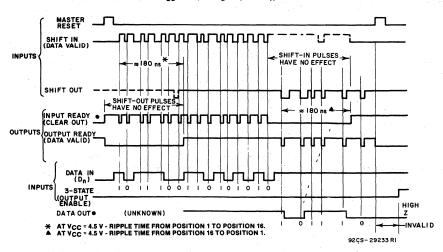
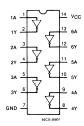



Fig. 14 - Timing diagram for the CD54/74HC/HCT40105.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM
AND TERMINAL ASSIGNMENT

Hex Inverter

Type Features:

- Typical propagation delay=6 ns @ V_{CC}=5 V C_L=15 pF, T_A=25° C, fastest part in QMOS line
- Wide operating temperature range: CD74HCU04: -40° C to +85° C
- Balanced Propagation Delay and Transition Times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source is Philips/Signetics

The RCA-CD54/74HCU04 unbuffered hex inverter utilizes silicon-gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. These devices are especially useful in crystal oscillator and analog applications. Figs. 4 and 5 are supplied as design information for the above applications.

The CD54HCU04 is supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HCU04 is supplied in 14-lead dual-in-line plastic packages (E suffix). The CD74HCU04 is supplied in 14-lead dual-in-line surface mount plastic packages (M suffix). These types are also available in chip form (H suffix).

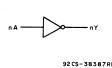


Fig. 1 - Logic diagram.

- CD54HCU04/CD74HCU04 types: 2 to 6 V operation High noise immunity: N_{IL}=20%, N_{IH}=30% of V_{CC}; @ V_{CC}=5 V
- CMOS input compatibility I₁ ≤ 1 μA @ V_{OL}, V_{OH}

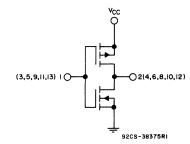


Fig. 2 - Inverter schematic.

CD54/74HCU04

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, IIK (FOR Vi < -0.5 V OR Vi > Vcc +0.5 V)	
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_{o} < -0.5$ V OR $V_{o} > V_{CC} + 0.5$ V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < V _o < V _{cc} +0.5 V)	
DC V _{CC} OR GROUND CURRENT, (I _{CC})	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	
For T _A = -40 to +60°C (PACKAGE TYPE E) For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F. H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M) For T _A = +70 to +125°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125° C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
PACKAGE TYPE F. H	-55 to +125°C
PACKAGE TYPE E. M	-40 to +85° C
STORAGE TEMPERATURE (Tstg)	-65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in. 1.59 mm)	
with solder contacting lead tips only	+300°C
• • • • • • • • • • • • • • • • • • • •	

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII	WITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package Temperature Range)			. 4
Vcc:*	2	6	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	
Input Rise and Fall Times, t _r ,t _f :			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

CD54/74HCU04

STATIC ELECTRICAL CHARACTERISTICS

					CD54l	HCU04					Ī -
		TEST	CONDITI	ONS	CD74	HCU04	CD74	HCU04	CD54H	1CU04	
CHARACTERIST	IC	Vį	10	VCC	+25	i°C	-40°C t	o +85° C	-55°C to	+125° C	UNITS
		V	mA	٧ .	Min.	Max.	Min.	Max.	Min.	Max.]
High-Level				2	1.7		1.7		1.7		
Input Voltage	V_{IH}		-	4.5	3.6		3.6	_	3.6		
		_		6	4.8		4.8		4.8		
Low-Level		_	_	2	_	0.3		0.3		0.3	
Input Voltage	V_{1L}	_	-	4.5		0.8		0.8		0.8	
		_		6		1.1	_	1.1		1.1	
High-Level		VIL		2	1.8	_	1.8		1.8	_	
Output Voltage	V_{OH}	or	-0.02	4.5	4		4	_	4	_	V
		V _{IH}		6	5.5	_	5.5	_	5.5	_	
		V _{cc} or	-4	4.5	3.98	_	3.84		3.7		
		Gnd	-5.2	6	5.48	_	5.34	-	5.2		
Low-Level		VIL		2	_	0.2	I –	0.2	_	0.2	
Output Voltage	V_{OL}	or	0.02	4.5		0.5	I –	0.5		0.5	
		V _{IH}		6		0.5	_	0.5	_	0.5	
		V _{cc} or	4	4.5		0.26	-	0.33	_	0.4	
		Gnd	5.2	6	_	0.26	_	0.33		0.4	
Input Leakage		Vcc									
Current	I_1	or		6	_	±0.1		±1 ,	_	±1	
		Gnd									
Quiescent		Vcc									μΑ
Device		or	0	6	_	2		20		40	
Current	Icc	Gnd									

SWITCHING CHARACTERISTICS (Vcc = 5 V, T_A = 25°C, Input t_r , t_t = 6 ns)

CHARACTERISTIC	SYMBOL	TYPICAL VALUES CD54/74U04	UNITS
Propagation Delay, Data Input to Output Y (Fig. 3) (C _L =15 pF)	t _{PLH}	5	ns
Power Dissipation Capacitance*	СРО	14	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per inverter when: P_D = V_{CC}^2 fi (C_{PD} + C_L) where fi=input frequency

C_L=output load capacitance V_{CC}=supply voltage

SWITCHING CHARACTERISTICS (C $_{L}$ =50 pF, Input t $_{r}$,t $_{r}$ =6 ns)

			25	°C	-40°C t	o +85° C	-55°C to	+125°C	
CHARACTERISTIC	SYMBOL	VCC	CD54/7	4HCU04	CD741	HCU04	CD54I	HCU04	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	70	_	90	_	105	
Input to Output	t _{PHL}	4.5	_	14	-	18	l -	21	
(See Fig. 3)		6		12	_	15	1 _	18	ns
Transition Times	t _{TLH}	2		75	_	95	_	110	_
(Fig. 3)	t _{THL}	4.5	_	15	<u> </u>	19	-	22	
		6	_	13	_	16	\ \	19	
Input Capacitance	Cı	<u> </u>		•	See	Fig. 5			

CD54/74HCU04

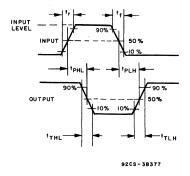


Fig. 3 - Propagation delay and transition times.

DESIGN INFORMATION FOR CRYSTAL OSCILLATOR AND ANALOG APPLICATIONS

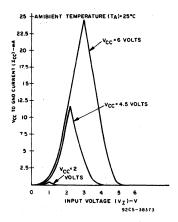


Fig. 4 - Typical inverter supply current as a function of input voltage.

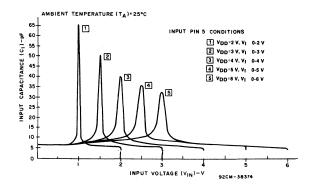


Fig. 5 - Input capacitance as a function of input voltage.

FCT Bus-Interface Family —

TTL Backplane-Interface Logic Family in Small-geometry BiMos Technology

FCT PRODUCTS FOR BACKPLANE-INTERFACE APPLICATIONS

RCA FCT products are developed to provide a reliable interface with modern high-speed backplanes. The FCT types vastly reduce power consumption, avoid bus contention, minimize switching noise, and provide outputs that are specifically tailored to interface with VME buses or their equivalents.

The speed of the FCT family is comparable to that of bipolar FAST types. Sink current ranges from 48 milliamperes to 64 milliamperes depending on product type. Fully populated buses, such as the 21-slot VME can be reliably interfaced. Products are most economically packaged in plastic DIP and gull-wing surface-mount pinouts. As with RCA's AC/ACT family of logic devices, simultaneous switching transients are controlled to levels comparable to similar bipolar logic functions (1 volt peak area for octal ground bounce).

FCT products, the modern standard for backplane-interface applications, meet or exceed published JEDEC industry-standard No. 18 specifications. FCT products clearly are the low-power backplane interface needed in the rapidly growing down-sized computer world, where low operating power and virtually zero standby power are essential requirements.

The two competitive bipolar families, FAST and the BCT compared with FCT products, are 200 times higher in quiescent power consumption and 15 times higher in operating power consumption at a continuous five megahertz operation. This comparision is illustrated on page 635.

The ratio of sink-to-source current and the absence of diodes clamped to the supply rail at the I/O ports eliminate or minimize bus contention and permit low power-down-mode operation.

Table I lists types and type numbers.

FCT Features

Speed Competitive with similar bipolar F/AS

TTL functions. Typical delay is 3.5 nano-

seconds.

Sink/Source Current All types have sink and source currents meeting VME, multibus, etc standards. Output edges are monotonic through the TTL switch point with fully populated backplanes. A BiMOS output driver

stage is used.

Simultaneous Switching Transient (Ground bounce) Competitive with similar bipolar TTL and CMOS products Output swing is 3.5 volts. Controlled

output-edge rate.

Operating and Standby Power Ultra-low pure CMOS operating power and standby power of almost zero.

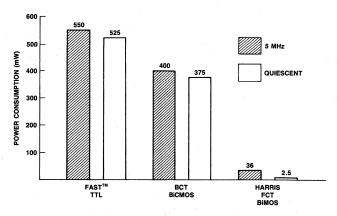
Pinout Standard

FCT Benefits

Swift delay requirements dictated by modern control-system backplane-interface logic present no problems.

Optimized output drives minimize backplane reflections in worst-case situations.

EMI and RFI emissions minimized. Good signal-pulse integrity.


Meets low-power needs of down-sized computers without fans, etc. Low battery drain.

Provided in minimum and most economically sized DIP and SOP.

Minimum CAD/CAM, burn-in board, and PC-board realestate costs with no performance sacrifice.

Table I - FCT Types

Buffers			
CD54/74FCT240 CD54/74FCT541	CD54/74FCT241 CD54/74FCT827A	CD54/74FCT244 CD54/74FCT828A	CD54/74FCT540
Transceivers			
CD54/74FCT245 CD54/74FCT640 CD54/74FCT648 CD54/74FCT653 CD54/74FCT863A CD54/74FCT7623	CD54/74FCT543 CD54/74FCT643 CD54/74FCT649 CD54/74FCT654 CD54/74FCT864A	CD54/74FCT544 CD54/74FCT646 CD54/74FCT651 CD54/74FCT861A CD54/74FCT2952A	CD54/74FCT623 CD54/74FCT647 CD54/74FCT652 CD54/74FCT862A CD54/74FCT2953A
Latches			
CD54/74FCT373 CD54/74FCT841A	CD54/74FCT533 CD54/74FCT842A	CD54/74FCT563 CD54/74FCT843A	CD54/74FCT573 CD54/74FCT844A
Registers			
CD54/74FCT377 CD54/74FCT823A	CD54/74FCT818 CD54/74FCT824A	CD54/74FCT821A CD54/74FCT29520A	CD54/74FCT822A CD54/74FCT29521A
Flip-Flops			
CD54/74FCT273 CD54/74FCT574	CD54/74FCT374	CD54/74FCT534	CD54/74FCT564

Comparison of power consumption for an octal transceiver type.

MAXIMUM	RATINGS.	Absolute-Maximum V	'alues:
---------	----------	--------------------	---------

DC SUPPLY-VOLTAGE (Vcc)	0.5 to 6 V
DC INPUT DIODE CURRENT, I _{IK} (for V _I < -0.5 V)	20 mA
DC OUTPUT DIODE CURRENT, IOK (for Vo < -0.5 V)	
DC OUTPUT SINK CURRENT per Output Pin, Io	
DC OUTPUT SOURCE CURRENT per Output Pin, Io	
DC V _{CC} CURRENT (I _{CC})	N (I _{OH}) + M (ΔI _{CC}) mA
DC GROUND CURRENT (IGND)	N (I _{OL}) + M (ΔI _{CC}) mA
	where N = No. of outputs
	M = No. of inputs
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55 to +100°C (PACKAGE TYPE E)	
For $T_A = +100$ to $+125$ °C (PACKAGE TYPE E)	. Derate Linearly at 8 mW/°C to 300 mW
For $T_A = -55$ to $+70$ °C (PACKAGE TYPE M)	400 mW
For $T_A = +70$ to $+125$ °C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE E, M	55 to +125°C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum	
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contact	ing lead tips only+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LIMITS		
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range, Vcc*:				
T _A = 0 to 70° C	4.75	5.25	V	
T _A = -55 to + 125°C	4.5	5.5		
DC Input or Output Voltage, V _I , V _O	0	Vcc	V	
Operating Temperature, T _A	-55	+125	°C	
Input Rise and Fall Slew Rate, dt/dv	0	10	ns/V	

^{*}Unless otherwise specified, all voltages are referenced to ground.

STATIC ELECTRICAL CHARACTERISTICS FCT Series:

74FCT Commercial Temperature Range, 0 to 70°C.

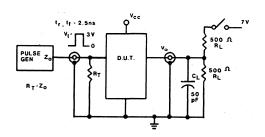
V_{cc} max = 5.25 V V_{cc} min = 4.75 V

54FCT Extended Industrial Temperature Range, -55 to +125°C. Vcc max = 5.5 V

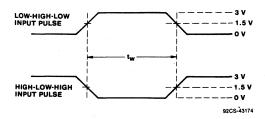
V_{cc} min = 4.5 V

			AMBIEN		AMBIEN	NT TEMPERATURE (TA) - °C				I = I	
CHARACTERISTICS		TEST CONDITIONS		V _{cc}	+:	+25		+70	-55 to +125		UNITS
		V ₁ (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	V _{IH}			4.5 to 5.5	2		2		2		v
Low-Level Input Voltage	V _{IL}			4.5 to 5.5	 .	0.8	. :	0.8	_	0.8	v
High-Level Output	Vон	V _{IH} or	-15#	MIN.	2.4		2.4	_			
Voltage	VOH	V _{IL}	-12#	IVIIIV.	2.4				2.4		v
Low-Level Output	Vol	V _{IH} or	64#	MIN.		0.55		0.55			
Voltage	• OL	V _{IL}	48#			0.55				0.55	
High-Level Input Current	lін	Vcc		MAX.	_	0.1		1	_	1	μΑ
Low-Level Input Current	lıı	GND		MAX.		-0.1	-	-1	, - -	-1	μΑ
3-State Leakage Current	l _{ozh}	V _{cc}		MAX.		0.5		10	· <u>-</u>	10	μΑ
	l _{OZL}	GND		MAX.	_	-0.5	<u></u>	-10	_	-10	μΛ
Short-Circuit Output Current*	los	V _{cc} or GND V _o = 0		MAX.	-60#		-60#		-60#		mA
Input Clamp Voltage	Vik	V _{cc} or GND	-18	MIN.	_	-1.2	_	-1.2	_	-1.2	٧
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	MAX.	_	8		80	_	500	μΑ
Additional Quiescent S Current per Input Pin TTL Inputs High 1 Unit Load		3.4 V†		MAX.	_	1.6		1.6	_	2	mA

^{*}Not more than one output should be shorted at one time. Test duration should not exceed 100 ms.


[†]Inputs that are not measured are at Vcc or Gnd.

FCT Input Loading: All inputs are 1 unit load. Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 1.6 mA max. @ 70°C.


 $^{^{\#}}$ Values are for FCT240 types (see "Output Capabilities" and Table II for l_{OS} , l_{OL} , and l_{OH} for other types.)

SWITCHING WAVEFORMS FOR 54/74FCTXXX

Shown below is the FCT test circuit. A Thevenin equivalent may be used for output loading.

TEST	SWITCH POSITION
t _{PLZ} t _{PZL} OPEN DRAIN	CLOSED
tPHZ tPZH tPLH	OPEN
tPHL	

Output Requirement:

Device must follow truth table.

 $V_{OL} \leq 0.55 \text{ V}$

 $V_{OH} \ge 2.4 \text{ V}$

Input Condition:

 $t_r = t_f \le 2.5$ ns (as fast as required)

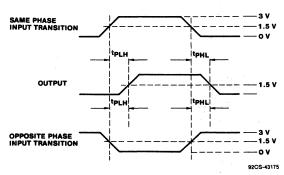
Standard Output Loading:

R_L = 500 Ω C_L = 50 pF

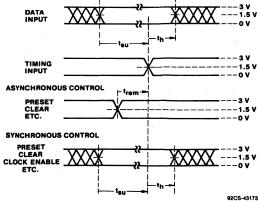
Input pulse width.

Definitions:

C_L = Load capacitance includes jig and probe capacitance.


 R_T = Termination should be equal to Z_{OUT} of the pulse

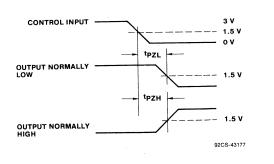
generator. (Typically 50 Ω).

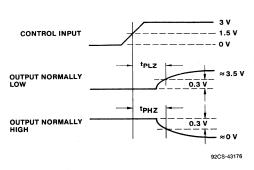

V_{IN} = 0 V to 3 V

Input: $t_r = t_f = 2.5$ ns (10% to 90%) unless otherwise specified.

Test circuit.

Propagation delay times.




Setup, hold, and removal times.

SWITCHING WAVEFORMS FOR 54/74FCTXXX (CONT'D)

ENABLE TIMES

DISABLE TIMES

Output enable and disable times.

Minimum Low-Level Davica

OUTPUT CAPABILITIES

Table II - Output Drive for 54/74FCTXXX

Because of the numerous applications for 54/74FCT types, the output specifications are derived from the LOW drive and HIGH drive tables below. Any l_{OL} type category may be combined with any l_{OH} and l_{OS} type category to specify the output drive. Refer to Table II for device type categories.

Low-Level

Minimum Output at Low Drive (IoL); Vcc = min

Type Category	Output Voltage V _{OL} (V)	Output (
		COM'L	MIL
3	0.55	48	32
4	0.55	64	48
Minimum Outpu	it at High Drive (Іон); Vс	c = min	
Type Category	High-Level Output Voltage V _{OH} (V)	Minin High-I Output (I _{OH} (I	Level Current
		COM'L	MIL
1	2.4	-15	-12
2	2.4	-24	-20
Minimum Outpu	it at Short Circuit (los);	V _{CC} = max	
Type Category	Output Voltage Vo (V)	Minir Short-C Output (I _{os} (I	Circuit Current
		COM'L	MIL
1	0.0	-60	-60
2	0.0	-75	-75

Device Number	I _{OH} Output Type	I _{OL} Output Type
54/74FCT240	1	4
54/74FCT241	1	4
54/74FCT244	1	4
54/74FCT245	1	4
54/74FCT273	1	3
54/74FCT373	1	3 3 3 3
54/74FCT374	1	3
54/74FCT377	1	3
54/74FCT533	1	
54/74FCT534	1	3
54/74FCT540	1	4
54/74FCT541	1	4
54/74FCT563	1	3
54/74FCT564	1	3
54/74FCT573	1	3 3
54/74FCT574	1	3
54/74FCT623/7623	1 1 1 1 1 1 1	4
54/74FCT646	1	4
54/74FCT647 54/74FCT648	. 1	4
54/74FCT648	1	4
54/74FC1649	1	4
54/74FCT651	. 1	4
54/74FCT652	1	4
54/74FCT653	1	4
54/74FCT654	1	4
54/74FCT821-824	2	3 3 3
54/74FCT827/828	2	3
54/74FCT841-844	2	3
54/74FCT861-864	2	3
54/74FCT2952A	2 2 2 2 2 2	4
54/74FCT2953A		4
54/74FCT29520A	1 1	3 3
54/74FCT29521A	7	3

PRELIMINARY SWITCHING-SPEED LIMITS

This section gives the preliminary switching-speed parameter limits for the FCT types. The limits are given for each type grouped by generic function. Table III covers bus drivers, buffers, and transceivers. Table IV covers flip-flops and registers. Table V covers latches.

In the tables, individual parameter limits are given for each device type along with descriptive symbols for each parameter. All limit values are in nanoseconds. Generic pin names are used and no distinctions are made for inverting or non-inverting outputs unless noted.

For each entry two limit values are shown separated by a slash, e.g. a/b. Limit a applies to the commercial temperature range 0 to 70° C with V_{cc} = 5.0 \pm 0.25 volts. Limit b applies to the MIL temperature range of -55° C to +125° C with V_{cc} = 5.0 \pm 0.5 volts. Plastic DIP and SOP packaged parts (74 series) are applicable for both temperature ranges. The 54 series devices will apply only to the MIL ceramic packaged parts when available. A dash (—) indicates that the parameter is not specified or does not exist for a given device

It should be noted that these preliminary speed limits are design objectives and are subject to possible minor changes.

Table III - Switching Parameters for Bus Drivers, Buffers, and Transceivers

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT240	t _{PLH} ,t _{PHL} A _n →Y _n	8.0/9.0
CD54/74FCT241	t _{PLH} ,t _{PHL} A _n →Y _n	6.5/7.0
CD54/74FCT244	t _{PLH} ,t _{PHL} A _n →Y _n	6.5/7.0
CD54/74FCT245	t _{PLH} ,t _{PHL} A _n →Y _n	7.0/7.5
CD54/74FCT540	t _{PLH} ,t _{PHL} A _n →Y _n	8.5/9.5
CD54/74FCT541	t _{PLH} ,t _{PHL} A _n →Y _n	8.0/9.0
CD54/74FCT623	t _{PLH} ,t _{PHL} A _n /B _n →Y _n	7.0/7.5
	t _{PZH,} t _{PZL} G,G→O	9.5/10.0
	t _{PHZ,} t _{PLZ} G,G→O	7.5/10.0
CD54/74FCT646	t _{PLH} ,t _{PHL} BUS→Bus	9.0/11.0
	t _{PLH} ,t _{PHL} CL→Bus	9.0/10.0
	t _{PLH} ,t _{PHL} Sel→Bus	11.0/12.0
	t _{⊵zн} ,t _{⊵z∟} G/DIR→Bus	14.0/15.0
	t _{PHZ} ,t _{PLZ} G/DIR→Bus	9.0/11.0
	t _{su}	4.0/4.5
	t _h	2.0/2.0
	t _{pw}	6.0/6.0
CD54/74FCT648	t _{PLH} ,t _{PHL} BUS→Bus	8.0/9.0
	t _{PLH} ,t _{PHL} CL→Bus	9.0/10.0
4	t _{PLH} ,t _{PHL} Sel→Bus	11.0/12.0

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT648 (cont'd)	t _{PZH} ,t _{PZL} G/DIR→Bus	15.0/18.0
A	t _{PHZ} ,t _{PLZ} G/DIR→Bus	9.0/11.0
	t _{su}	4.0/4.5
	t _h	2.0/2.0
	t _{pw}	6.0/6.0
CD54/74FCT651	t _{PLH} ,t _{PHL} BUS→Bus	9.0/10.0
an stell or the	t _{PLH} ,t _{PHL} CL→Bus	9.0/11.0
	t _{PLH} ,t _{PHL} Sel→Bus	11.0/12.0
Fig. 1	t _{РZH} ,t _{РZL} G/DIR→Bus	10.0/12.0
1 10	t _{PHZ} ,t _{PLZ} G/DIR→Bus	10.0/12.0
	t _{su}	4.0/4.5
and the second	t _h	2.0/2.0
	tpw	6.0/6.0
CD54/74FCT652	t _{PLH} ,t _{PHL} BUS→Bus	9.0/10.0
	t _{PLH} ,t _{PHL} CL→Bus	9.0/11.0
	t _{PLH} ,t _{PHL} Sel→Bus	11.0/12.0
	{t{PZH},t_{PZL} G/DIR→Bus}	10.0/12.0
	t _{PHZ} ,t _{PLZ} G/DIR→Bus	10.0/12.0
	t _{su}	4.0/4.5
	t _h	2.0/2.0
	t _{pw}	6.0/6.0
CD54/74FCT827A	t _{PLH} ,t _{PHL} A _n →Y _n	8.0/10.0

Table III - Switching Parameters for Bus Drivers, Buffers, and Transceivers (Cont'd)

· · · · · · · · · · · · · · · · · · ·		
Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT827A (cont'd)	t _{PLZ} ,t _{PHZ} G→O	17.0/19.0
	t _{РZL} ,t _{РZН} G→O	15.0/17.0
CD54/74FCT828A	t _{PLH} ,t _{PHL} A _n →Y _n	7.5/9.5
	t _{PLZ} ,t _{PHZ} G→O	17.0/19.0
	t _{PZL} ,t _{PZH} G→O	15.0/17.0
CD54/74FCT861A	t _{PLH} ,t _{PHL} An→Yn	8.0/10.0
	t _{PLZ} ,t _{PHZ} G→O	17.0/19.0
	t _{PZL} ,t _{PZH} G→O	15.0/17.0
CD54/74FCT862A	t _{PLH} ,t _{PHL} An→Yn	7.5/9.5
·	t _{PLZ} ,t _{PHZ} G→O	17.0/19.0

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT862A (cont'd)	t _{PZL} ,t _{PZH} G→O	15.0/17.0
CD54/74FCT863A	t _{PLH} ,t _{PHL} A _n →Y _n	8.0/10.0
	t _{PLZ} ,t _{PHZ} G→O	17.0/19.0
	t _{PZL} ,t _{PZH} G→O	15.0/17.0
CD54/74FCT864A	t _{PLH} ,t _{PHL} A _n →Y _n	7.5/9.5
	t _{PLZ} ,t _{PHZ} G→O	17.0/19.0
	t _{PZL} ,t _{PZH} G→O	15.0/17.0
CD54/74FCT7623	t _{PLH} ,t _{PHL} A _n →Y _n	7.0/7.5
	t _{PLZ} B _n →Y _n	13.0/13.5
·	t _{PZL} B _n →Y _n	7.0/7.5

Table IV - Switching Parameters for Flip-Flops and Registers

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT273	t _{PLH} ,t _{PHL} CK→Q	13.0/15.0
	t _{PLH} ,t _{PHL} R,S→Q	13.0/15.0
	t _{su} D,J,K→CK	3.0/3.5
	t _h CK→D,J,K	2.0/2.0
	t _{rem} R,S→CK	4.0/5.0
	t _w (CK)	7.0/7.0
	t _w (R,S)	7.0/7.0
CD54/74FCT374	t _{PLH} ,t _{PHL} CK→Q	10.0/11.0
	t _{su} D,J,K→CK	2.0/2.5
	t _h CK→D,J,K	2.0/2.0
·	t _w (CK)	7.0/7.0
CD54/74FCT534	t _{PLH} ,t _{PHL} CK→Q	10.0/11.0
	t _{su} D,J,K→CK	2.0/2.5

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT534 (cont'd)	t _h CK→D,J,K	1.5/1.5
	t _w (CK)	7.0/7.0
	t _{su} CE→CK	- .
	t _h CE→CK	-
CD54/74FCT564	t _{PLH} ,t _{PHL} CK→Q	10.0/11.0
	t _{su} D,J,K→CK	2.0/2.5
	t _h CK→D,J,K	2.0/2.5
	t _w (CK)	7.0/7.5
	t _{su} CE→CK	_
	t _h CE→CK	_ '
CD54/74FCT574	t _{PLH} ,t _{PHL} CK→Q,Q	10.0/11.0
	t _{su} D,J,K→CK	2.0/2.5
	t _h CK→D,J,K	2.0/2.0

Table IV - Switching Parameters for Flip-Flops and Registers (Cont'd)

Type Number	Descriptive	COM'L/MIL
	Symbol	Limits (ns)
CD54/74FCT574	t _w (CK)	7.0/7.0
(cont'd)	t _{PLZ} ,t _{PHZ} G→O	8.0/8.0
	t _{PZL} ,t _{PZH} G→O	12.5/14.0
CD54/74FCT821A	t _{PLH} ,t _{PHL} CK→Q,Q	12.0/12.0
	t _{su} D,J,K→CK	4.0/4.0
	t _h CK→D,J,K	2.0/2.0
	t _w (CK)	7.0/7.0
	t _{PLZ} ,t _{PHZ} G→O	9.0/10.0
	t _{PZL} ,t _{PZH} G→O	14.0/15.0
CD54/74FCT822A	t _{PLH} ,t _{PHL} CK→Q,Q	12.0/12.0
	t _{su} D,J,K→CK	4.0/4.0
	t _h CK→D,J,K	2.0/2.0
	t _w (CK)	7.0/7.0
	t _{PLZ} ,t _{PHZ} G→O	9.0/10.0
	t _{PZL} ,t _{PZH} G→O	14.0/15.0
CD54/74FCT823A	t _{PLH} ,t _{PHL} CK→Q,Q	12.0/12.0
	t _{PLH} ,t _{PHL} R,S→Q,Q	20.0/20.0
	t _{su} D,J,K→CK	4.0/4.0

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT823A (cont'd)	t _h CK→D,J,K	2.0/2.0
	t _{rem} R,S→CK	7.0/7.0
	t _w (CK)	7.0/7.0
	t _w (R,S)	7.0/7.0
	t _{su} CE→CK	4.0/4.0
	t _h CE→CK	2.0/2.0
	t _{PLZ} ,t _{PHZ} G→O	16.0/18.0
	t _{PZL} ,t _{PZH} G→O	14.0/15.0
CD54/74FCT824A	t _{PLH} ,t _{PHL} CK→Q,Q	12.0/12.0
	t _{PLH} ,t _{PHL} R,S→Q,Q	20.0/20.0
	t _{su} D,J,K→CK	4.0/4.0
	t _h CK→D,J,K	2.0/2.0
	t _{rem} R,S⊶CK	7.0/7.0
	t _w (CK)	7.0/7.0
	t _w (R,S)	7.0/7.0
	t _{su} CE→CK	4.0/4.0
. ' "	t _h CE→CK	2.0/2.0
,	t _{PLZ} ,t _{PHZ} G→O	16.0/18.0
	t _{PZL} ,t _{PZH} G→O	14.0/15.0

Table V - Switching Parameters for Latches

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT373	t _{PLH} ,t _{PHL} D→Q	8.0/8.5
	t _{PLH} ,t _{PHL} E→Q	13.0/15.0
en en en en en en en en en en en en en e	t _{su} D→E	2.0/2.0
	t _h E→D	1.5/1.5
	t _w (E)	6.0/6.0

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT533	t _{PLH} ,t _{PHL} D→Q	8.0/8.5
	t _{PLH} ,t _{PHL} E→Q	13.0/14.0
	t _{su} D→E	2.0/2.0
	t _h E→D	1.5/1.5
	t _w (E)	6.0/6.0

Table V - Switching Parameters for Latches (Cont'd)

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT563	t _{PLH} ,t _{PHL} D→Q	8.0/8.5
.*	t _{PLH} ,t _{PHL} E→Q	13.0/14.0
	t _{su} D→E	2.0/2.0
	t _n E→D	1.5/1.5
	t _w (E)	6.0/6.0
CD54/74FCT573	t _{PLH} ,t _{PHL} D⊶Q	8.0/8.5
	t _{PLH} ,t _{PHL} E→Q	13.0/15.0
÷	t _{su} D→E	2.0/2.0
	t _h E→D	1.5/1.5
	t _w (E)	6.0/6.0
	t _{PLZ} ,t _{PHZ} G→O	7.5/10.0
	t _{PZL} ,t _{PZH} G→O	12.0/13.5
CD54/74FCT841	t _{PLH} ,t _{PHL} D→Q	9.5/11.0
	t _{PLH} ,t _{PHL} E→Q	12.0/16.0
	t _{su} D→E	2.5/2.5
	t _h E→D	2.5/3.0
	t _w (E)	6.0/6.0
	t _{PLZ} ,t _{PHZ} G→O	12.0/12.0
	t _{РZL} ,t _{РZН} G→О	14.0/15.0
CD54/74FCT842	t _{РLH} ,t _{РНL} D→Q	10.0/12.0
	t _{PLH} ,t _{PHL} E→Q	12.0/16.0
	t _{su} D→E	2.5/2.5
	t _n E→D	2.5/3.0
	t _w (E)	6.0/6.0

Type Number	Descriptive Symbol	COM'L/MIL Limits (ns)
CD54/74FCT842		12.0/12.0
(cont'd)	t _{PLZ} ,t _{PHZ} G→O	
	t _{PZL} ,t _{PZH} G→O	14.0/15.0
CD54/74FCT843	t _{PLH} ,t _{PHL} D→Q	9.5/11.0
	t _{PLH} ,t _{PHL} E→Q	12.0/16.0
	t _{su} D→E	2.5/2.5
	t _h E→D	2.5/3.0
	tw	6.0/6.0
	t _{PLH} ,t _{PHL} R,S→Q	13.0/15.0
	t _{REC}	14.0/17.0
	t _w R,S	8.0/9.0
	t _{PLZ} ,t _{PHZ} G→O	12.0/12.0
	t _{PZL} ,t _{PZH} G→O	14.0/15.0
.•	t _{PLH} ,t _{PHL} D→Q	10.0/12.0
CD54/74FCT844	t _{PLH} ,t _{PHL} E→Q	12.0/16.0
	t _{su} D→E	2.5/2.5
	t _h E→D	2.5/3.0
	t _w	6.0/6.0
	t _{PLH} ,t _{PHL} R,S→Q	13.0/15.0
	trec PRE	14.0/17.0
	t _w R,S	8.0/9.0
*	t _{PLZ} ,t _{PHZ} G→O	12.0/12.0
	t _{PZL} ,t _{PZH} G→O	14.0/15.0
	,	

Advanced CMOS Logic

Advanced CMOS Logic, ACL, is the next step forward in the evolution of CMOS logic. It matches bipolar FAST* in speed, performance and logic type output drive, but at CMOS power levels.

Just as HC/HCT high-speed CMOS logic became an industry standard competing with LSTTL, ACL is expected to become an industry standard offered by a number of the leading CMOS logic suppliers. A JEDEC committee is currently working on specifications for a standardization of 54/74 AC/ACT devices.

Featuring < 3-ns gate propagation delays, ACL is the fastest CMOS logic yet available. (By contrast, the standard propa-

gation delay for CMOS logic is 95 ns, and for high-speed CMOS logic, 9 ns.) ACL can operate at more than 150 MHz. Output drive capability is 24 mA, compared with 6 mA for HC/HCT. This capability enables ACL to drive transmission lines, yet still generate the voltages necessary to operate the receiving logic devices safely.

Because of its low power consumption, ACL is potentially more reliable than bipolar logic. This quality should make ACL the technology of choice in a number of applications, including computers, peripherals, and telecommunications, and in portable and military equipment.

*FAST is a trademark of Fairchild Semiconductor Corp.

ACL	TYPES •		
PLASTIC *	CERDIP *	DESCRIPTION	PINS
CD74AC/ACT00E,M	CD54AC/ACT00F	Quad 2-Input NAND Gate	14
CD74AC/ACT02E.M	CD54AC/ACT02F	Quad 2-Input NOR Gate	14
CD74AC/ACT04E,M	CD54AC/ACT04F	Hex Inverter/Buffer	14
CD74AC/ACT05E,M	CD54AC/ACT05F	Hex Inverter/Buffer with Open-Drain Outputs	14
CD74AC/ACT08E,M	CD54AC/ACT08F	Quad 2-Input AND Gate	14
CD74AC/ACT10E,M	CD54AC/ACT10F	Triple 3-Input NAND Gate	14
CD74AC/ACT20E,M	CD54AC/ACT20F	Dual 4-Input NAND Gate	14
CD74AC/ACT32E,M	CD54AC/ACT32F	Quad 2-Input OR Gate	14
CD74AC/ACT74E.M	CD54AC/ACT74F	Dual D-Type Flip-Flop w/SET and RESET	14
CD74AC/ACT86E.M	CD54AC/ACT86F	Quad 2-Input EXCLUSIVE-OR Gate	14
CD74AC/ACT109E.M	CD54AC/ACT109F	Dual J-K Flip-Flop w/SET and RESET	16
CD74AC/ACT109E,M	CD54AC/ACT112F	Dual J-K Flip-Flop w/SET and RESET	16
CD74AC/ACT112E,M	CD54AC/ACT138F	3-to-8 Line Decoder/Demultiplexer, Inverting	16
CD74AC/ACT138E,M	CD54AC/ACT139F	Dual 2-of-4 Line Decoder/Demultiplexer	16
		8-Input Multiplexer	16
CD74AC/ACT151E,M	CD54AC/ACT151F		
CD74AC/ACT153E,M	CD54AC/ACT153F	Dual 4-Input Multiplexer	16
CD74AC/ACT157E,M	CD54AC/ACT157F	Quad 2-Input Multiplexer	16
CD74AC/ACT158E,M	CD54AC/ACT158F	Quad 2-Input Multiplexer, Inverting	16
CD74AC/ACT161E,M	CD54AC/ACT161F	Synchronous 4-Bit Binary Counter, Asynchronous Reset	16
CD74AC/ACT163E,M	CD54AC/ACT163F	Synchronous 4-Bit Binary Counter, Synchronous Reset	16
CD74AC/ACT164E,M	CD54AC/ACT164F	8-Bit Serial-In Parallel-Out Shift Register	14
CD74AC/ACT174E,M	CD54AC/ACT174F	Hex D-Type Flip-Flop w/RESET	16
CD74AC/ACT175E,M	CD54AC/ACT175F	Quad D-Type Flip-Flop w/RESET	16
CD74AC/ACT191E,M	CD54AC/ACT191F	Synchronous 4-Bit Binary Up/Down Counter	16
CD74AC/ACT193E,M	CD54AC/ACT193F	Synchronous 4-Bit Binary Up/Down Counter	16
CD74AC/ACT238E,M	CD54AC/ACT238F	3-to-8 Line Decoder/Demultiplexer	16
CD74AC/ACT240E,M	CD54AC/ACT240F	Octal Buffer Line Driver, 3-State, Inverting	20
CD74AC/ACT241E,M	CD54AC/ACT241F	Octal Buffer Line Driver, 3-State	20
CD74AC/ACT244E,M	CD54AC/ACT244F	Octal Buffer Line Driver, 3-State	-20
CD74AC/ACT245E,M	CD54AC/ACT245F	Octal Bus Transceiver, 3-State	20
CD74AC/ACT251E,M	CD54AC/ACT251F	8-Input Multiplexer, 3-State	16
CD74AC/ACT253E,M	CD54AC/ACT253F	Dual 4-Input Multiplexer, 3-State	16
CD74AC/ACT257E,M	CD54AC/ACT257F	Quad 2-Input Multiplexer, 3-State	16
CD74AC/ACT258E,M	CD54AC/ACT258F	Quad 2-Line to 4-Line Data Selector	16
CD74AC/ACT273E,M	CD54AC/ACT273F	Octal D-Type Flip-Flop w/RESET	20
CD74AC/ACT280E.M	CD54AC/ACT280F	8-Bit Odd/Even Parity Generator/Checker	14
CD74AC/ACT283E,M	CD54AC/ACT283F	4-Bit Full Adder w/Fast Carry	16
CD74AC/ACT299E,M	CD54AC/ACT299F	8-Bit Universal Shift Register, 3-State	20
CD74AC/ACT323E,M	CD54AC/ACT323F	8-Bit Universal Shift Register, 3-State (with Synchronous Reset)	20
CD74AC/ACT373E.M	CD54AC/ACT373F	Octal Transparent Latch, 3-State	20
CD74AC/ACT374E,M	CD54AC/ACT374F	Octal D-Type Flip-Flop, 3-State	20
CD74AC/ACT574E,M	CD54AC/ACT533F	Octal D-Type Flip-Flop, 3-State Octal Transparent Latch, 3-State, Inverting	20
CD74AC/ACT533E,M	CD54AC/ACT533F CD54AC/ACT534F	Octal D-Type Flip-Flop, 3-State, Inverting	20
CD74AC/ACT540E,M	CD54AC/ACT534F CD54AC/ACT540F	Octal Buffer Line Driver, 3-State, Inverting	20
CD74AC/ACT540E,M	CD54AC/ACT540F	Octal Buffer Line Driver, 3-State, inverting Octal Buffer Line Driver, 3-State	20
CD74AC/ACT573E,M	CD54AC/ACT541F		20
CD74AC/AC1573E,M CD74AC/ACT574E,M	CD54AC/ACT573F CD54AC/ACT574F	Octal D Type Flip Flop 3 State	20 20
		Octal D-Type Flip-Flop, 3-State	
CD74AC/ACT646E,M	CD54AC/ACT646F	Octal Bus Transceiver/Register, 3-State	24
CD74AC/ACT648E,M	CD54AC/ACT648F	Octal Bus Transceiver/Register, 3-State, Inverting	24
CD74AC/ACT7060E,M	CD54AC/ACT7060F	14-Stage Counter with Oscillator	20
CD74AC/ACT7202E,M	CD54AC/ACT7202F	1024 x 9-Bit Parallel In-Out FIFO	28
CD74AC/ACT7402E,M	CD54AC/ACT7402F	65 x 5-Bit FIFO	18

[•] Consult your local Sales Office for availability time frame and other details.

*Package Suffix: E - Dual-In-Line Plastic

F - Dual-In-Line Frit-Seal Ceramic

M - Surface Mount

Application Notes

Power Consumption in QMOS Logic Circuits

by R. Funk and B. Heinze

QMOS, RCA's high-speed CMOS-logic technology, offers users the best features of both CMOS and TTL technologies: the low-power consumption of CMOS and the fast speeds associated with LSTTL. This Application Note focuses on the primary QMOS feature, low power consumption. The causes of quiescent and dynamic power dissipation in HC and HCT QMOS devices are discussed. The formulas needed to compute the power dissipation in QMOS devices are presented along with sample calculations. A comparison is made of QMOS, LS, and ALS logic types relative to power dissipation.

The significant reduction in power consumption provided by a QMOS logic system compared with the equivalent LSTTL or ALSTTL counterpart design is the primary reason that QMOS is destined to be chosen for new designs and to replace LSTTL or ALSTTL parts in many existing designs. The replacement of LSTTL devices with HCT QMOS types1 achieves power savings in existing designs where decreased power consumption and dissipation are a distinct advantage. In new designs, only QMOS logic lends itself to batteryoperated portable equipment, such as portable (lap-held) personal computers, and the switch to QMOS is the major trend in PCs using all-CMOS RAMs, ROMs, and peripherals. All-QMOS designs can be powered down to 2-volts standby. increasing battery life. In nonportable designs, QMOS and CMOS LSI logic are also preferred to significantly reduce, in order of priority, cost, size, and weight. Cost reduction is the result of savings in the cost of supply regulators, the elimination of cooling fans and heat sinks, etc.

An equally powerful motivating force behind the use of logic components that dissipate lower power, such as QMOS, is the proven component and equipment reliability enhancement. The junction temperature of the ICs, as well

as the temperature of other equipment components (resistors and capacitors), is much reduced, thereby lengthening life. QMOS failure rates are currently measured at .0015%/1000 hours at 60% UCL for operation at +55°C.

Power consumption in a logic IC must be considered in both of the IC's operating modes, i.e., under static and dynamic conditions. QMOS devices consume only minute amounts of power under static (quiescent) conditions, making power consumed in the dynamic state the major contributor to total power consumption. TTL devices, on the other hand, consume significant amounts of power in the quiescent state, so much in fact, that power consumption in the dynamic state can be masked at frequencies as high as 20 MHz, depending on device complexity. At higher frequencies, the power consumed by TTL devices increases proportionately. Since integrated circuits typically spend a significant percentage of their time either in the guiescent state or operating at average frequencies below 2 MHz, QMOS devices can provide significant and often dramatic power savings.

QUIESCENT POWER CONSUMPTION

The quiescent power consumption of a logic IC is measured when the system input voltage, V_{IN} , equals the device supply voltage, V_{CC} , or is at ground potential. Fig. 1(a) is used to illustrate this discussion. In the quiescent state, either the PMOS or NMOS transistor is fully off, and ideally no direct MOS transistor-channel path exists between V_{CC} and ground. In reality, however, thermally generated minority-charge carriers present in all reverse-biased diode junctions, Fig. 1(b), allow a very small power-supply leakage current to flow between V_{CC} and ground. In QMOS data sheets, this quiescent leakage current is specified as I_{CC} .

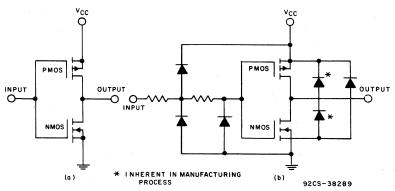


Fig. 1 - (a) Simple QMOS inverter circuit, (b) simple QMOS inverter circuit with input and output ESD protective diodes.

Three factors affect the value of lcc and, therefore, the power dissipation of a device:

Temperature:-Increasing temperature causes an increase in lc because the minority charge carriers in the reverse-biased diode junctions of QMOS devices are thermally generated.

Device Complexity:-MSI devices will consume more power than SSI devices because there exists a proportionally greater reverse-biased diode-junction area.

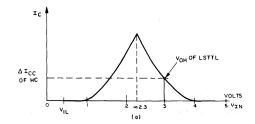

 V_{CC} :-The minority-charge carriers are linearly related to reverse junction voltage.

Table I shows the JEDEC industry standards for 54/74 HC/HCT high-speed CMOS devices, and illustrates the effect of temperature and device complexity on $I_{\rm CC}$ at the maximum recommended HC operating voltage, $V_{\rm CC}$ = 6 V. At $V_{\rm CC}$ = 2 V, $I_{\rm CC}$ is approximately 1/3 the value shown at $V_{\rm CC}$ = 6 V. Typical $I_{\rm CC}$ values are well under the maximum specified values.

Another factor that may add to quiescent, or dc, power consumption is the through current caused by both the PMOS and NMOS transistors of the input stage, Fig. 1(a), being on, at least to some degree, at the same time. For HC devices, where the switching transition occurs at a nominal $V_{cc}/2$ (see Fig. 2(a)), there is no through current and, hence, no added dc power consumption. That is, with VIL and VIH voltage levels (low-level and high-level input voltages, respectively) at the inputs, either the PMOS or the NMOS transistor of the HC input stage is completely off. However, for HCT devices, where the switching transition occurs at a nominal 1.3 volts, Fig. 2(b), there is a through-current component when an input high-voltage level of under 4 volts is applied to an input. With this amount of voltage applied, the NMOS transistor is fully on and the PMOS transistor not fully off. This is the situation in an HCT device when, in a QMOS/TTL interface, the input voltage of the QMOS device is the VoH (high-level output voltage) of a TTL family device. The 3.5-volt typical VoH output voltage will fully turn-on the QMOS input NMOS transistor (Fig. 1) but not fully turn-off the PMOS transistor. The current flow that results is specified as ΔI_{CC} in QMOS HCT data sheets.

Computing HC Quiescent-Power Consumption

Quiescent power consumption in an HC device is extremely low, typically under 10 microwatts. The ΔI_{CC} plays no part because HC I/O levels are completely compatible: V_{OL} and V_{CH} worst-case specifications are 0.1 and V_{CC} –0.1 volt, very close to ground and V_{CC} , respectively. Fig. 2(a) illustrates that no I_{CC} will flow with these V_{OL} and V_{OH} voltage levels imposed. However, if inputs are driven beyond V_{IL} and V_{IH} toward the switching voltage (centered typically at 2.3 volts), appreciable I_{CC} will flow. Such a high-current situation exists when an attempt is made to drive an HC input with a

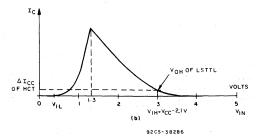


Fig. 2 - (a) HC input, CMOS interface, (b) HCT input, TTL interface.

TTL output. For example, with a TTL V_{OH} level of 3 volts driving an HC input, not only would a logic error exist, but several milliamperes of $I_{\rm CC}$ would flow. To overcome this problem, an external pull-up resistor could be used, as shown in Fig. 3, but the resistor would cause significant additional system power consumption because it would have to be kept small in value in order to keep system speed high. RCA HCT QMOS devices are the preferred solution when interfacing CMOS with TTL logic.

In power-critical applications, such as portable batteryoperated equipment or equipment operating in a batterypowered stand-by mode, HC quiescent power consumption may be a significant component of battery drain. The following formula is used to compute HC quiescent power consumption:

$$P_{dc} = V_{cc}I_{cc} \tag{1}$$

where V_{CC} is dependent upon the particular application, and I_{CC} is obtained from the data sheet of the particular device for a V_{CC} of 6 volts (HC types). The data sheet value given is also valid within the nominal 5 V \pm 10% supply-voltage range of HCT types. The value of I_{CC} at V_{CC} = 6 V can be linearly reduced for any desired V_{CC} voltage; e.g., at V_{CC} = 2 V, use 1/3 of the limits shown in Table I.

Table I - 54/74HC Family Charact	teristics	,
----------------------------------	-----------	---

1.04			Temperature (° C) 54HC/74HC 74HC 54HC									
Symbol	Parameter	1			54	НС	Units	Test Conditions				
		Vcc	25		25		-40	-40 to 85 -55 to 12		-55 to 125		
7		(V)	Min.	Max.	Min.	Max.	Min.	Max.				
Icc	Quiescent							-				
	Supply Current	1	- 1				1	1				
	SSI	6	_	2	_	20	l —	40	μΑ	$V_1 = V_{CC}$ or GND		
	FF	6		4		40	_	80	μΑ	I ₀ = 0		
	MSI	6	_	8		80	 	160	μΑ			

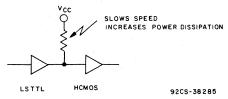


Fig. 3 - Use of pull-up resistor in LSTTL/HC interface.

Computing HCT Quiescent Power Consumption

Because HCT devices can be substituted for LSTTL devices and/or mixed with LS, ALS, AS, or FAST-TTL-family ICs in a system, their consumption of larger amounts of dc power than HC types is not significant. TTL worst-case output voltages are: $V_{\text{OL}}=0.4\ V(\text{max})$ and $V_{\text{OH}}=V_{\text{CC}}-2.1\ V(\text{min})$. The V_{OH} (or logic 1) voltages result in the ΔI_{CC} current flow illustrated in Fig. 2(b) and already described above. Note that only a logic-1 input causes appreciable quiescent leakage-current flow; a logic-0 input (0.4 V(max)) is close enough to ground to turn the NMOS transistor fully off. The total HCT-device quiescent power consumption is a function of the number of logic-1 inputs applied at the V_{IH} voltage level.

QMOS HCT data sheets specify ΔI_{CC} at the worst-case input voltage of V_{CC} – 2.1 V for V_{CC} ranging from 4.5 volts to 5.5 volts, with normalized limits as shown in Table II. ΔI_{CC} is further specified on a per-input-pin basis. This method of specification allows more accurate calculations if all the functions within a device are not being used or are being used at different input levels. For example, assume that two gates of an HCT10, a triple 3-input NAND Gate, are being driven by a TTL device with a 50% duty cycle. Given the information in Table II, quiescent power dissipation is calculated as follows:

 $P_{dc} = V_{cc}I_{cc} + V_{cc}\Delta I_{cc}$ (percent duty cycle high) (2) where ΔI_{cc} is calculated on a unit-load basis as follows:

$$I_{CC}$$
 = (360 μ A/unit load) x (0.6 unit loads/input pin) x (6 input pins) (3) = 1.3 mA

Therefore:

 $P_{dc} = (5 \text{ V})(2 \mu\text{A}) + (1.3 \text{ mA}) \approx 6.5 \text{ mW}$

Note that if all of the inputs of an HCT device are driven by HC or equivalent CMOS output levels, only equation (1) need be used to calculate its static power dissipation. Note also that if a 50% duty cycle is assumed for input signals, the average dc power is 3.25 milliwatts for the HCT type. This figure compares with 35 milliwatts for a 74LS10 IC, and shows that the HCT device still provides a big savings in power, even in the worst-case application.

DYNAMIC POWER CONSUMPTION

Three factors affect QMOS dynamic power consumption:

Load capacitance - dissipation of output state, Fig. 4. Internal circuit capacitance

Switching transition currents (when complementary transistors used in switching are both momentarily on)

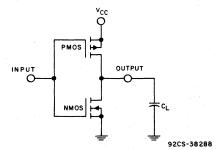


Fig. 4 - Simple QMOS inverter circuit driving a capacitive load.

For power calculation purposes, the load caused by internal device capacitance and switching transition currents is represented in one effective capacitance defined and specified as the $C_{pd},\,power$ dissipation capacitance, the effective internal device capacitance used for operating-

Table II - QMOS HC/HCT10 Static Electrical Characteristics and HCT Input Loading Tat	c Electrical Characteristics and HCT Input Loading Table
--	--

		-		CD74	HC10	/CD54	HC10)					CD74	HCT1	0/CD	54HC	T10			
		Test			HC/54		1	НС		нс	Tes			CT/54			НСТ		нст	
Charac-		onditio			Series			ries		ries	Condit			Series			ries		ries	Units
teristic	V,	lo	V _{CC}		+25° C	;	-40/ 1	·85° C	_	56/ 5° C	V _i	Vcc		+25° C	; 	-40/-	⊦85° C	1	55/ 25° C	
	(V)	(mA)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	1
Qui-	Vcc										V _{cc}									
escent	or	0	6	_		2	_	20	_	40	or	5.5	_		2		20	_	40	μΑ
Device	Gnd										Gnd									
Current																				
l _{cc}									ļ									· .		
Quiescer	nt Dev	/ice								1.1		4.5								
Device C	urren	it									V _{cc} -2.1	to	_	100	360	l	450	_	490	μΑ
per input	pin:											5.5					1	1		
1 unit loa	ad	ΔI_{cc}												l	l			1		

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{cc} = 5.5 V) specification is 1.4 mA.

HCT Input Loading Table

Input	Unit Loads*
All	0.6

^{*}Unit Load is Δ Icc limit specified in Static Characteristics Chart, e.g., 360 μ A max. at 25° C.

power calculations. Each of the above power-consuming factors, along with C_{pd} , are explained in further detail below.

Unlike quiescent power consumption, dynamic, or operating-power, consumption is computed in the same way for both HC and HCT devices. Therefore, throughout this section, all equations presented are applicable to both HC and HCT devices.

Internal Capacitance

Inherent in any active semiconductor is internal parasitic capacitance, i.e., capacitance present in diode junctions, MOS transistor structures, and metal and polysilicon interconnections. This internal capacitance produces the same effect on internal active circuits as external capacitive loads, and varies from one device to another depending on the complexity of the device.

QMOS devices are fabricated by means of a self-aligned polysilicon gate process (3-micron gate length) to reduce this internal capacitance. This process minimizes gate-to-source and gate-to-drain capacitances. Junction capacitances, which are proportional to the junction area, are also reduced because shallower diffusions are utilized.

Fig. 5 illustrates the device parasitic capacitance present in a CMOS inverter.

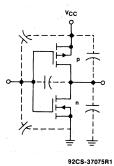


Fig. 5 - Parasitic capacitances in a CMOS inverter.

Switching Transients

When the basic QMOS inverter circuit, Fig. 6(a), is switching states, either from a logic 1 to a logic 0 or vice-versa, both transistors will be on for a short period of time. This

condition creates a momentary low-resistance path between V_{CC} and ground, Fig. 6(b). In this transient state, a momentary dc supply current flows and power is consumed. This low-resistance path is obviously a function of the number of transitions the device makes as well as the input-signal rise and fall time. In other words, power loss resulting from internal device switching is proportional to the input frequency (as is power loss due to internal capacitance).

Power-Dissipation Capacitance

Since power losses resulting from both net internal device capacitance and switching transient currents are frequency dependent, one term representing both factors is used for practical power-consumption calculations. This term is specified as $C_{\rm pd}$, the no-load power dissipation capacitance. 2 $C_{\rm pd}$ is defined for each QMOS device in each data sheet. Further, it is specified per logic function, that is, for each gate or flip-flop within a device. This method allows for more accurate power consumption calculations when logic functions are operating at different frequencies.

Since C_{pd} encompasses both internal capacitance and switching loads, the internal device operating power per logic function is:

$$P_{pd} = C_{pd} V_{CC}^2 f \tag{4}$$

where f is the operating frequency of the function.

COMPUTING HC AND HCT TOTAL POWER DISSIPATION

The formulas for total QMOS power dissipation are a combination of both static and dynamic power-consuming states. For HC devices:

$$P_{\text{total}} = V_{\text{CC}}I_{\text{CC}} + C_{\text{pd}}V_{\text{CC}}^2 f_{\text{in}} + C_{\text{L}}V_{\text{CC}}^2 f_{\text{out}}$$
 (5)

Total HCT power dissipation, when driven by TTL logic, is computed as follows:

$$\begin{split} &P_{total} = V_{cc}I_{cc} + \Delta I_{cc}V_{cc}D + C_{pd}V_{cc}{}^2f_{in} + C_LV_{cc}{}^2f_{out} & (6) \\ &Where \ D = Percent \ duty \ cycle \ High \end{split}$$

For HCT devices driven by HC devices, or at equivalent I/O voltage levels, equation (5) is used because the input voltage is essentially at V_{CC} , not at V_{CC} - 2.1 V.

QMOS VERSUS LS AND ALS POWER CONSUMPTION

In any integrated circuit, there exists a balance between speed and power consumption. LSTTL logic is relatively fast, but the bipolar circuitry used consumes considerable amounts of dc power. ALSTTL improves upon LSTTL by utilizing advanced finer-line geometry designs and ap-

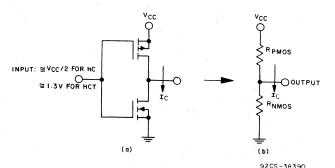


Fig. 6 - (a) Simple QMOS inverter circuit, (b) equivalent schematic of a QMOS inverter whose transistors represent a low resistance path between V_{CC} and ground.

propriately finer fabrication techniques. These improvements both increase speed and decrease dc power consumption by about 50% total for both factors.

CMOS devices consume minute amounts of quiescent power compared to any given TTL bipolar-logic-family device. However, until the development of the QMOS line of logic devices, CMOS devices were relatively slow. Now, QMOS types, by utilizing finer-line design and fabrication techniques, not only consume the minute amounts of dc and operating power of a CMOS device (depending on operating frequency, as previously defined in equations (5) and (6)), but are fast, as described below.

A popular way to illustrate the differences between IC logic families and their technologies is shown in Fig. 7. In the

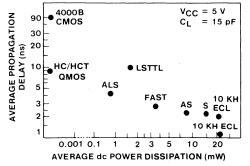


Fig. 7 - Speed/power spectrum for the popular logic technologies.

figure, a 2-input NAND gate is used to illustrate the dc power consumption versus the typical propagation delay for a number of technologies.

Table III is a compilation of speed/power products, in picojoules, for two CMOS-logic families and four TTL bipolar-logic families. In the table, SSI and MSI-complexity devices and those with complex flip-flop arrangements are used to illustrate speed/power differences. The major advantages of the new high-speed QMOS (HC/HCT) logic families are apparent:

- CMOS logic families have a 10³ speed/power advantage over TTL logic families.
- Maximum dc power savings using CMOS are far greater for the more complex MSI logic functions. As shown, a TTLAS160 device consumes 5 x 10³ times more dc power than an HC160.
- QMOS (HC) logic is approximately 10 times faster than equivalent CMOS devices; but retains the ultra-low dc power consumption of CMOS.

Fig. 8 illustrates the operating power consumption for SSI through MSI, QMOS, and LS devices. Note from the figures that CMOS devices realize their true power savings, from dc to several MHz, depending on device type and complexity. QMOS devices consume significant power only when switching, not when idling. TTL's continuous power consumption is the result of the many active bipolar transistors that must be continuously biased.

Fig. 8 also shows that as device complexity increases, the frequency at which CMOS and TTL devices consume the same amount of power increases, as would be expected.

Generic Type	Logic Family	Max. Prop. Delay ¹ (ns)	Max. Power Dissipation ² (mW)	Speed/Power Product³ (pj)
Gate	CMOS HC00	18	.01	.18
	CD4011	250	.001	.25
	TTL ALSO0	13	16.5	215
	LS00	15 (15 pF)	24	363
	AS00	4	95.7	283
	FAST00	5	51	255
FF	CMOS HC74	32	.022	.70
	CD4013	300	.006	1.8
	TTL ALS74	17	22	374
	LS74	40 (15 pF)	44	1760
	AS74	8.5	88	748
	FAST74	8	88	704
MSI	CMOS HC160	35	.044	1.5
Counters	CD40160	400	.028	11.2
	TTL ASL160	17	116	1964
	LS160	27 (15 pF)	176	4752
	AS160	6	220	1320
1	FAST 160	10	275	2750

Table III - Speed Power Comparison - Major TTL and CMOS Logic Families

^{1.} V_{CC} = 5 V, C_L = 50 pF (15 pF for LS), T_A = 25° C, max. high or low state.

^{2.} $V_{CC} = 5.5 \text{ V} - \text{max}$. dc high or low output conditions.

^{3.} Product of max. prop. delay and max. power dissipation.

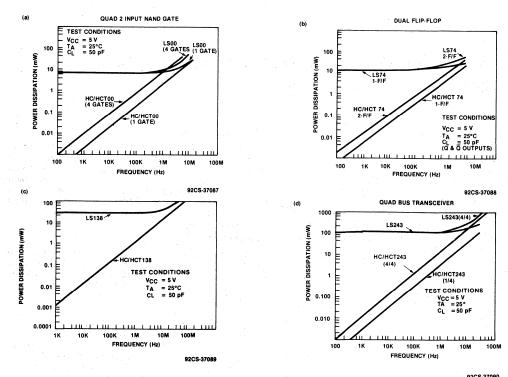


Fig. 8 - Power versus supply graphs for the (a) LS/HC00, (b) LS/HC74, (c) LS/HCT138, and (d) LS/HC243.

QMOS devices also consume more quiescent power as device complexity increases, but the leakage currents that cause the power consumption are of such small magnitude that they can (in most cases) be ignored (see Table I).

The subject figures also illustrate the operating power differences for one function or n functions in an IC package operating at the frequencies shown.

The power-consumption characteristics of these different logic families are easily translated into total system power. Fig. 9 illustrates the power consumed by the different logic families in a small logic system (one gate and two flipflops). The figure shows that QMOS substantially outperforms TTL in power consumption at both the device and the system level.

REFERENCES

- The QMOS family consists mainly of two series, the HC, which features CMOS input-voltage-level compatibility, and the HCT, which features LSTTL input-voltage-level compatibility. For a review of these series, see QMOS High-Speed CMOS Logic ICs, RCA Solid State DATABOOK SSD-290.
- See ref. 1 under "Description of QMOS Product Line" for discussion of C_{pd}.

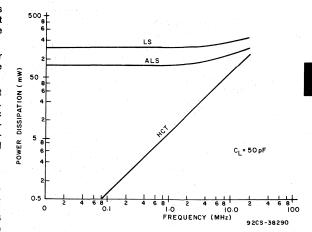


Fig. 9 - Power consumed by different logic families in a small logic system.

Modification of LSTTL Test Programs to Test HCT High-Speed-CMOS Logic ICs

by R. Funk

The QMOS HCT family of high-speed logic ICs is designed and specified not only to replace LSTTL devices having the same type numbers, but to interface with all TTL, CD4000B CMOS, and QMOS HC logic families. As such, it is indeed one of the more, and perhaps the most, interface-flexible logic family. In existing and new-equipment designs where LSTTL devices are, or could be, used, these devices are easily replaced by RCA's HCT logic family because of the several advantages its QMOS technology has over LSTTL:

- Much lower dc and operating-power requirements
- Improved dc noise margin
- Better balance in output current drive and switching speed
- Much lower input current and three-state output leakage current in high-impedance state
- Improved reliability because of lower junction temper-
- Wider 74-family operating temperature (-40°C to +85°C, not LSTTL's 0°C to 70°C)

But the switch from LSTTL to QMOS has made it necessary for test personnel to switch from the testing of LSTTL functions to the testing of the identical HCT functions; this Note has been written to make that switch as easy as possible. The widely used Teradyne J283 test system is used as a basic frame of reference in this Note; however, the test information given is applicable to most other test equipment and bench-test situations.

A few tests (depending on device tested) in the LSTTL test programs designed to test dc and function on the J283 system are invalid for use with HCT devices, and will consistently produce erroneous results. These tests are easily modified and made valid for QMOS general-logic types. A few additional tests require modification if bus drivers and transceivers are to be tested.

LSTTL TESTS REQUIRED TO BE MODIFIED FOR QMOS Input Current at $V_1 = 7 \text{ V (Appendix I)}$

Unlike the LSTTL circuit shown in Fig. 1(a), HCT circuits incorporate an input protection network, as shown in Fig. 1(b). Because of this network, input current will flow if the input voltage exceeds $V_{\rm CC}.$ Therefore, when testing HCT types, change the input voltage from 7 volts to $V_{\rm CC}.$ To test for the exact HCT low-level input leakage current, modify the input-voltage setting according to the dc characteristics for 54/74HCT circuits given in Appendix II of this Note.

Input Clamp Voltage

The HCT input-protection network incorporates a series resistor that will cause the input clamp voltage (with an input current of -18 milliamperes) to be much lower than the -1.5 volts specified for LSTTL. Since the input clamp voltage is not specified for HC circuits, this test could be omitted, or changed to have a conservative limit of -5 volts. This limit assumes a 200-ohm poly-resistor at the input plus -1.5 volts of diode-to-ground potential.

Output Short-Circuit Current

As shown in Appendix I, an LS02 has an I_{os} (short-circuit output current) of -20 to -100 milliamperes. Test one output at a time and do not exceed a one-second test-time duration. For QMOS, make the following current-limit changes:

Standard Logic Types: -20 mA to -70 mA Bus Driver Types: -40 mA to -90 mA

Note that the l_{os} test is nonstandard for QMOS HC or HCT types. The standard specified t_{TLH} and t_{THL} (transition times, low-to-high and high-to-low) values in QMOS specifications are a preferred method of directly measuring output speed. The l_{os} limits are considered to be an indirect (and inaccurate) method of measuring the output sink and source speed characteristics for a given value of load capacitance.

Hysteresis (Bus Driver Types)

Many LSTTL bus-driver types undergo a ΔV_T test using a 0.2-volt-minimum hysteresis limit. For QMOS HC and HCT, change this minimum to zero volts or bypass this test.

Output-Voltage-Low Test Current (Bus-Driver Types)

LSTTL bus drivers have two specifications for V_{OL} (low-level output voltage) test current which must be modified as shown below for QMOS types:

*.		loi
Vol Maximum	LSTTL	HC/HCT Modification
0.4 V	12 mA	6 mA*
0.5 V	24 mA	8 mA
*Specified on Q	MOS data shee	ets

It appears from the table above that QMOS low-level output current is inferior to that of LS, i.e., 24 milliamperes versus only 8 milliamperes. However, the $l_{\rm OS}$ current and output $t_{\rm THL}$ of QMOS are similar to those of LS. The real significance of the 24 milliamperes is the ability of an LSTTL bus driver to directly drive a dc termination, as shown in Fig. 2(a). But

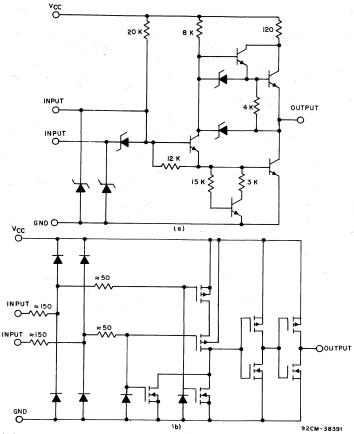


Fig. 1 - Comparison of LSTTL and HCT QMOS circuit structures: (a) two-input LSTTL NAND gate (1/4 54/74LS00), (b) two-input HCT QMOS NOR gate (1/4 CD54/74HCT02).

Fig. 2 - 100-ohm-line output termination: (a) LSTTL, 0.25 watt per output, (b) QMOS low-power alternative.

this ability represents a power dissipation of 0.25 watts per output section, and 2 watts per octal. For much lower power dissipation, use a QMOS type and a capacitively coupled 220-ohm resistor as shown in Fig. 2(b). The value of C in the figure depends on data rate.

Continuity Tests

Keep in mind that the QMOS input structure, Fig. 1(b), has a 150-ohm resistor in series with clamp diodes. Therefore, it is important to keep input current to ± 20 milliamperes maximum during continuity testing. With this amount of current, the test voltage is ± 5.5 volts maximum.

MORE COMPLETE TESTING OF HC OR HCT QMOS

To test HC or HCT QMOS ICs for low-power QMOS datasheet specifications, several tests other than those listed above may be modified. These modifications to existing LSTTL test limits or conditions are described below.

Quiescent Supply Current (Appendix II)

Setting supply current, I_{CC}, for the output-low condition test for HC circuits is no problem, but setting it for the output-high condition is more complicated. If the Teradyne J283 hardware has not been modified to handle CMOS, a comparator should be connected to each of the outputs of the HC circuit when it is placed under test. These comparators cause an extra load current of about 7 microamperes per output; the precise amount of current depends on the specific piece of test equipment. The extra load currents imposed are negligible compared with the I_{CC} of LSTTL circuits, and can be ignored when testing them.

However, these currents can be very significant compared with the total $I_{\rm CC}$ of an HC type, and must be taken into account when testing HC QMOS types. A solution to this problem is to connect the high outputs of the HC type to $V_{\rm CC}$ so that they are excluded from the $I_{\rm CC}$ measuring path. This connection can be made with the Teradyne J283 MTEST VCC1 A B C D, where A, B, C, and D are the outputs in the high state.

High-Impedance (Off-State) Current For Types Having Three-State Outputs

The high-impedance (off-state) LSTTL tests can be run for QMOS types, but only with much tighter limits, as shown below:

	LSTTL	QMOS
loz	20 μA	5 <i>μ</i> Α

where loz is three-state output off-state current.

Input Leakage Current (All QMOS Types)

Input-leakage-current LSTTL tests can also be run for QMOS devices but, again, with much tighter limits imposed, as shown below:

	LSTTL	QMOS
l _{IL}	-400 or -800 μA	-1 <i>μ</i> Α
l _{IH}	+20 μA or +40 μA	+1 <i>μ</i> Α

where $I_{\rm IL}$ is low-level input current and $I_{\rm IH}$ is high-level input current.

FUNCTION TESTING

QMOS and LSTTL types with the same type numbers have identical truth tables. High level (V_{OH}), low level (V_{OL}), and three-state (≈ 1.5 volts using LS load circuit) conditions are met when HCT devices are used in place of LS. If ac parameters are measured as part of function testing, LS speed limits are almost always met or improved upon.

Test personnel should be aware that actual ac specifications for HC and HCT QMOS logic ICs are much more realistic than for LS, as shown in the ac test-specification comparison in Table I. Therefore, anyone wishing to test ac parameters should use the specifications and waveform definitions found in the prime source of QMOS information, the QMOS DATABOOK.¹

Table I - AC Test-Specification Comparison

Parameter	LSTTL	HCT QMOS
CL	15/45 pF	50 pF
Vcc	5 V .	4.5 V
Temperature	25° C	25° C,
•		74 (-40 to +85° C)
		54 (-55 to +125°C)

REFERENCE

 QMOS High-Speed CMOS Logic ICs, RCA Solid State DATABOOK SSD-290.

Appendix I - DC Characteristics for LSTTL Circuits

These figures are for positive-logic NAND gates and inverters with totem-pole outputs. For the characteristics of other types, refer to published data for LSTTL circuits.

Voltages are referenced to GND (ground = 0 V).

				54LS			74LS			
Parameter	Vcc	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	Conditions
Operating temperature	*	T_{amb}	-55	_	125	0	_	70	°C	
High-level input voltage	*	ViH	2	_	_	2		_	٧	
Low-level input voltage	*	VIL			8.0		-	0.8	٧	
Input clamp voltage	min.	Vik			-1.5			-1.5	٧	$I_1 = -18 \text{ mA}$
High-level output voltage	min.	VoH	2.5	3.4		2.7	3.4		٧	$V_{IL} = max., I_{OH} = -400 \mu A$
Low-level output voltage	min.	VoL		0.25	0.4			0.4	٧	$V_{IH} = 2 V, I_{OL} = 4 mA$
Low-level output voltage	min.	VoL	_		_	_	0.25	0.5	٧	$V_{IH} = 2 V, I_{OL} = 8 mA$
Input current at V _I = 7 V	max.	l ₁			0.1	_		0.1	mΑ	
High-level input current	max.	h _H		_	20	-		20	μΑ	V _{IH} = 2.7 V
Low-level input current	max.	f _{iL}			-0.4	_		-0.4	mΑ	$V_{IL} = 0.4 V$
Short-circuit output current	max.	los	-20	_	-100	-20	_	-100	mΑ	

^{*}Over Vcc range.

Notes:

For 54LS, Vcc = 4.5 V to 5.5 V; for 74LS, Vcc = 4.75 V to 5.25 V.

All typical values are at V_{CC} = 5 V, T_{amb} = 25°C.

For short-circuit output current, only one output must be shorted, and for not more than one second

μΑ

 $I_0 = 0$

160

80

Appendix II - DC Characteristics for the CD54/74HCT Family of Circuits Voltages are referenced to GND (ground = 0 V)

Tamb (°C) CD54HCT/74HCT CD74HCT CD54HCT -40 to +85 -55 to +125 $\mathbf{V}_{\mathbf{CC}}$ Conditions Other **Parameter** (V) **Symbol** Min. Typ. Max. Min. Max. Min. Max. Units V 4.5-5.5 High-level input voltage V_{IH} ٧ V_{IL} Low-level input voltage 4.5-5.5 0.8 0.8 0.8 ٧ High-level output voltage 4.5 Voн 4.4 4.5 4.4 4.4 ٧ V_{IH} or V_{IL} $-I_0 = 20 \mu A$ all outputs High-level output voltage 4.5 Voн 3.98 3.84 3.7 ٧ VIH or VIL -lo = 4 mA standard outputs High-level output voltage 4.5 Voн 3.84 3.98 3.7 ٧ VIH or VIL -lo = 6 mA bus-driver outputs Low-level output voltage 4.5 Vol 0 0.1 0.1 0.1 V_{IH} or V_{IL} $I_0 = 20 \mu A$ all outputs Low-level output voltage 4.5 V_{OL} 0.26 0.33 0.4 ٧ VIH Or VIL Io = 4 mA standard outputs Low-level output voltage 4.5 V_{OL} 0.33 0.26 0.4 ٧ VIH or VIL Io = 6 mA bus-driver outputs Input leakage current 5.5 $\pm l_1$ μΑ 0.1 1 VIH or VIL VIH OF VIL Vs = VCC Analog switch off-state 5.5 ±Ιs 0.1 μΑ 1 1 current per channel $\pm I_{OZ}$ μΑ 3-state output off-state 5.5 0.5 5 10 VIH Or VIL V_0 * current Quiescent supply current SSI 5.5 lcc 2 20 40 μΑ Vcc or $I_0 = 0$ $I_0 = 0$ Flip-flops 40 80 μΑ GND 5.5 4 lcc

lcc

MŚI

^{5.5} *Vo = Vcc or GND per input pin; other inputs at Vcc or GND; Io = 0.

Interfacing HC/HCT QMOS Logic with Other Families and Various Types of Loads

by R. Funk

The demand for smaller, lighter, electronic equipment that consumes little power is constant. And today's logic designers want these qualities matched by digital logic with high operating speeds. However, speed and power, while perhaps paramount in the initial choice of a logic family, are not the only basis for decision. Another very important factor is interface flexibility: the inherent capacity of a family to interface with other logic families and to drive various loads.

This Application Note describes the interface capability of the new high-speed CMOS CD54/74 HC/HCT logic families, probably the most interface-capable families yet devised. Fig. 1 illustrates the low dc power consumption and high speed of the HC/HCT families, both prime qualities for interfacing flexibility. Table I lists other important qualities. All of these characteristics, along with HC/HCT-family static and dynamic noise immunity, are discussed in this Note. The Note describes in detail HC/HCT interfaces with LSTTL, CMOS CD4000B-series, NMOS, and ECL devices, and interfaces with terminated buses, displays, and relay or stepping-motor coils, including interfaces with nonstandard output levels.

INTERFACE CONSIDERATIONS

Fig. 1 shows that the speeds of the HC, HCT, and LSTTL logic families are equivalent. In fact, the HCT family is a low-power replacement for the LSTTL family, and is interface compatible with all TTL families. The HC family is a low-power, high-noise-immunity alternative to the LSTTL family, and like the HCT family, will drive all TTL and CMOS families directly at various fanouts, depending on family.

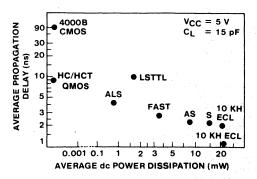


Fig. 1 - Logic-family speed-power chart.

Table II is a tabulation of interface techniques used between various popular logic families; the superiority of the HCT over the TTL family is evident. For example, the table shows there are 4 of 6 possible direct interfaces from HCT and only 2 of 6 for TTL.

CMOS and TTL Output Configurations

The typical output structure of an HC/HCT CMOS IC is shown in Fig. 2(a). When the output is high or low (V_{OH} or V_{OL}), its level is very close to V_{CC} or ground, respectively. In contrast, the high-level output voltage for the standard TTL

Table I - HC/HCT Family Characteristics

Characteristic	нс	нст
Supply Voltage	2 V to 6 V	4.5 V to 5.5 V rated 2 V to 6 V capability
Temperature (74 family) Input Switching Voltage	-40° C to +85° C	-40°C to +85°C
For V _{cc} =5 V: Typical Worst Case	2.5 V 1 V to 3.5 V	1.4 V 0.8 V to 2 V (same as TTL families)
Output Valtaga		(bamb as 112 families)
Output Voltage: Driving other CMOS Logic Driving TTL (VoL) (Voн)	GND to V_{CC} 0.4 V (10-15 LSTTL loads) 3.7 V	GND to V _{CC} 0.4 V (10-15 LSTTL loads) 3.7 V
Typ. Output Transition for $C_L = 50$ pF	7 ns (balanced)	7 ns (balanced)
Input Current (typ.)	10 pA	10 pA

Table II - Interfacin	HC/HCT QMOS to	Other Logic Families
-----------------------	----------------	----------------------

TO:	HC 5 V Supply	HCT 5 V Supply	CD5000B 5 V Supply	CD4000B 6-15 V Supply	TTL* 5 V Supply	ECL 10K
HC—5 V supply	direct	direct	direct	CD4504**	direct	10124
HCT—5 V supply	direct	direct	direct	CD4504**	direct	10124
CD4000B—5 V supply	direct	direct	direct	CD4504**	direct	10124
CD4000B 6-15 V supply	4049 or 4050	4049 or 4050	4049 or 4050	direct	4049 or 4050	transistor
TTL*—5 V supply	pull-up resistor	direct	pull-up resistor	CD4504**	direct	10124
ECL—10K/KH	10125	10125	10125	transistor	10124	direct

^{*}Includes LS, S, STD, FAST, ALS, and AS.

^{**}An alternative is a pull-up resistor and the CD40109 type.

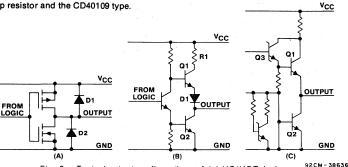


Fig. 2 - Typical output configurations of: (a) HC/HCT devices - D1 and D2 are the inherent diodes of the p-drain and the n-drain, respectively, (b) standard TTL, and (c) low-power Schottky TTL (LSTTL).

circuit shown in Fig. 2(b) is limited by the VBE of Q1 plus the voltage drop across D1, resulting in a maximum VoH of 3.5 volts at a Vcc of 5 volts. Further, if a collector current is flowing, R1 will cause an additional voltage drop, and the worst-case Von minimum specified for TTL, 2.4 volts (at long maximum) over the full temperature and power supply range, may be realized. The low-level output voltage for TTL is the collector/emitter saturation voltage of Q2, and Vol. will range from 0.2 volt to 0.5 volt maximum depending on the fanout and, hence, total sink current.

In the output structure for the LSTTL device of Fig. 2(c), VoH is limited by the VBE of both Q1 and Q3 (the diode is not considered a part of the LSTTL output structure) and is typically 3.4 volts. LSTTL specifications quote Von(min) as 2.7 volts over the full temperature range with a Vcc(min) of 4.75 volts. The maximum value of Vol for LSTTL can, again, range from 0.2 to 0.5 volt depending on application and temperature conditions.

CMOS Input Structures

The input structure for HC/HCT devices is shown in Fig. 3(a). Under normal operating conditions, the input voltage should swing within the supply voltage limits of Vcc and ground, since exceeding these limits can cause a current to flow through the input protection diodes, D1 and D2. The maximum transient current permitted through these diodes is 20 milliamperes; if this limit is exceeded, the functionality of the circuit could be impaired. As the MOS transistors Q1 and Q2 are electrically identical, the typical input switching voltage of the HC device is Vcc/2.

The input configuration for HCT devices is similar to that for HC circuits, but with the addition of a level-shifting diode, D3, between PMOS transistor Q1 and Vcc. This configuration is shown in Fig. 3(b). The effect of D3, combined with the large NMOS transistor Q2, which has a higher gain than PMOS transistor Q1, is to reduce the input switching level to, typically, 1.4 volts.

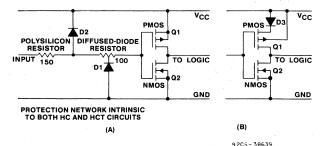


Fig. 3 - Typical input structures of: (a) HC devices, and (b) HCT devices.

The advantage of diode D3 is that it reduces power dissipation when a high input from a TTL output is applied. This high level can be as low as 2.4 volts, and although it will be recognized as a logic 1, the PMOS transistor Q1 will not be fully cut off, allowing a flowthrough current between $V_{\rm CC}$ and ground. However, D3, and the influence of the backgate (substrate) connection of Q1 to $V_{\rm CC}$, dramatically reduces the flowthrough current and, therefore, reduces the power dissipation in the input stage while maintaining device input switching levels compatible with LSTTL.

HC/HCT INTERFACES

When HCT and LSTTL devices operate from the same supply, the quiescent flowthrough current, I_{c} , at V_{IH} = 2.4 V and V_{CC} = 4.5 V is typically only 100 microamperes. This means that the HCT input structure provides low CMOStype power dissipation, even when driven from TTL. If V_{CC} is increased to 5.5 volts, the minimum high-level output voltage also rises 1 volt to 3.4 volts.

When interfacing LSTTL with HC/HCT devices in a dualsupply-voltage system, the following worst-case conditions apply:

V_{OH}(min) for TTL = 2.4 V V_{OH}(min) for LSTTL = 2.7 V and

V_{IH}(min) for HC devices = 3.85 V (70% of V_{cc})

V_{IH}(min) for HCT devices = 2 V

where V_{CC} = 4.75 V for TTL and 5.5 V for HC devices over the full operating temperature range.

It is clear from the above figures that the worst-case TTL high-level output voltage is less than the minimum high-level input voltage for HC devices, and that some special interface technique is required. A solution is provided in the circuit in Fig. 4(a), where pull-up resistor R1 pulls the output

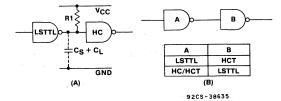


Fig. 4 - Techniques for interfacing: (a) LSTTL with HC devices, and (b) LSTTL with HCT devices, and HC/HCT with LSTTL devices.

voltage of the LSTTL against $V_{\rm CC}$. However, this technique is not recommended because the time-constant formed by the pull-up resistor and the stray capacitance (Cs), plus the load capacitance (C_L), will increase the propagation delay. Furthermore, with this set-up, the propagation time is less predictable because it relies on both active and passive RC time-constants.

Although a low value for R1 will reduce the propagation delay, it will lead to extra power consumption and reduce the noise-margin-low (discussed further below under Noise Immunity) due to the active load. Both of these unwanted occurrences conflict with the purpose of using HC family devices. In addition, the pull-up resistor requires board space and insertion time, thus increasing production costs. Therefore, the pull-up resistor interface should be used only if unavoidable. The practical solution is to use HCT devices (all types in the CD54/74 family are available in both HC and HCT versions), which interface directly with LSTTL, as shown in Fig. 4(b).

Driving LSTTL

Since the output of HC devices swings between V_{cc} and ground, they are TTL-input compatible, and the interface is a direct connection, Fig. 4(b).

When an HCT device is the driving source for an LSTTL device, the speed can be accurately predicted because the LSTTL logic-switching threshold of 1.3 volts is the same as that for HCT ICs. For HC driving sources, the speed difference introduced by the HC logic switching threshold of, typically, $V_{\rm Cc}/2$ can be calculated from the specified output transition times (obtained from the appropriate Data Sheets).

Table III gives the driving capability (fanout) of HC/HCT devices for the various TTL families.

Table III - Maximum Fanout for HC/HCT Driving TTL

Receiving Input	Standard Output	Bus-Driver Output
TTL	2	3
LSTTL	10	15
STTL	2	3
FAST	6	10

CD4000 B-Series CMOS

HC/HCT devices can be coupled directly to standard CD4000B-series CMOS ICs if they operate from the same supply voltage. However, if the circuits have different supply voltages, level shifting is necessary. The configuration shown in Fig. 5(a) illustrates the circuit for HC/HCT to CD4000B interfaces using the CD4504 low-to-high level shifter. Note that this IC is capable of interfacing either TTL output logic levels or CMOS logic levels to a higher output-voltage level. The reader is reminded that the CD4000B CMOS logic family may be operated up to 18 volts; the HC/HCT family operates at up to a 6-volt supply-voltage level, but also down as low as 2 volts.

Fig. 5(b) shows how to interface the CD4000B series with HC/HCT ICs using the CD4049/4050B or HC4049/4050 buffer ICs. These buffers do not have an input clamping diode to $V_{\rm CC}$, so that the maximum input level is 15 volts. The logic-level switching threshold remains referenced to $V_{\rm CC2}$; therefore, the noise-margin-low will be the same as for the 5-volt specification.

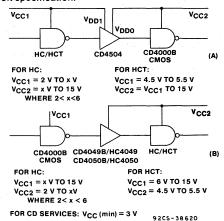


Fig. 5 - Techniques for interfacing: (a) HC/HCT devices with CD4000B series CMOS, and (b) CD4000B series CMOS with HC/HCT devices.

NMOS

The rules for interfacing TTL apply when interfacing HC/HCT devices with NMOS devices (microprocessors, memories, etc.) since NMOS ICs generally have TTL-compatible inputs and outputs. Exceptions are NMOS ICs with open-drain outputs, where a pull-up resistor must be used to load the output. The HCT device inputs directly accept active NMOS output-voltage levels.

ECL 10K

To interface HC/HCT ICs with ECL 10K-series logic, the 10124 TTL-to-ECL and the 10125 ECL-to-TTL translator ICs (for HC/HCT-to-ECL and ECL-to-HC/HCT interfaces, respectively) are used. Note that these devices operate at TTL levels. When employing the 10125 for interfacing HC circuits, the pull-up resistor, R1, must be used in accordance with the instructions for driving HC devices from TTL. The circuit configurations are shown in Figs. 6(a) and 6(b). Note that if an HCT device is used in the ECL interface (the definite preference) the pull-up resistor of Fig. 6(a) is eliminated.

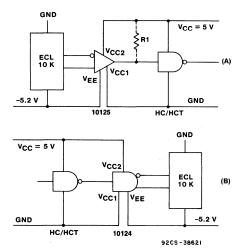


Fig. 6 - Techniques for interfacing: (a) ECL 10K logic with HC/HCT circuits - R1 is only required when driving HC types, and (b) HC/HCT devices with ECL 10K logic.

Terminated Buses

Buses are used chiefly in industrial applications. The harsh environments found in these applications impose several requirements on microprocessor-based systems; electrical-noise immunity and the need for battery back-up are two examples. The CMOS technology provides the ideal solution to these requirements. The HC CMOS devices offer superior noise immunity, similar operating speed, and lower power dissipation over a wider temperature and supply-voltage range in comparison with LSTTL ICs. The noise immunity in the low logic state is the same for HCT devices as for LSTTL.

The development of a new bus standard for CMOS systems should be based on the performance of the devices available with bus-driver outputs, for example, the CD54/74HC245 transceiver. Figs. 7(a) and 7(b) show examples of conventional TTL and HC/HCT bus terminations, respectively.

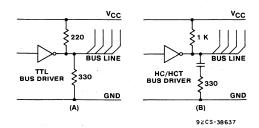


Fig. 7 - Examples of bus terminations used in: (a)conventional bipolar (TTL) technologies and (b) HC/HCT systems.

The particular disadvantage to the theveninized 120-ohm termination of Fig. 7(a), the conventional TTL bus termination, is the 0.25 watt dissipated continuously by the combination of the output driver and the 120-ohm load. This dissipation represents 2 watts for an octal buffer.

The HC/HCT-family bus drivers have a 6-milliampere sink current, not the 12 milliamperes of LSTTL, and are not designed to directly drive the 120-ohm load of Fig. 7(a) for two reasons: first, 2 watts dissipation does not represent a low-power solution, and second, HC/HCT outputs could be designed to match the very high 2-watt-dissipation application of Fig. 7(a), but would also generate much higher switching-current transients, which would push up EMI to inappropriately high levels. Therefore, the interface of Fig. 7(b) is preferred for its much lower power consumption and lower EMI. The value of C in Fig. 7(b) is carefully selected for the range of frequencies (data rates) on the bus.

HC/HCT devices do not generally have input hysteresis, so that Schmitt-trigger circuits should be used if slow, noisy bus rise and fall voltages call for hysteresis in the receiver. The CD54/74HC/HCT14 and 132 are two ICs that can be used for noise-tolerant systems. Five devices in the flip-flop series (CD54/74HC/HCT73, 74, 107, 109, and 112) also have Schmitt triggers in the clock input. Note that HC devices are preferred over HCT devices as bus receivers because of their high low-level-input noise margin (typically 2 volts).

Nonstandard Levels

In many applications, CD54/74 high-speed CMOS ICs will have to interface with nonstandard input and output levels, for example, with industrial or automotive systems operating from a 12 to 24-volt supply. The circuits in Figs. 8(a) and 8(b) show the basic design rules for these interfaces. Fig. 8(c) illustrates an example of a user-edge input circuit for interfacing with input levels greater than $V_{\rm CC}$. The configuration for HC/HCT devices driving loads from an external power supply is given in Fig. 9(a). Figs. 9(b) and 9(c) show HC/HCT devices driving loads (for example, a relay) on the same supply voltage.

Fig. 10(a) is an interesting low-cost but also lower-speed high-to-low interface: 12 to 5-volt logic levels using only 100-kilohm resistors in series with each input. Fig. 10(b) shows why this interface is reliable with good noise margins; RCA HC/HCT designs guarantee that forced input current into $V_{\rm CC}$ will result in less than 0.05 of this current flowing into ground. In Fig. 10(b), $V_{\rm IL}$ at B is less than 0.34 volt, well under the specified $V_{\rm IL}$ of 1-volt maximum. Other high-to-low voltage-interface combinations with different resistor values may be determined with knowledge of the 0.05 value of current gain (α) between adjacent inputs.

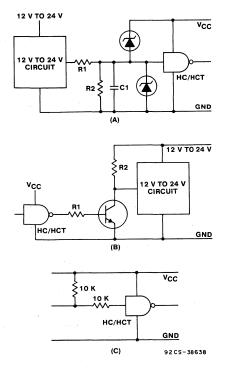


Fig. 8 - Technique for interfacing: (a) nonstandard logic levels with HC/HCT circuits - values of R1 and R2 depend on the output voltage of the driving circuit and C1 depends on the noise and speed, (b) HC/HCT devices with nonstandard logic levels - values of R1 and R2 depend on supply voltage and transistor type, and (c) a useredge input circuit configuration for interfacing with input voltages greater than Vcc.

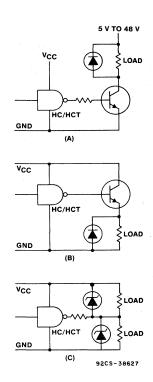


Fig. 9 - Interfacing loaded HC/HCT devices: (a) an external power supply via a transistor, (b) the same power supply via a transistor, (c) the interfacing of HC/HCT directly with loads on the same power supply.

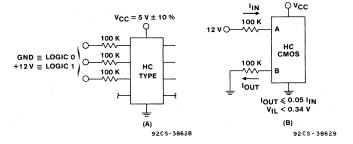


Fig. 10 - Low-cost, low-speed 12-volt-logic to 5-volt-logic interfaces.

The typical value of alpha (α) for the bipolar parasitic input transistor is 0.001. The low value of alpha is an important feature of the RCA HC/HCT family because it eliminates transient logic errors in the presence of transient voltages exceeding $V_{\rm CC}$ at any input.

Displays

The CMOS technology, with its rail-to-rail output switching,

is just as ideal for HC/HCT family devices driving LCD displays as it has been for CD4000B-series devices. Fig. 11(a) illustrates the basic BCD-to-7-segment LCD interface (HC/HCT4543) plus the single-segment LCD interface using the HC/HCT 86 type. The popular 4511 type is carried into the HC/HCT family for the basic LED BCD-to-7-segment interface, as illustrated in Fig. 11(b).

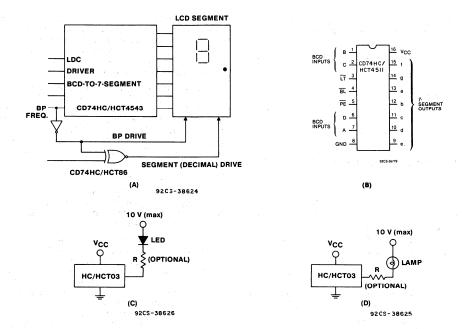


Fig. 11 - Display interfacing: (a) LCD, (b) and (c) LED, (d) lamp.

For single-segment LED interface, the open drain 74HC/HCT03 type is ideal, Fig. 11(c). Since the 03 type does not have an output-to-V_{CC} forward diode in its output circuit, the LED may be supplied by up to 10 volts. R may be useful in limiting current and reducing power. This same 03 type can also be used for driving an indicator lamp, as shown in Fig. 11(d).

Relay or Stepping Motor Coils

Another application of the open drain HC/HCT03 type is the relay or stepping motor interface shown in Fig. 12. The external diode across the coil absorbs the back emf of the coil.

L² MOSFET Power Transistor

RCA logic level (L^2) MOS power transistors, Fig. 13, are ideally driven by any HC/HCT output. Higher switching speeds, 200 nanoseconds, are achieved using the bus-drive output types. HC/HCT outputs will reliably switch these new L^2 MOS power devices using only a 5-volt supply for $V_{\rm CC}$; this is truly a breakthrough in power-transistor-interface applications cost.

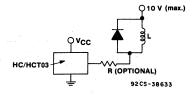


Fig. 12 - Coil driver.

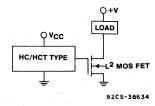


Fig. 13 - L² MOSFET power-transistor drive.

NOISE IMMUNITY IN THE HC/HCT FAMILY

General

The noise-immunity characteristics of logic devices can be divided into two categories, static and dynamic. Static noise immunity can be divided further into static noise-immunity-low, the difference between the $V_{\rm IL}({\rm max})$ of the receiving circuit and the $V_{\rm OL}({\rm max})$ from the driving current, and static noise-immunity-high, the difference between the $V_{\rm OH}({\rm min})$ from the driving circuit and the $V_{\rm IH}({\rm min})$ of the receiving circuit.

The guaranteed static noise-immunity characteristics for LSTTL and HC/HCT devices are shown in Table IV. If the static noise margins for LSTTL are assumed to be unity, (for both the high and low states), a direct comparison of LSTTL and HC/HCT static noise margins can be made by taking the ratio shown in Table V. These results are particularly impressive when the extended ambient temperature range and the lower supply voltage of the HC/HCT family is considered.

Supply Voltage (Vcc)

Table IV - Static Noise Margins for LSTTL at Vcc=4.75 V and HC/HCT Systems at Vcc=4.5 V

	LSTTL	HC	HCT
V _{OH} (min)	2.7 V	4.4 V	4.4
V _{IH} (min)	2 V	3.15 V	2
Noise-Margin-High	0.7 V	1.25 V	2.4 V
V _{IL} (max)	0.8 V	0.9 V	0.8 V
V _{OL} (max)	0.4 V	0.1 V	0.1 V
Noise-Margin-Low	0.4 V	0.8 V	0.7 V

Table V - Ratio of Static Noise Margins, LSTTL to HC/HCT

	LSTTL	нс	нст
Noise-Margin-High	1	1.75	3.4
Noise-Margin-Low	1	2	1.75
Ambient Temperatu	re		
Range (Tamb)	0 to +70°C	-40 to +85° C	-40 to +85°C

The graph in Fig. 14(a) compares the static noise margins for HC devices with those for LSTTL. The graph illustrates that while HC circuits can drive LSTTL (as $V_{OH}(min)$ for an HC device is greater than $V_{IH}(min)$ for an LSTTL device), the

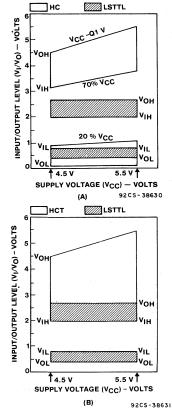


Fig. 14 - Static noise margins for: (a) HC devices compared with LSTTL, and (b) HCT devices compared with LSTTL in a mixed technology system.

converse is not true (since $V_{OH}(min)$ for LSTTL is less than $V_{OH}(min)$ for HC; there is no overlap in the noise-margin-high regions). Therefore, the noise-margin-high for LSTTL driving HC devices is said to be negative, which explains the reason for the problematical external pull-up resistor interface described in Fig. 4(a).

In a mixed-technology system with fully loaded HCT outputs driving LSTTL inputs, the static noise-margin-low is equal for both families, and the HCT devices exhibit an excellent static noise-margin-high that encompasses that displayed by LSTTL. This situation is illustrated by the graph in Fig. 14(b), which shows that HCT and LSTTL devices are fully interchangeable in a mixed-technology system

Dynamic noise immunity

4.5 V

4.5 V

Dynamic noise immunity for HC/HCT circuits also falls into two categories, high and low. The dynamic noise-margin-low is, again, the smaller of the two, and is, therefore, the parameter considered here.

To plot the dynamic noise-margin-low for HC/HCT devices, a pulse of known magnitude, V_P , is applied to the input of a device; its width, t_W , is then increased until the device just begins to switch. The input level on which V_P is based is equal to the switching voltage minus the worst-case static noise-margin-low. Pulse width, t_W , is measured at half pulse height, $V_P/2$, and the rise and fall times, t_r and t_r , are 0.6 nanosecond. V_P is reduced in increments and the t_W for each new value ascertained. The test is repeated over a series of varying supply voltages (V_{CC} between 2 and 6 volts for HC and at 5 volts for HCT) and output currents, I_P .

The resulting graphs in Figs. 15(a) and 15(b) illustrate the

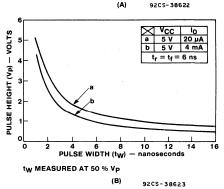


Fig. 15 - Dynamic noise immunity characteristics (worst-case, fully loaded driver) for: (a) HC devices and (b) HCT devices.

dynamic noise immunity characteristics of HC and HCT circuits, respectively. Note that an increase in Io lowers the curve and reduces the dynamic noise immunity. As these curves illustrate for the worst-case conditions with fully loaded HC/HCT devices, a system using only HC or HCT circuits will demonstrate an increase in dynamic noise

immunity, shifting the curves up 0.3 volt.

Derived from the typical input switching threshold levels of 1.3 and 2.5 volts for HC and HCT, respectively, the noise immunity characteristics will show a typical improvement of 0.8 volt in HCT systems and 1.2 volts in HC systems.

Power-Supply Distribution and Decoupling For QMOS High-Speed-Logic ICs

by R. Funk

The HC and HCT high-speed QMOS IC logic families available from RCA offer the user many advantages over TTL logic families. These advantages include much lower power consumption, better noise margin (mainly in the HC devices), wider operating-voltage range, wider operating-temperature range, lower input current, lower three-state current, superior high-to-low and low-to-high output transition time and propagation delay balance, and better reliability. However, HC/HCT CMOS does share one common liability with LSTTL: switching transients generated on the ground and supply rails can dangerously reduce logic noise margin if not compensated.

Higher speeds, faster edges, and higher output-drive currents cause higher-frequency current transients to be imposed on ground and $V_{\rm CC}$ rails of an IC. The familiar L di/dt voltage transient is developed, its value depending on the inductance in the ground or $V_{\rm CC}$ connection from chip to IC lead. For octal bus-driver types, one volt of L di/dt is possible depending on inductance, device decoupling, and power-supply decoupling. This Note focuses on power-supply distribution and decoupling to reduce switching noise. One source of this noise, an important system factor relative to IC switching, is rf radiated noise, noise that can interfere with communications in the local area. Some general ways to reduce L di/dt rf noise, i.e., voltage generation on ground and supply lines, are described below.

POWER DISTRIBUTION

Before decoupling can provide any noise reduction, there must first be a good power-distribution network. A good ground connection is vital, and so a good connection pattern is required.

The commonly accepted ground pattern shown in Fig. 1

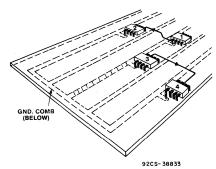


Fig. 1 - Common ground path on two-sided board.

can cause problems. In the figure, an output from device 1 drives an input to device 2, and an output from device 3 drives an input to device 4. Since the signal path 1 to 2 and 3 to 4 are not coupled, there should be no crosstalk. However, devices 1 and 3 share the crosshatched part of the ground line, as shown, and switching of the output of device 1 could produce a spike on the ground of device 3, causing the input to device 4 to switch. It is, therefore, advisable to reduce the single ground path on a double-sided board by using links, as shown in Fig. 2. This advice is especially true for boards

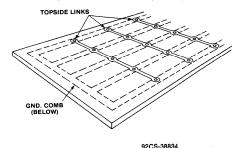


Fig. 2 - Reducing ground paths on two-sided board.

where high currents are switched. Avoid using jumpers like the one shown in Fig. 3 for ground and power line ($V_{\rm CC}$) connections. Jumpers are unlikely to be used in production printed-circuit boards, but they should also be avoided on prototype and single boards because the inductance they introduce into the lines permits coupling between outputs. Printed-circuit boards equipped with premanufactured ground connections or copper strips to connect the pins to ground should be used.

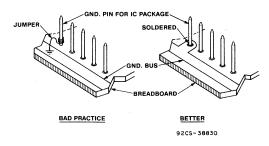


Fig. 3 - Ground connection on a logic board.

An even better solution is to use multilayer printed-circuit boards, where different layers can be used for the supply rails and the copper interconnections. The capacitive coupling between ground and $V_{\rm CC}$ is essential for high-frequency noise-pulse reduction. The capacitive coupling has the distinct advantage of being free from the inductive effects of the interconnections and, therefore, acts like a discrete decoupling capacitor.

Even with double-sided boards, it is advisable to have the $V_{\rm CC}$ and ground lines on opposite sides of the board wherever possible. A less expensive alternative to multilayer boards is the multiwire board, which offers the same high-frequency noise characteristics.

No matter what type of board is used, it is recommended that it have at least five ground pins per connector to assure ground-current distribution. The precautions taken with ground lines also apply to the $V_{\rm CC}$ line. Power-line stability is a must, a difference of only 0.5 V between $V_{\rm CC}$ lines can produce unwanted effects. It is advisable to provide separate power stabilization for each board to isolate noise sources and to eliminate large stabilizer circuits with their heavy-gauge (low-impedance) wiring to each board. However, care must be taken in designing power stabilization because a fault on a board's stabilizer circuit may be transmitted via the HC/HCT input structure to other boards, possibly causing damage.

DECOUPLING

No matter how good the V_{CC} and ground connections, all line-inductance effects cannot be avoided. This is where decoupling plays its part. Ceramic capacitors are the nearest approximation to ideal decoupling capacitors since they have almost no series inductance. But the advantage of using inductance-free capacitors is lost if long connections to the capacitor are used. These over-long connections can result in a tuned LC-circuit with a very high Q factor. The oscillations produced would have a worse effect on the circuit than if there were no decoupling at all. If it is not possible to make the decoupling connections shorter than 20 mm, place tracks in parallel, with a separation of at least one track width, as shown in Fig. 4. Making the connections thicker will have almost no effect.

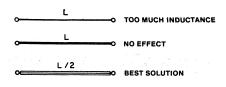


Fig. 4 - Comparison of decoupling tracks.

92CS-38831

The capacitors to be used should be carefully selected. Many capacitors are produced with leads bent, as shown in Fig. 5(a); these may introduce unwanted inductance. The best capacitors are those with leads shaped as in Fig. 5(b). In tests, good decoupling was obtained by using a minimum

- of:
- one 47 μF bulk capacitor per standard IC card
 one 1 μF tantalum capacitor per 10 packages of SSI logic
- one 22 nF ceramic capacitor for each octal bus-driver circuit and for each counter/shift register (MSI logic)
- one 22 nF ceramic capacitor per four packages of SSI logic

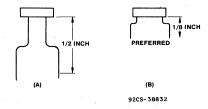


Fig. 5 - Optimum capacitor lead shape

Replacing LSTTL with QMOS High-Speed Logic ICs

by J. Nadolski

Until the development of RCA HC and HCT high-speed-CMOS logic ICs, high-speed logic devices were available only in the high-power-consuming bipolar technology. The HC/HCT QMOS family features LSTTL speed along with many performance features superior to LSTTL. HCT CMOS ICs have TTL-compatible input-voltage levels and are intended to be CMOS substitutes for bipolar LSTTL logic ICs of the same type. HC CMOS ICs have CMOS voltage-level input compatibility and feature high noise immunity in all-CMOS system designs.

Replacement of an LSTTL IC with an HCT IC provides the identical logic function, same pin out, same speed, and same general-purpose logic fanout of 10 LSTTL loads, but with much less power dissipation. LSTTL bus-driver types can drive 100-ohm transmission-line terminations, but at a huge sacrifice in system power consumption. Techniques that can be used to terminate 100-ohm lines, and other types of low-power terminations involving LSTTL and QMOS ICs, are presented in this Note.

PERFORMANCE COMPARISON

Of paramount importance in the comparison of LSTTL and QMOS (HCT) performance are the identical input-voltage specifications of the two technologies:

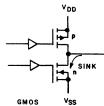
 $V_{IL}(max) = 0.8 V$ $V_{IH}(min) = 2 V$

Table I is a comparison of all applications-related parameters. It is evident from this table that not only does HCT QMOS substitute easily for LSTTL, but system performance is enhanced through such characteristics as better signal transition time and propagation delay balance, better noise margin, and lower supply and signal-line currents. The comparisons below follow the organization of Table I.

Power Consumption-(dc)—HCT power consumption is essentially zero in comparison to LSTTL. ac (operating)—HCT power is frequency dependent and comparable to LSTTL at continuously high operating frequencies. Generally, HCT power is much lower because average logic data rates are under 1 MHz.¹

Voltage—HC/HCT CMOS requires much less voltage regulation than LSTTL. HCT devices can actually operate at 2 to 6 volts, although they are specified for 4.5 to 5.5 volts.

Temperature—Commercial-grade HC/HCT CMOS is more realistically rated than LSTTL, -40° C to +85° C, not the very limiting 0 to +70° C of most LSTTL 74 families.


Noise Margin—HCT interfacing with HCT or with LSTTL provides improved noise margin, particularly at the high end of the operating range where outputs swing to 5 volts.

Stability—The CMOS input PMOS/NMOS pair has less switching-voltage shift with temperature variation than

LSTTL, an inherent circuit advantage compared to the LSTTL diode input design with its temperature sensitivity. This HCT advantage provides better noise margin over the device operating-temperature range and better stability of RC astable multivibrators with temperature variation when these circuits employ HCT ICs.

Output Drive Current—HC/HCT CMOS has better source current than LSTTL and sufficient sink current for LSTTL interfacing requirements. Sink current is lower than in LSTTL; this characteristic minimizes current spiking and EMI generation in RCA QMOS devices. This Note will delve into line terminations relative to sink current, the one area where differences in equipment design may exist depending on the high-speed logic family used.

Timing—The HC/HCT output-stage PMOS/NMOS transistors are designed for balance at saturation in order to provide balanced output transition times. All logic stages employ PMOS/NMOS transistor sizing, Fig. 1, to balance propagation delays, Fig. 2.

SINK AND SOURCE = 4 mA (STANDARD) IOLSTTL LOADS
CURRENT = 6 mA (BUS) 15 LSTTL LOADS

92CS-38673

Fig. 1 - Logic stage PMOS and NMOS transistor sizing to balance propagation delays.

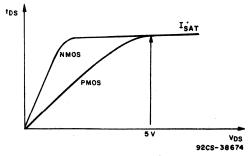


Fig. 2 - Balanced output transition time and propagation delay.

Table I - Comparison of Characteristics of HCT and LSTTL Circuits

Characteristic	QMOS CD74HCTXXXX	74LSTTLXXXX
Quiescent Power Per Gate Per Flip-Flop 4-Stage Counter Per Transceiver/Buffer	0.025 mW 0.05 mW 0.4 mW 0.1 mW	5.5 mW 10 mW 95 mW 60 mW
Operating Power Per Gate Per Flip-Flop 4-Stage Counter Per Transceiver/Buffer Operating Supply Voltage	Frequency In 0.1 MHz	Frequency In 0.1-1 MHz 10 MHz 5.5 mW \$\approxed{200} mW 10 mW \$\approxed{150} mW 95 mW \$\approxed{2120} mW 60 mW \$\approxed{290} mW 4.75 V to 5.25 V
	(HC) 2 V to 6 V	
Operating Temperature Range	-40°C to +85°C	0°C to +70°C
Noise Margin LS to LS HC to HC (High/Low) HCT to HCT	1.4 V/0.9 V 2.9 V/0.47 V	0.7 V/0.4 V — —
Input Switching Voltage Stability over Temp.	$V_{s}\pm 60~\text{mV}$	$V_{s}\pm 200~\text{mV}$
Output Drive Current Source Current at V _{OH} =2.4 V Sink Current Std. Logic V _{OL} =0.4 V Bus Logic V _{OL} =0.4 V V _{OL} =0.5 V	-8 mA 4 mA 6 mA 12 mA	-400 μA 4 mA 12 mA 24 mA
Output Transition Time* T _{TLH} T _{THL}	6 ns 6 ns	15 ns 6 ns
Typical Gate Propagation Delay:* t _{PHL} /t _{PLH} V _{CC} =5 V, C _L =15 pF	8 ns/8 ns	8 ns/11 ns
Typical Flip-Flop Propagation Delay: Vcc=5 V, CL=15 pF tplh tphL	14 ns 14 ns	15 ns 22 ns
Typical Clock Rate of a Flip-Flop	50 MHz	33 MHz
Input Current I _{IL} I _{IH}	-1 μA 1 μA	-0.4 to -0.8 mA 40 μA
3-State Output Leakage Current	±5 μA	±20 μA
Reliability %/1000 Hours at 60% Confidence	0.0019 (RCA Report)	0.008 (RADC Report)

^{*}Temperature Coefficient = 0.04 ns/pF for both QMOS and LSTTL.

Frequency—QMOS clock rates are often higher than LSTTL clock rates.

Input Current—A big difference between the two technologies is the relatively large continuous dc current that flows in LSTTL interconnect wiring. Essentially no dc input current flows in HC/HCT CMOS. Typically, a few picoamperes of input back-diode current flows. This HCT advantage means better buffering and a wider frequency range in RC oscillators.

Leakage Current—Bus designs are enhanced by a four-times-lower high-Z output leakage current in HC/HCT CMOS as compared to LSTTL. For low-power designs, larger values of terminating resistors can be used.

Reliability—Reliability at 85°C junction temperature is four times improved with HC/HCT CMOS ICs. In fact, since the higher internal IC dissipation of LSTTL raises junction temperature an average of 10°C per IC, reliability improvement is even greater than the four-times improvement indicated.

INPUT/BUS/TRANSMISSION-LINE TERMINATION

Termination at inputs and outputs may be different for HCT and LSTTL devices. It is good design practice to properly terminate all unused LSTTL inputs. HCT devices can then be substituted directly, provided the unused input is returned to V_{cc}, ground or through a 1.2 kilohm or higher pull-up resistor. Output terminations are handled differently.

A discussion of termination follows. It is primarily in I/O terminations that differences in circuit design could exist and, hence, require design changes when HCT is substituted for LSTTL.

INPUT TERMINATION

The termination of unused inputs in LSTTL is not absolutely necessary because of the internal pull-up of 1.2 kilohms; however, it is good design practice to terminate all unused inputs to prevent linear operation of input circuitry. Such operation causes the circuitry to draw more power than it would under normal operation. The typical resistor values used for pull-up in termination of LSTTL are between 220 ohms and 1.2 kilohms; typical pull-down values are between 680 ohms and 1 kilohm. Unlike the case with LSTTL devices, unused HCT inputs must be terminated since the input is a very high impedance and, if left open, could cause the input circuitry to float into a linear mode of operation, thus drawing excessive current or causing oscillation. HCT devices must be terminated to Vcc or ground or with a pull-up or pull-down resistor with a value of 1 kilohm to 1 megohm, as shown in Fig. 3. The large-value resistors reduce the power dissipation of the driving devices.

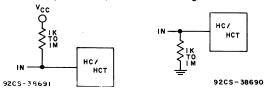
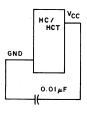


Fig. 3 - Methods of terminating HC I devices: (a) pull-up, (b) pull-down.


If an HCT c evice is to be used in a plug-in card system, all of the inputs from the card to the system \boldsymbol{must} be terminated with pull-up resistance of a minimum value of 10 kilohms. In equipment designs using HC or HCT CMOS devices, where the inputs may be terminated to V_{CC} , there is an inherent current when V_{CC} is momentarily at ground.

One of the major uses of LSTTL is in computer and microprocessor-based systems. Parts such as bus drivers, transceivers, octal latches, and line drivers are widely used. All of these parts have three-state outputs. Three-state outputs allow a large number of circuits to connect to the same data bus by creating an open circuit on the device's output when it is not being accessed or utilized. The buses are usually terminated by a pull-up or a pull-down resistor. This resistance is necessary to prevent noise from being picked up on the bus. For LSTTL, the value of the pull-up resistor ranges from 330 ohms to a maximum of 100 kilohms. The choice of a pull-up or pull-down resistor will depend on whether a high or low state is required on the bus during the high-impedance state.

Termination resistors are usually placed at the most distant point from the bus-driving device. Multiple termination can be used, but these terminations must be individually high enough in resistance value so that the parallel resistive load on the bus driver is not too low; this load should be approximately 100 ohms minimum theveninized R for LSTTL bus drivers.

The typical values of pull-up for HCT bus drivers range from a minimum of 750 ohms to a maximum of 1 megohm. The choice of the resistor value involves a tradeoff between power and bus speed. A larger value of resistance will save power but will slow down the bus; a smaller value of resistance will speed up the bus, but will waste power. Typical values of pull-down resistance range from 680 ohms to 1 kilohm. A bus termination is a **must** for HC/HCT devices if the bus is to be in the high-impedance state for more than 100 microseconds. However, it is usually a good idea to terminate the three-state bus in case the system stops momentarily in the high-Z state or there is noise due to crosstalk in the system.

In any bus-driving configuration, all ICs must be by-passed with ceramic by-pass capacitors of at least 0.01 microfarad, as shown in Fig. 4. The capacitor is placed as close as

92CS - 38688

Fig. 4 - IC by-passing arrangement in a bus-driving configuration

possible to the ground pin to minimize inductance and, hence, ringing in the ground of the IC. Where HC/HCT is driving a terminated line and some slight ringing into ground exists, and this ringing or noise is above or near the input switching voltage of 1.3 volts, the receiving IC should be an HC CMOS type, which has an input switching point of approximately 2.3 volts (1 volt more than LSTTL or HCT).

In some critical applications where almost no noise can be tolerated, the board or card can be bypassed with a 10-ohm or lower value resistor of the proper power rating in series with the supply line, and a 33 microfarad or larger capacitor across the supply, as shown in Fig. 5. This RC combination is placed at the point where the power supply comes into the board or card.

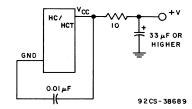


Fig. 5 - By-passing the board or card in a critical operation where almost no noise can be tolerated.

DRIVING TRANSMISSION LINES

Another type of termination required is that for transmission lines. This type of termination is used where data must travel over long distances in a system, in a large backplane, over coaxial cable, or in twisted-pair lines. This termination creates a low impedance that prevents noise and crosstalk from generating false data. Typical LSTTL systems use

nominal 100-ohm twisted-pair, strip-line, or coaxial transmission-line impedances. This low impedance is necessary to the transmission of signals at high speeds without data degradation due to line capacitance or inductance. Fig. 6 shows a common LSTTL type of transmission-line termination. In order to drive this 120-ohm load, the LSTTL output sink current is required to be at least 24 milliamperes at a V_{OL} of 0.5 volt.

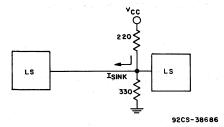


Fig. 6 - Common LSTTL transmission-line termination.

There are two powerful arguments for not duplicating this same 24 mA/0.5 V output specification in a well-designed HC or HCT bus-driver output stage:

- 0.25 watt per output, 2 watts per octal driver, is highpower design, not moderate or low-power equipment design.
- 2. A CMOS output sink current of 24 milliamperes at 0.5 volt will give rise to an objectionably high transient current when switching, and will produce EMI which is objectionably large, much larger than the LSTTL output with the same current/voltage level. Fig. 7 shows the much higher last in an NMOS output sink transistor versus an n-p-n output sink transistor. Isat is twice as large, as are dv/dt and EMI, in CMOS as in LSTTL devices.

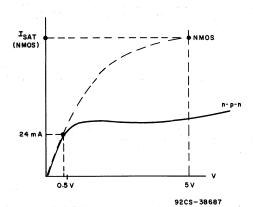


Fig. 7 - Comparison of I_{sat} in an n-p-n transistor and an NMOS transistor.

The RCA QMOS-device output stage is designed to provide typically more than 12 milliamperes at 0.5 volt. The QMOS last is, then, similar to the LSTTL last. The all-important noise-generation factor (EMI) is also similar at this current/voltage level.

The lowest impedance that an HCT/HC device can drive in the ac/dc termination described above is approximately 700 ohms, as shown in Fig. 8. This impedance is created with a

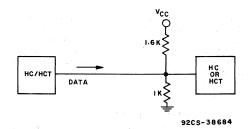


Fig. 8 - Lowest-impedance arrangement in transmission-line termination

1.6 kilohm pull-up and 1 kilohm pull-down resistor, a combination that retains the 1/3 pull-down to 2/3 pull-up terminating-resistance design criteria. The terminators should be placed as close as possible to the receiving circuit. Higher values of transmission-line impedance can be used to save power, but the advisability of this choice will be determined by the speed of the data on the transmission line and the distance the data must travel.

More than one termination of the type described can be used on the same line if required because of long line length or a very noisy environment; but the designer must remember that the worst-case sinking limit is still 12 milliamperes at 0.5 volt, and should treat these terminating impedances as being in parallel and limited to 700 ohms, as shown in Fig. 9.

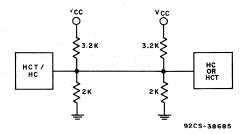


Fig. 9 - Multiple terminations on the same transmission line.

The above termination is useful for both dc and ac transmission-line terminations. With HC/HCT devices, a dc termination is not necessary, but an ac termination is a must. If the designer must have a transmission-line termination in an HC/HCT system, or must intermix families, then a variation on the voltage-divider termination can be used, as shown in Fig. 10.

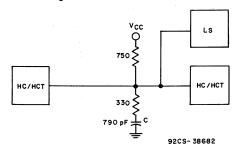


Fig. 10 - Transmission-line termination in HCT system or when families are intermixed.

Capacitor C is used to create a low impedance during switching. HC/HCT outputs can deliver up to 70 milliamperes during switching on bus types and up to 50 milliamperes on standard types. The value of C depends on the maximum frequency, f, of the bus. This value can be determined by the formula:

$$C = \frac{1}{2\pi f X c} \tag{1}$$

where Xc is approximately 50 ohms.

A typical value for C when f_{max} is 4 MHz or greater is 790 picofarads. When there is no switching, the only dc current present comes from the pull-up resistor. This configuration not only saves power but allows HC/HCT to drive a modified low-impedance transmission line. The configuration in Fig. 11 pulls the bus into the high state when it is in the high-impedance mode. If a low state is required on the

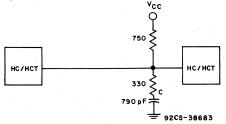


Fig. 11 - Configuration used to pull the bus into the high state when it is in the high-impedance mode.

bus, the configuration in Fig. 12 can be used. If more than one of these terminations are required on the same line, the designer must treat the terminations as being in parallel, and should adjust the values of R and C to comply with the maximum dc sink current of 12 milliamperes at 0.5 volt, as shown in Fig. 13.

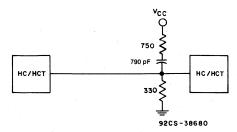


Fig. 12 - Configuration used to pull the bus into the low state when it is in the high-impedance mode.

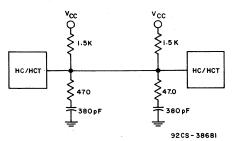


Fig. 13 - When more than one of the terminations of Figs. 11 and 12 are needed, the terminations are adjusted and treated as if they are in parallel.

DRIVING COAXIAL CABLE

LSTTL ICs can drive transmission lines using coaxial cable. Various types of coaxial and triaxial cable are available, but the most commonly used is the 75-ohm RG-59/59U, which has an impedance of 75 ohms at its nominal operating frequency. LSTTL bus drivers can directly drive almost all of the popular terminations used with coaxial-cable drive. One of the most commonly used is shown in Fig. 14. An

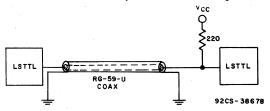


Fig. 14 - A commonly used LSTTL coaxial-cable termination.

HC/HCT device cannot drive any of these terminations without exceeding its maximum sink current. However, HC/HCT devices can drive coaxial cable by using the modified transmission-line termination shown in Fig. 15 or a modified resistor terminator, as shown in Fig. 16. The coaxial cable should be terminated at both ends in cable runs over 50 feet, again keeping in mind the maximum limits of HC/HCT sink current. Equation 1 can be used, with the addition of the figure for the capacitance of the coaxial cable, per foot, to calculate the correct value of capacitance C in Fig. 17.

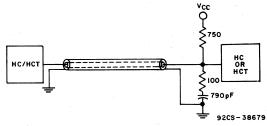


Fig. 15 - Modified transmission-line termination used with HCT devices driving coaxial lines.

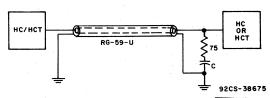


Fig. 16 - Modified resistor termination used with HCT devices to drive coaxial lines.

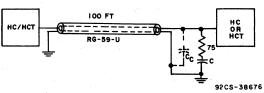


Fig. 17 - Effect of cable capacitance on termination.

By using a modified transmission-line termination for HC/HCT devices, and depending on the maximum frequency to be driven, coaxial cables of various lengths can be CMOS driven. A typical example is shown in Fig. 18, where an HC/HCT device drives more than 50 feet of RG-59U coaxial cable with a modified termination of 75 ohms. A series capacitor in the resistor leg that goes to +Vcc is placed at the receiver end of the cable to eliminate degradation which could cause false data to be received.

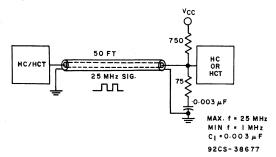


Fig. 18 - Termination configuration used to eliminate possibility of false data at receiver.

DRIVING RIBBON CABLE

When using HC/HCT ICs to drive signals over ribbon cable, there are length limitations resulting from the high impedance of the CMOS input. The drive limit is two feet maximum at normal data rates when driving without any termination and without the use of an alternate ground scheme (alternating signal carrying and grounded wires, as shown in Fig. 19) in the ribbon cable. Beyond two feet, crosstalk between signal lines can cause errors in data. If the receiving IC is an HC type, the maximum drive lengths can double.

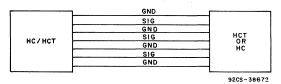


Fig. 19 - Alternate ground arrangement of ribbon cable.

When driving with no termination but with the alternate ground method, the maximum drive length before crosstalk between signal lines can cause errors in data is six feet at normal data rates.

HC/HCT devices can drive longer ribbon cable by using various terminations: pull-up, pull-down, or one of the modified transmission-line terminations. When using a 1-kilohm pull-up resistor per wire as a termination, the maximum length without alternate ground before crosstalk can become a problem is four feet at normal data rates. When using the same setup with an alternate ground scheme, as shown in Fig. 20, the maximum length of drive is

seven feet at normal data rates. The maximum drive limit is six feet, as shown in Fig. 21, when a modified transmission-line termination with an impedance of approximately 100 ohms and no alternate ground scheme is used at normal data rates. More than 15 feet can be driven at a data rate of 10 MHz when the alternate ground scheme is employed along with the termination of Fig. 21. The length can be extended by using any of the above terminations at both the receiving and transmitting ends of the cable.

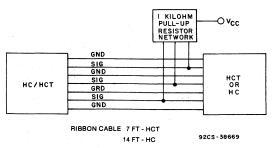


Fig. 20 - Ribbon-cable termination using 1-kilohm pull-up resistor and alternate ground arrangement.

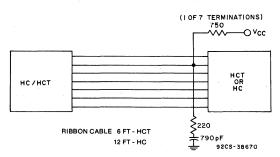


Fig. 21 - HCT ribbon-cable termination for normal data rates using impedance of approximately 100 ohms and no alternate ground system.

There are many other types of transmission-line terminations, but those shown above are the most commonly used with HCT/HC devices. When contemplating terminations of any sort, the designer must remember that HCT/HC devices have a current-sinking limit at 0.4 volt of 6 milliamperes, and at 0.5 volt of 12 milliamperes. These limits **must** be observed. By following the termination criteria described above, system power consumption is reduced, reliability is greatly improved, and system cost is decreased.

REFERENCES

 For a full discussion of HC/HCT power consumption and how to calculate it, see RCA Solid State Publication ICAN-7315, "Power Consumption in QMOS Logic Circuits," by R. Funk.

Astable Multivibrator Design Using High-Speed QMOS ICs

by L. Marechal

This Note describes the design of astable multivibrators using RCA high-speed-CMOS (QMOS) integrated circuits (CD54/74 HC, HCU, HCT04 and 132), and multivibrator performance at frequencies up to 10 MHz.¹ Algebraic equations permit the values of R and C for a given oscillator frequency to be quickly determined. The effect of supply voltage and temperature variation on multivibrator performance is discussed along with the inherently low power consumption of QMOS relative to LSTTL. In addition to much lower power dissipation than other technologies, a distinct advantage of QMOS RC multivibrator design is the choice of a very wide range of $R_{\rm x}C_{\rm x}$, which leads to an exceptional frequency range.

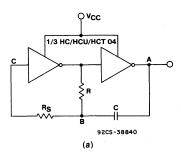
OPERATING FREQUENCY

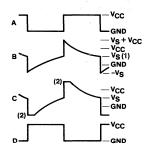
Fig. 1(a) shows the basic multivibrator circuit configuration. Resistor R and capacitor C fix the operating frequency. R_s assures that frequency will be independent of minor supply-voltage variations, and reduces the time-period variations to less than 5% with variations in transfer voltage. Fig. 1(b) shows the operating waveforms of the circuit.

Equation (1) determines the time-period T:

$$T = -RC \ln \frac{V_{TR} (V_{CC} - V_{TR})}{(V_{CC} + V_D)^2} - \frac{K}{K+1} RC \ln \frac{K(V_{CC} + V_D)}{K(V_{CC} + V_{TR}) + V_{TR} - V_D}$$
$$- \frac{K}{K+1} RC \ln \frac{K(V_{CC} / V_D)}{K(2V_{CC} - V_{TR}) - V_{TR} - V_D}$$
(1)

where V_{CC} is the supply voltage, V_{TR} is the transfer voltage, V_D is the diode forward voltage drop, and K is R_S/R .

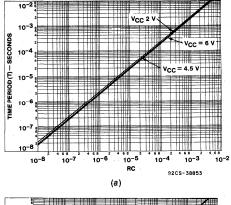

High-speed CMOS devices have a built-in 100 to 150-ohm input resistor which has little influence on speed because C charges and discharges through R and the IC output.


As K approaches infinity, the variation in time period as a function of $V_{\rm CC}$ approaches zero. Variation in period with transfer voltage is reduced by 10% for K=0 and by 5% for large values of K.

Figs. 2(a) and 2(b) are plots of the theoretical time periods, as calculated from equation (1), for HC and HCT devices, respectively. In all calculations V_D = 0.6 V. Equation (1) can be simplified for large values of K to the form shown in equation (2):

T = -RC In
$$\left(\frac{V_{TR}}{V_{CC}+V_{TR}} + \ln \frac{V_{CC}-V_{TR}}{2V_{CC}-V_{TR}}\right)$$
 (2)

where $K \ge 10$.



NOTES 1. | Vs | HC | 0.5 Vcc | HCU | 0.5 Vcc | HCT | 1.4 V FOR Vcc = 5 V

2. SMALL CLAMPING ACTION OF INPUT DIODES:
NEGLIGIBLE FOR LARGE RS; SIGNIFICANT
FOR SMALL RS
92CS-38839

Fig. 1 - (a) Astable multivibrator using the CD54/74 HC/HCU/ HCT04, (b) waveforms for the circuit of (a).

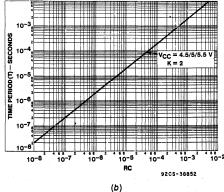


Fig. 2 - Time period (T) as a function of RC using equation (1) for (a) HC04 type and (b) HC704 type.

Using the HC04 type, equation (2) can be simplified if the valid assumption that V_{TR} = 0.5 V_{CC} is made. Then:

$$T = 2.2 RC \tag{3}$$

Fig. 3 illustrates how little the choice of either equation (1) or (3) affects results in a practical case.

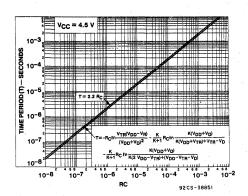
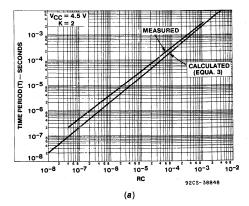
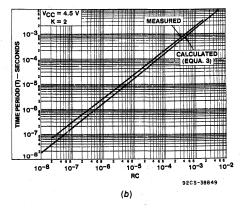




Fig. 3 - Time period as a function of RC using theoretical approach of equation (1) versus equation (3) for type HC04.

Figs. 4(a) through 4(c) show plots of measurements and calculated values of the time-period as a function of the time constant, RC, for the three series HC, HCU, and HCT, respectively. The simplified equation, (3), was used in each case. Note that the plot for the HCT04 (Fig. 4(c)) shows good tracking of calculated values (using equation (3)) with measured values, even though V_{TR} =0.31 V_{CC} instead of 0.5 V_{CC} .

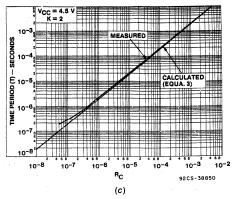


Fig. 4 - Measured versus calculated T as a function of RC for (a) HC04 type, (b) HCU04 type, and (c) HCT04 type.

Fig. 5 identifies the area of validity of R and C for equations (1) and (3). Measurements were made with the time constant as a parameter. The points on the chart are ratios of measured to calculated time period. The design guidelines used to keep the ratio of measured T to calculated T close to one, as shown in Fig. 5, follow.

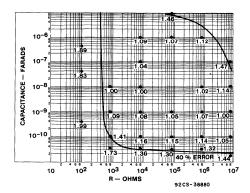


Fig. 5 - Area of theoretical equation validity. Points are ratios of measured to calculated T.

 $R_{\rm S}$ in Fig. 1 must not be made too large, as the multivibrator time constant and phase shift is influenced by this resistance (as well as by stray wiring and breadboard capacitance). A large value of $R_{\rm S}$ will change the time period and cause spurious oscillations and glitches.

In the oscillator circuit, C should be greater than or equal to 100 pF to eliminate probe and stray capacitance interference. R should be greater than or equal to 100 ohms to support the function of Rs. However, to avoid parasitic oscillation, R must not be made too large. Appropriate values of R and C depend upon circuit design and layout.

Equation (3) is valid for R \geq 50 kilohms and C \geq 1000 pF; use equation (1) for R < 50 kilohms, and C < 1000 pF. However, note that, as implied above, if C is less than 1000 pF, stray capacitance will affect the entire system.

CMOS multivibrator designs have long been known to be temperature insensitive. The variation of the input switching voltage (Vs) with temperature in a QMOS device is only ± 60 mV over a range of -55° C to $+125^{\circ}$ C; in contrast, the LSTTL Vs varies ± 200 mV over the same temperature range. Figs. 6(a) and 6(b) reflect the minor change in period T, less than 3% for HC and 10% for HCU devices over a 150°C temperature range, resulting from the small variation in QMOS Vs.

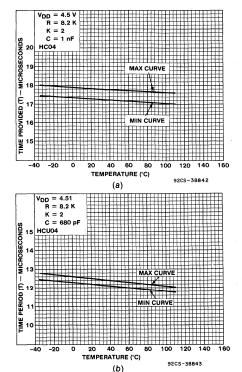


Fig. 6 - Time period as a function of temperature for (a) HC04 type and (b) HCU04 type.

POWER CONSUMPTION

One of the major advantages of the CMOS technology and, hence, QMOS ICs, is the low power dissipation. The power consumed by the RC oscillator of Fig. 7, using the HCT04 is:

$$P_D = P_A + P_B \tag{4}$$

where $P_A \text{ and } P_B = (C_{PD} + C/2)V^2 f \tag{5}$

 C_{PD} is a capacitive value used to represent internal inverter power consumption. C_{PD} is rated at 36 pF on the HC/HCT04 Data Sheet. The C in equation (5) is the RC oscillator capacitance seen as a load that is shared by inverters A and B of Fig. 7.

Table I contains parameters, data, and calculations for five operating frequencies. Fig. 8 shows plots of the measured

Table I - Measured VS Calculated RC-Oscillator Power Dissipation (V_{CC}=5.5 V)

RC	R (ohms)	C (F)	т	T/C (s/F)	f	I meas'rd (mA)	V _I P meas'rd (mW)	(72 pF + C)V ² 2.2 RC p calculated (mW)	2.2 RC T (ms)	2.2 R T/C (s/F)
4.7 10 ⁻⁸	470	10 ⁻¹⁰	166 ns	1.66 10 ³	6.024 MHz	11.066	60.863	50.32	0.1034 <i>μ</i> s	1.034 10 ³
4.7 10 ⁻⁷	4700	10 ⁻¹⁰	1.4 μs	1.40 10⁴	714 kHz	2.998	16.489	5.032	1.034 <i>µ</i> s	1.034 10⁴
4.7 10 ⁻⁵	47,000	10 ⁻⁹	116 μs	1.16 10 ⁵	8.62 kHz	0.9082	4.995	0.2946	0.1034	1.034 10 ⁵
4.7 10 ⁻³	47,000	10 ⁻⁷	12.6 ms	1.26 10 ⁵	79.36 Hz	0.644	3.542	0.2926	10.34	1.034 10 ⁵
4.7 10 ⁻²	22,100	2.2 10 ⁻⁶	12.4 ms	1.24 10⁴	80.64 Hz	0.707	3.888	0.622	106.964	4.362 10⁴

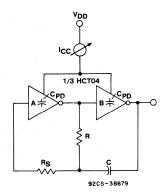


Fig. 7 - RC oscillator circuit.

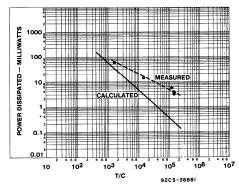


Fig. 8 - Power dissipation in oscillator (using an HCT04) as a function of T/C ratio ($V_{CC} = 5.5 V$).

versus calculated power. Table I and Fig. 8 illustrate two key points concerning RC oscillator power:

- Power is heavily dependent on the value of C.
- Calculations are valid only at higher frequencies, generally above 1 MHz.

Because of the dependence of power on both the frequency and value of C, power is plotted (Fig. 8) as a function of the T/C ratio. Fig. 9 illustrates a common method of reducing QMOS RC-oscillator power consumption. In the circuit, small-valued, current-limiting resistors, R, are placed in series with the circuit dc supply voltage, V_{CC} , and with the ground terminals. This arrangement reduces the CMOS flowthrough current during slow switching transitions, when both the PMOS and NMOS transistors conduct transient current from V_{CC} to ground.

In addition to reducing power consumption, resistor R, also decreases the RC operating frequency. The power reduction is more pronounced with HCU devices, for which the spiking-current component is larger. In these devices, the switch from the low level to the high level and vice versa begins at an input-switching voltage lower in the groundto-Vcc range than in other QMOS types. HC devices do not see a significant reduction in power unless the operating frequency is very high. There is a 20% power reduction at 6 MHz with a 50-ohm R_r, while there is no improvement at all at 10 kHz with the same resistance. In the case of HCU devices, the power benefit from the introduction of the 50-ohm R, is 60% at 5 MHz, but only 20% at 10 kHz for a Vcc of 4.5 V. At low frequency in any QMOS device, the spiking current losses become negligible compared to the power dissipated in the external components.

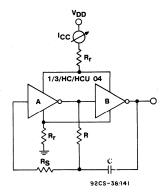
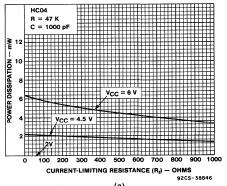



Fig. 9 - Common method of reducing QMOS RC-oscillator power consumption.

The effect of resistor R, in Fig. 9 is to decrease the output charging current of CMOS inverter (B) into capacitor C, hence the increased charging time of C. The impact of R, on frequency when large values of resistor R are used is minimal; there is a 2% frequency decrease for HC and a 2.5% decrease for HCU when R is 47 kilohms, C is 1000 pF, and R, is 1 kilohm. Figs. 10(a) and 10(b) plot power consumption against the value of R, for the HC04 and HCU04 types, respectively.

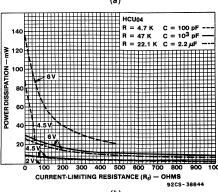


Fig. 10 - Power dissipation in an oscillator as a function of R. In (a) the oscillator employs an HC04, in (b) an HCU04.

RC OSCILLATOR USING THE HC/HCT132 SCHMITT TRIGGER

The RCA HC/HCT132 can be used in an astable multivibrator, as shown in Fig. 11. The equation used to calculate the period T is:

$$T = RC \text{ In } \frac{V_{CC} - V_N}{V_{CC} - V_P} + RC \text{ In } \frac{V_P}{V_N}$$
 (7)

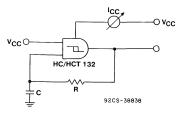


Fig. 11 - The HC/HCT132 in an astable multivibrator circuit.

Fig. 12 plots measured T versus RC for the HC132. Also plotted in Fig. 12 are calculated values of T versus RC using equation (7). Fig. 13 is a plot of measured T versus RC for the HCT132. Figs. 14(a) and 14(b) show measured power dissipation as a function of time-constant RC in oscillators employing the HC132 and HCT132, respectively.

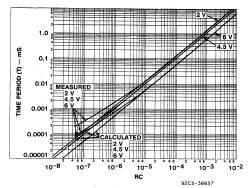


Fig. 12 - Measured and calculated time period of oscillating HC132 as a function of time constant RC.

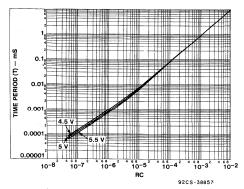
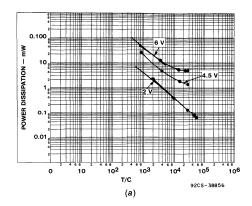



Fig. 13 - Measured time period of oscillating HCT132 as a function of time constant RC.

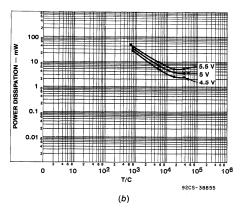


Fig. 14 - Measured power dissipated as a function of T/C, (a) in an oscillating HC132 and (b) in an HCT132.

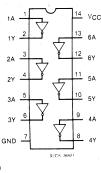
REFERENCES

1. For more information on CMOS circuits in oscillators and other timing applications, see:

"Astable and Monostable Oscillators Using RCA CMOS Digital Integrated Circuits," RCA Solid State Application Note ICAN-6466.

"Using the CD4047A in CMOS Timing Applications," RCA Solid State Application Note ICAN-6230.

"Simplified Design of Astable RC Oscillators Using the CD4060B or Two CMOS Inverters," RCA Solid State Application Note ICAN-6883.


 For a discussion of C_{PD}, see QMOS High-Speed CMOS Logic ICs, RCA Solid State DATABOOK SSD-290, under "Description of QMOS product Line."

Linear Application of the CD54/74HCU04 QMOS Hex Inverter

by W. Austin

Because the CD54/74HCU04, Unbuffered Hex Inverter, is a QMOS device based on a 3-micron process, it is an excellent high-speed digital switch. Its linear characteristics feature low capacitance and high current drive. A high transconductance associated with the high current drive is contributed by pairs of complementary NMOS and PMOS transistors, which form relatively simple inverting amplifiers. There are six of these transistor-pair amplifiers in the HCU04; each has a common Vcc and ground. A variety of application circuits are included in this Note to illustrate the many uses of the HCU04 amplifier.

The equivalent circuits shown and the characteristics of described in this Note will help the user to apply the HCU04 in linear applications (a knowledge of linear-feedback circuit theory is assumed). Fig. 1 shows the internal functional diagram and the circuit schematic of each inverter.

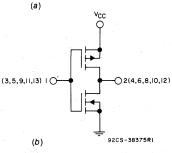


Fig. 1 - The HCU04 Hex Inverter: (a) functional diagram, (b) internal schematic.

PMOS AND NMOS DEVICE CHARACTERISTICS

As mentioned above, each pair of PMOS and NMOS devices in the HCU04 make a relatively simple inverting amplifier; one feedback resistor provides static bias. The amplifier transfer characteristic of each unbuffered inverter has dynamic range of up to three volts, peak-to-peak, with good linearity in the center one volt, peak-to-peak, region. The transfer characteristic of the HCU04 is shown in Fig. 2.

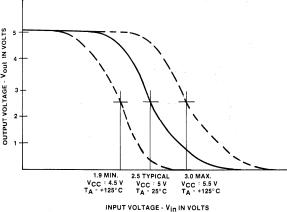


Fig. 2 - Min./max. and typical switching transfer characterstics of the HUC04 Unbuffer Hex Inverter.

The characteristics desired in any high-quality amplifier are high gain, good linearity, and wide bandwidth. The wide bandwidth of the HCU04 is inherent in the QMOS process, but its gain and linearity are a function of the transfer parameters.

The slope of the transfer curve is determined by the transition of the PMOS and NMOS devices; this slope can be evaluated with a sweep at the gate input. On a positive, increasing voltage, the p channel is pinched off near the positive V_{cc} level. The n-channel drain current is enhanced as the voltage increases from ground toward the V_{cc} level. In reverse, the p-channel current is increased with negative-going input voltage, while the n-channel current is decreased.

9205-39736

Families of curves showing typical drain characteristics for both the PMOS and NMOS devices are shown in Fig. 3. The characteristics are standard for n and p enhancement-type devices. The drain currents in the p and n devices are balanced by device design: the typical n-channel width is 800 microns; the typical p-channel width is 1800 microns. This dimension compensates for the lower PMOS-channel hole mobility.

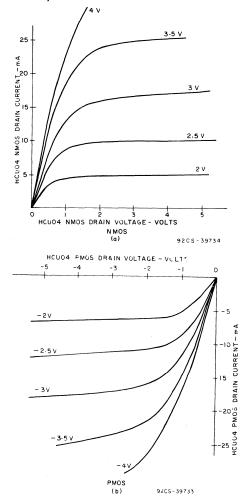


Fig. 3 - Typical drain family characteristics of the HCU04: (a) NMOS and, (b) PMOS sections.

When the inverting amplifier is in an unloaded condition, each PMOS or NMOS device is both a driver and load over some portion of the transfer curve. Since the equity of current in each device must be maintained, and since each device must act as a current sink or source, the amplifier output voltage is determined by the balance of current sink and current source bias conditions. The drain current, I_{α} , in each amplifier peaks, typically, when both channels are balanced at $V_{in} = V_{out} = V_{cc}/2$. Any imbalance of drain

characteristics may cause a deviation in peak drain current, and produce a crossover offset in the transfer characteristic. Typically, the offset is less than $\pm 5\%$ of the V_{CC} range. This figure represents what is called the "offset tolerance."

LOADLINE CHARACTERISTICS

To better show how the HCU04 functions in its linear transitions of the input-voltage range, the PMOS and NMOS drain loadlines have been plotted, as the gate voltage, $V_{\rm in}$, is stepped, at incremental points of operation; Fig. 4. The figure includes a 75-ohm loadline at $V_{\rm cc}/2$ = 2.5 V as a point of reference.

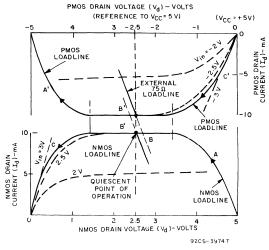


Fig. 4 - Loadline plots on the NMOS and PMOS drain-family characterstics as V_{in} is varied from zero volts to V_{in} = V_{CC} = +5 V in the HCU04.

The loadline curves defined in Fig. 4 by path ABC for the NMOS device and A'B'C' for the PMOS device are the respective loci as V_{in} varies from ground to V_{CC} = +5 V for the unloaded HCU04. An optimum external-resistance loadline of the NMOS device is normally a straight line extending with a negative slope from gate cutoff to the quiescent operating point and through to the saturated knee of the family of drain curves. A similar positive slope loadline applies to the PMOS device. Since an MOS transistor is not a linear load element, the extremes of the loadline exhibit the nonlinearity shown in Fig. 4. And because each saturated PMOS or NMOS device is a load in parallel with any external load, nonlinearity may occur at the extremes of drainvoltage swing. An output voltage range of 1.5 to 3.5 volts will provide a linear high-impedance source resistance in parallel with the external 75-ohm load.

In the NMOS loadline area, A, the loadline rises sharply from coordinates $V_a = +5 \, V$ and $I_d = 0 \, mA$ with a slope equal to the saturated channel resistance of the PMOS device. The $+5 \, V$ and $0 \, mA$ point corresponds to the NMOS channel cutoff. Progressing on the loadline locus: as V_{in} increases, the curve rounds from A to B, where the PMOS device changes from a saturated device to an active load. As the slope of the curve flattens, a balance of maximum source and sink current is reached. The transition across the flat portion of the loadline curve will occur with a few millivolts of delta change of V_{in} , and peak I_{cc} current should occur when $V_{in} = V_{cc}/2$.

In the C area of the curve, the PMOS device is a high-impedance active current sink controlling the NMOS drain current, which is decreasing in value as the PMOS channel is being pinched off. A similar description of the PMOS loadline applies to the A'B'C'-curve loadline locus. The combined action of the PMOS and NMOS devices, as V_{in} varies from zero to V_{CC}, produces an active transfer curve.

Balanced PMOS and NMOS characteristics will produce a transition at B and B', where $V_{\rm in}$ = 2.5 V when $V_{\rm cc}$ = 5 V. Any variation in this balance will produce a crossover offset in the transfer characteristic, as described above.

The transition of the loadline characteristic for $0 < V_{in} < V_{cc}$ produces the transfer characteristic of Fig. 5. At either end of the loadline, the effective amplifier source impedance, R_d , is low because the internal load consists of the saturated drain of the p or n device. In the center of the range, both the PMOS and NMOS devices are linear, with high effective R_d . If the V_{in} signal swings beyond the knee (or corners) of the transfer characteristic, compression of the output signal will result. Fig. 5 shows an example of a linear sinewave input and output signal.

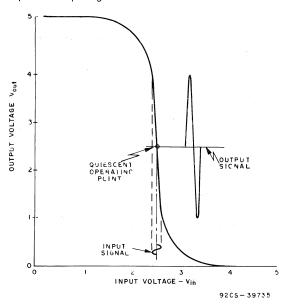


Fig. 5 - Amplifier transfer characteristics of the HCU04 amplifiers.

LINEAR-AMPLIFIER MODEL

A linear-amplifier model of the HCU04 includes the inverting amplifier and its associated input, output, and feedback capacitance, as shown in Fig. 6. An external feedback resistor, R_f, provides bias stability.

If the input coupling capacitor, $C_{\rm c}$, is sufficiently large, the op-amp closed-loop gain is given by:

$$A_{fb} = \frac{A_{oi}}{1 + (1/B)(1 - A_{oi})}$$

where A_{ol} is the open-loop gain, and $B = R_f/R_s$, the feedback resistor ratio.

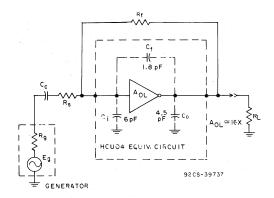


Fig. 6 - Linear model of each of the six amplifiers of the HCU04.

The normal op-amp gain equations usually assume A_{ol} to be very large, and the output impedance very small. For the circuit of Fig. 6, the gain becomes $-(R_f/R_s)$. This approximation will contain some error when applied to the HCU04 because the open-loop gain is typically 16, not a very small number in comparison to the open-loop gain of most op amps.

The feedback-resistor bias will stabilize amplifier operation near the center of the transfer curve; some offset is present, as noted above. The offset will reduce the dynamic range of output, but requires no correction unless dc coupling is used. The expected offset is typically less than $\pm\,0.25$ volts.

EQUIVALENT CIRCUIT

Calculations based on an equivalent linear model may be used to predict various biasing results. A two-generator linear-circuit model is shown in Fig. 7.

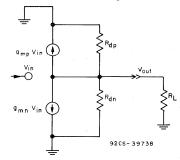


Fig. 7 - Circuit equivalent of the HCU04 with two source generators and no feedback.

Since the V_{out} node equation for the two generator equivalent circuit is:

$$-g_{mp}(V_{in}) - g_{mn}(V_{in}) = V_{out}(1/R_{dn} + 1/R_{dp} + 1/R_L)$$

and

$$A_{oi} = V_{out}/V_{in} = \frac{-(g_{mp} + g_{mn})}{(1/R_{dn} + 1/R_{dp} + 1/R_{L})}$$

The source-generator and parallel conductances of the NMOS and PMOS equivalent models may be simply added into one equivalent.

A single-generator model has no restrictions, provided the equivalent circuit is a reasonable linear approximation. A simplified model of the circuit of Fig. 6, with associated capacitance and biasing, is shown in Fig. 8. The single-model equivalent-current generator and effective source impedance may be determined from the separate device models, and is equal to:

$$g_m = g_{mp} + g_{mn}$$

$$R_d = R_{dp} R_{dn} / (R_{dp} + R_{dn})$$

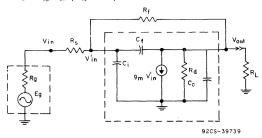


Fig. 8 - Simplified HCU04 circuit model with associated capacitance and biasing.

All further references to g_m and R_d imply a single-generator model. It should be noted, however, that use of the two-generator equivalent model does have practical merit in the analysis of abnormal input-signal conditions or when considering the effects of V_{CC} and ground-terminal impedance.

Determination of the g_m and R_d parameters is based on either direct evaluation from the drain family characteristics of Fig. 3 or measured data. From the curves of Fig. 3, g_m is $\Delta I_{d'} \Delta V_{in}$, and R_d is the tangential $\Delta V_d / \Delta I_d$ slope on the V_{in} bias line at the point of operation. The simplest way to determine g_m is to measure $A \sim A_{oi}$ when R_t is very large and R_a is small, e.g., 100 kilohm and 50 ohms, respectively.

When R_L is much less than R_d:

$$A \sim -g_m R_L$$
, and $g_m \sim A/R_L$

The gain is then measured under the same conditions with R_L removed (open) and R_d as the effective load. For this condition,

,
$$A \sim -g_m R_d$$
, and $R_d \sim A/g_m$

A variety of amplifier gain conditions have been measured for the circuit of Fig. 9 and, in some cases, calculations have been made for g_m and R_d . A tabulation of the results is shown in Table I.

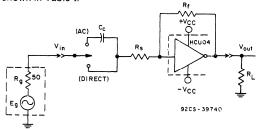


Fig. 9 - Simplified amplifier circuit configuration used to measure gain and equivalent model characteristics. Table 1 shows results.

Table I - Measured Amplifier-Gain Conditions for the Circuit of Fig. 9.

A. Conditions: $V_{cc} = \pm 2.5 \text{ V}$, $I_{cc} \sim 6 \text{ mA}$

Measurement

Measurement No.	AC/Direct (input)	R _s (kΩ)	R _f (kΩ)	R _L (ohms)	V _{out} /V _{in} (gain)
1	Direct	1	3	1000	2
2	Direct	1	3	none	2.4
3	Direct	1	3	75	0.75
4	Direct	0.5	3	75	1.0
5¹	AC	0.05	100	75	1.4
6²	AC	0.05	100	none	25

Calculated: 1. $g_m \sim A/R_L \sim (1.4/75) = 0.0187$ mhos

2. $R_d \sim A/g_m \sim (25/0.0187)$ = 1340 ohms

B. Conditions: $V_{cc} = \pm 3 \text{ V}$, $I_{cc} \sim 10 \text{ mA}$

Measurement

Measurement No.	AC/Direct (input)	R _s (kΩ)	R₁ (kΩ)	R _L (ohms)	V _{out} /V _{in} (gain)
11	AC	1	100	none	16
2 ²	Direct	0.5	100	75	1.5
3	Direct	1	100	75	1.45
4	AC	3	3	none	0.86

Calculated: 1. $R_d \sim A/g_m \sim (16/0.02) = 800$ ohms

2. $g_m \sim A/R_L \sim (1.5/75) = 0.02$ mhos

Operation of the HCU04 in a multiple output configuration is practical. A circuit using all six amplifiers in parallel is shown in Fig. 10. The table of gain results for a variety of conditions is shown in Table II.

OPEN-LOOP GAIN

Unlike op-amp gain, HCU04 amplifier gain is not sufficiently high or the output impedance low enough to allow simple

general approximations. However, a simplified method of determining HCU04 amplifier performance in an open-loop condition is possible, and useful, in many applications. A basic open-loop equivalent-circuit model of the HCU04 is shown in Fig. 11. This circuit is based on the equivalent-current-generator model of Fig. 8 with $\rm R_{\rm S}=0$. A large value is used for the static bias resistor, $\rm R_{\rm f}$, a value much larger than the input source resistance.

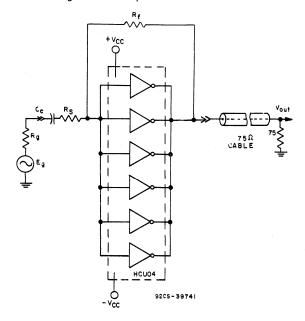


Fig. 10 - Six amplifiers of HCU04 in parallel line driver. Table 11 shows results.

Table II - Measured Results for Multiple Parallel Amplifier of Fig. 10

Conditions: $V_{CC} = \pm 2.5 \text{ V}$, $I_{CC} \sim 32 \text{ mA}$

Measurement

Measurement No.	R _s (kΩ)	R _f (kΩ)	R∟ (ohms)	V _{out} /V _{in} (gain)
1	1	1	none	0.9
21	1	100	none	18
3 ²	0.05	100	75	6.0

Calculated: 1. $R_d \sim (A/g_m) \sim (18/0.08) = 225$ ohms 2. $g_m \sim A/R_L \sim (6/75) = 0.08$ mhos

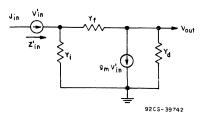


Fig. 11 - Basic equivalent circuit model for simplified gain, $Z_{\rm in}$ and $Z_{\rm out}$ calculations.

Using voltage-node equations with an assumed current drive input, J_{in}, the matrix determinant for the circuit of Fig. 11 is:

$$\Delta = \begin{vmatrix} (Y_i + Y_f) & (-Y_f) \\ (g_m - Y_f) & (Y_d + Y_f) \end{vmatrix}$$

The open-loop gain equation is:

$$A = \frac{V_{out}}{V_{in'}} = \frac{Y_f - g_m}{Y_d + Y_f} \sim \frac{-g_m}{Y_d + Y_f}$$

The admittance terms include frequency, f, where ω = $2\pi f$. The complex terms are:

$$Y_f = (1/R_f) + j\omega C_f$$

 $Y_i = j\omega C_i$

 $Y_d = (1/R_d) + j\omega C_o$

For the low-frequency case, the gain is approximately:

$$A = -g_m R_d || R_t$$

where $R_d \parallel R_f$ is R_d in parallel with R_f . The R_d term may be modified to include R_d in parallel with external load R_L .

In the case where there is no external R_L and $R_d \!\!<\!\! <\!\! R_f,$ the gain solution simplifies to:

$$A \sim -g_m R_d$$

In the case where $R_L \!\!<\!\! <\!\! R_d,$ the gain solution simplifies to:

$$A \sim -g_m R_l$$

Both of these simplified expressions provide reasonably accurate values of g_m and R_d , and were used to obtain the values in Table I. As the table shows, when the gain (A) was measured as 16 times for the \pm 3-volt V_{CC} condition with no load, and 1.5 times with a 75-ohm load, the solutions were readily determined to be g_m = 0.02 mhos and R_d = 800 ohms. Lower signal levels and smaller values of R_L will contribute to better accuracy.

When the admittance term $(Y_d + Y_1)$ of the gain equation is expanded, there is an output rolloff corner frequency, f_{out} , of:

$$f_{out} = \frac{1}{2\pi(C_f + C_{out}) |R_d||R_f|}$$

where, again, Rd || Rf is Rd in parallel in Rf.

It is important to note that the significance of this rolloff corner will depend on the degree of feedback used and the magnitude of R_{g} or R_{s} . In the true open-loop condition, where R_{s} = 0 ohms, R_{f} is large, and R_{g} is a line or generator source of 50 or 75 ohms, the f_{out} corner frequency is the primary bandwidth-limiting factor. Where capacitance C_{out} is equal to $(C_{\text{i}}+C_{\text{o}})_{\text{r}}$, as in the case of cascaded HCU04 stages:

$$C_1 + C_{out} = C_1 + C_1 + C_2 = (1.8 + 6.0 + 4.5) \text{ pF} = 12.3 \text{ pF}$$
 $R_d || R_1 \sim R_d \sim 800 \text{ ohms}$

and

fout = 16.17 MHz

INPUT IMPEDANCE:

The input impedance of the HCU04 may be determined by using an input driving point solution with a $J_{\rm in}$ current generator at the input node. The input impedance is:

$$Z_{in'} = \frac{V_{in'}}{I_{in}}$$

where:

$$V_{in'} = \frac{\begin{vmatrix} J_{in} & (Y_t) \\ 0 & (Y_d + Y_t) \end{vmatrix}}{A} = \frac{J_{in} (Y_d + Y_t)}{A}$$

Therefore:

$$Z_{in}'$$
 $(Y_d + Y_f)$ Δ

Expanding the determinant and reordering the above equation yields:

$$Z_{in}' = \frac{1}{Y_i + Y_t(1-A)} = \frac{1}{Y_{in}'}$$

The Z_{in}' equation is a statement of all input impedances in parallel at the input. It is important to note that the $Y_1(1-A)$ is the classic Miller-effect feedback factor. Since $Y_1(1-A)$ can be expanded to $[(1-A)/R_1] + j\omega C_1(1-A)$, the effective R_{in} becomes:

$$R_{in} = (1-A)/R_f$$

and the effective Cin becomes:

$$C_{in} = [(1-A)C_f + C_i]$$

When the signal-source input has a high impedance (R_g or R_s), the input network configuration is equivalent to that shown in Fig. 12. The R_L network has an input corner-rolloff frequency response, f_{in} , of:

$$f_{in} = \frac{1}{2\pi (B_{in}||B_e)C_{in}}$$

where $R_{in} || R_s$ is R_{in} in parallel with R_s

The complete input-impedance equation for the network of Fig. 12 is:

$$Z_{in} = R_s + Z_{in}'$$

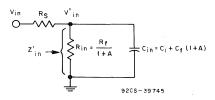


Fig. 12 - Miller-feedback equivalent input circuit of the HCU04.

OUTPUT IMPEDANCE

The output-impedance of the HCU04 may be calculated by using a current generator to drive the output terminal. The resulting calculation should include the correct input network termination.

In the open-loop condition, when R_s or R_g is much less than R_f , the output impedance is simply R_d in parallel with R_f . However, with R_s terminated through R_g at the input, the output impedance may be calculated for the general

feedback condition. The second-order determinant was used for the input-impedance calculation and simply adding R_s at the input after finding Z_{in} . The output impedance can be calculated similarly, using the second order determinant, by including the Y_s admittance term (or Y_s+Y_g) in the y11 term of the matrix determinant; i.e.:

$$\Delta = \begin{vmatrix} (Y_s + Y_i + Y_f) & (-Y_f) \\ (g_m - Y_f) & (Y_f + Y_d) \end{vmatrix}$$

When the output node is driven by a current (Jo):

$$V_{out} = J_o(y11/\Delta)$$

and

$$Z_{out} = \frac{Y_s + Y_t + Y_t}{(Y_d + Y_t)[Y_s + Y_t + Y_t(1 - A)]}$$

This equation may be reduced to a simple form for low frequencies:

$$Z_{\text{out}} = \frac{R_d || R_f}{1 - A(R_s/(R_s + R_f))}$$

where Rd Rf is Rd in parallel with Rf.

FEEDBACK EQUATIONS AND GAIN-BANDWIDTH-CIRCUIT MEASUREMENTS

The preceding equations will be very useful in applying the HCU04, particularly in low-frequency applications. However, it is important that the user does not over-simplify solutions and drop terms before evaluating their significance. The general purpose of this Note is to provide fully useful equations and to impress on the user that the standard op-amp equations, for the most part, do not apply well to the HCU04 amplifier.

Because some degree of feedback is desired for good linearity, the need to consider performance with feedback is necessary. An essential consideration is the wideband amplifier performance. The gain-bandwidth response and phase considerations are important, and are treated, with examples, in the following section.

The use of the equations developed above and the gain-bandwidth (GBW) capability of the HCU04 are demonstrated with the aid of Fig. 13. Shown is a single amplifier of the HCU04 in which bypassed 75-ohm resistors are used as protection from power-supply over-voltage. The small-signal equivalent circuit is similar in characteristics to the last example in Table I, except for the power-supply resistors. The $g_{\rm m}$ and $R_{\rm d}$ values for that example were determined to be 0.02 mhos and 800 ohms, respectively, and are the values used in the following evaluation.

As noted above, the low-frequency gain may be approximated from the op-amp feedback equation:

$$A_{fb} = \frac{A_{ol}}{1 + (R_{s}/R_{f}) (1 - A_{ol})}$$

where:

$$A_{ol} \sim -g_m \; R_d = -16$$

And for $R_s = R_f = 3000$ ohms, $A_{fb} = -0.88 = -1.11$ dB

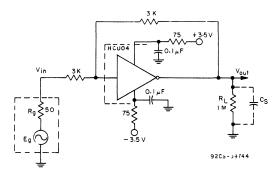


Fig. 13 - Amplifier circuit for gain-bandwidth measurements.

This value is in good agreement with the measured gainbandwidth (GBW) response curve shown in Fig. 14. In addition, as noted above, the high-frequency GBW response includes the input corner-rolloff frequency resulting from the Miller-effect RC input network of Fig. 12.

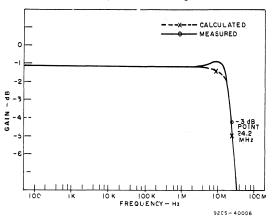


Fig. 14 - Gain-bandwidth measurement showing frequency rolloff response for the circuit of Fig. 13.

The full, high-frequency-gain equation, derived from the third-order determinant, will include both the input and output corner-rolloff frequencies. The matrix determinant is:

$$\Delta = \begin{vmatrix} (Y_s) & (-Y_s) & (0) \\ (-Y_s) & (Y_s + Y_i + Y_t) & (-Y_t) \\ (0) & (-y_t + g_m) & (Y_t + Y_d) \end{vmatrix}$$

and the gain equation is:

$$A_{fb} = \frac{-Y_s (g_m - Y_f)}{(Y_f + Y_d) (Y_s + Y_i + Y_f (g_m + Y_d))}$$

While this equation may be awkward to use, all of its terms are needed to evaluate stray capacity (C_s) and other loading effects in the application. Normally, g_m is much greater than Y_t , so that $g_m - Y_t \sim g_m$.

The gain equation then reduces to the form:

$$A_{fb} = \frac{A_x}{1 + j\omega B_x - \omega^2 C_x} \tag{1}$$

Where A_x is the low-frequency gain, and the complex demoninator is the complete factor for gain and phase response versus frequency. The A_x , B_x and C_x terms are defined as follows:

$$A_{x} = \frac{-g_{m}R_{d}}{(1+R_{d}/R_{f}) + (R_{s}/R_{f}) (1+g_{m}R_{d})}$$

$$B_x = -(A_x/g_mR_d)[(C_o + C_f)R_d + [(C_i + C_o)R_sR_d/R_f] + (C_i + C_f)R_s + g_mC_fR_sR_d]$$

$$C_x = -(A_x/g_mR_d)[R_sR_d(C_fC_i + C_oC_i + C_oC_f)]$$

Using parameter values already defined from the circuits of Figs 6 and 13:

$$A_x = \frac{-0.02 \times 800}{(1 + 800/3000) + (3000/3000) (1 + 0.02 \times 800)} = -0.876$$

Before calculating the frequency dependent B_x and C_x terms, it is important to note the special conditions for phase shift. Equating the real term of the denominator of equation 1 to zero yields:

$$\omega^2 C_x = 1$$

The gain equation under this special condition is:

$$A_fb = \frac{A_x}{i\omega B_x}$$

The fact that there is only an imaginary (complex) term in the denominator is a statement of 90° phase lag, which is a defined measurement point on the phase curve of Fig. 15.

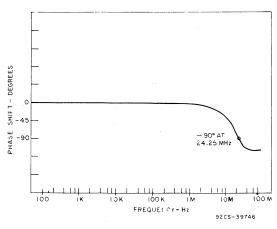


Fig. 15 - Phase measurement showing phase shift for the circuit of Fig. 13.

The capacitance output term for the 90° phase shift is:

$$C_o = \frac{-(g_m/\omega^2 A_x R_s) - C_f C_i}{(C_f + C_i)}$$

Substituting values for the 24.2 MHz point noted on Fig. 15, a phase shift of 90° yields:

$$C_0 = 40.5 pF$$

The capacitance output term C_0 includes all stray capacitance plus the HCU04 equivalent output capacitance of 4.5 pF. The stray and fixturing capacitance, C_s , is:

$$C_s = (40.5 - 4.5) = 36 pF$$

To evaluate A_{rb} for this condition, the B_x and C_x values are calculated as follows (using g_mR_d = (0.02)(800) = 16, and noting that C in pF times R in kilohms carriers a 10-9 multipler):

$$\begin{split} B_x &= -(A_x/g_mR_d) \; [(C_o + C_f)R_d + (C_i + C_o)(R_s/R_f)R_d + (C_i + C_f)R_s + g_mR_dC_fR_s] \\ &= -(-0.876/16)[40.5 + 1.8)(0.8) + (6.0 + 40.5)(3/3)(0.8) + (6.0 + 1.8)(3) + 16(1.8)3] \times 10^{-9} \end{split}$$

$$= 9.9 \times 10^{-9}$$

$$C_x = -(A_x/g_mR_d)[(R_sR_d)][(C_tC_i + C_oC_i + C_oC_t)]$$

$$= -(-0.876/16[(3)(0.8)][(1.8)(6.0) + (40.5)(6.0) + ($$

Verifying that $\omega^2 C_x = 1$:

$$\omega^2 C_x = (2\pi f)^2 C_x = (2\pi)^2 (24.2 \times 10^6)^2 (42.93 \times 10^{-18}) \sim 1$$

Then A_{fb} at 90° is:

$$A_{fb} = A_x/j\omega B_x = (-0.876)/j(2\pi)(24.2 \times 10^6)(9.9 \times 10^{-9})$$

= (-0.876/j1.5) = -0.584\angle -90°

The magnitude of the gain in dB at 90° phase lag is:

$$A_{fb} = 20 \log |0.584| = -4.67 dB$$

The actual measured results from the curve of Fig. 14 shows -4.3dB, which verifies, with practical agreement, the actual and calculated results. Using the complex A_{fb} equation to verify the gain at 10 MHz, the results of the gain calculation are -1.47 dB at -40.17° of phase lag.

The slight peaking noted at 10 MHz is not unusual in wideband circuits with feedback. In the range of 10 MHz and beyond, peaking or ripple effects are commonly present in the GBW response because of lead inductance and stray capacitance both in the signal links and in the filtering components. Care must be exercised in circuit layout and in component specification, as an excess of peaking will cause undesired overshoots and ringing on pulse edges.

Additional gain-bandwidth curves are shown in Fig. 16. Note that the high frequency rolloff is a function of load and feedback, but is typically 6-dB per octave. The bandwidth can be extended at a sacrifice of gain. Bandwidth extending may be done with loading or peaking. Both RC and RLC can be used to peak the input signal.

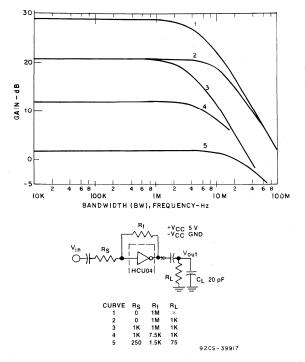


Fig. 16 - Linear-amplifier gain/bandwidth curves.

GENERAL APPLICATIONS OF THE 74HCU04

The low output impedance and video-bandwidth capability of the HCU04 suggest a wide variety of applications in linear signal amplifiers. Line-driver capability may be achieved by paralleling output amplifiers and applying feedback to assure low output impedance. The HCU04 may be used for both linear and digital data transfer. Real-time feedback conditions may be modified by using transmission-gate switching with such devices as the QMOS CD74HC4016 or CD74HC4052.

Video Switch

An example of a video-switching video-amplifier is shown in Fig. 17. The CD74HC4052 is a QMOS dual 4-input analog multiplex switch that is used to direct one of four inputs to the HCU04 video amplifier. An LED indicator shows which channel has been selected. One amplifier of the HCU04 is used as a buffer amplifier that drives four other amplifiers in parallel. These four amplifiers, in turn, drive a 75-ohm cable and load.

QMOS CD74HC4052 CD74HCU04 VIDEO SWITCH CIRCUIT DUAL 4 TO 1 SWITCH WITH VIDEO AT ONE OUTPUT & LED INDICATOR AT PAIRED OUTPUT +4.5 V CD74HC4052 TRANSMISSION GATE SWITCH CD74HCU04 UNBUFFERED HEX INVERTER -O v+ ONE BUFFER AMP, WITH 2X GAIN 4 PARALLELED AMP, TO DRIVE 75 Ω LINE 100 K 100 K TYPICAL DATA v_{DD} 8.2 K B.W. (-3 dB) 50 MHz
 FEEDTHROUGH -57 dB
 CROSSTALK -66 dB • DIFF. GAIN • DIFF. PHASE • IDD 20 mA • GAIN 2X 2 (a) 0.8 Vpp 0.75 (a) 0.8 Vpp RIMMER CROSSTALK -NOISE -66 dB 3 K • NOISE 0.1 u.F -O A -О в INPUT TO 1 OF 4 O INH CHANNELS SHOWN 1 CD74HC4052 HCU04 Q VEE 0.1 -О л. 33 - 4.5 V

Fig. 17 - Video-switch circuit employing QMOS CD74HC4052 and HCU04.

Bandwidth peaking is accomplished in the first video amplifier by the trimmer capacitor. One amplifier remains open for use as a parallel-signal amplifier, e.g., for audio signals. However, any unused amplifier should have the input returned to V⁺ (V_{cC}) or V⁻ (GND) to eliminate current drain. The peaking circuits provide for an exceptional 50-MHz gain-bandwidth capability at 2X gain. Other typical data is shown in the table accompanying the figure.

Audio/Tone Amplifier

The circuit of Fig. 18 is an audio or tone driver for high-efficiency, 32-ohm speakers or a headset. Although the power output is limited by the 5-volt supply, the use of the HCU04 as a tone amplifier or beeper is practical with this type of circuit.

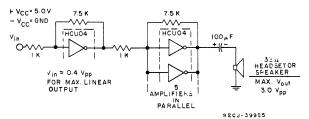


Fig. 18 - Audio/tone amplifier.

Other Linear Applications

The circuits of Fig. 19(a) through 19(h) are general applications of the HCU04 in both the linear and switching modes. With 25 mA of drive capability, the HCU04 amplifier can directly drive LED indicators or provide high-current base drive for a transistor lamp, solenoid, or relay driver, as shown in Figs. 19a and 19b.

Fig. 19(c) shows a possible use of the HCU04 with photocells or thermistors in a sensor amplifier application for light or heat control.

The circuit of Fig. 19(d) shows an HCU04 driving a TTL 2-input NAND gate. This circuit is employed where a TTL interface is needed.

Fig. 19(e), the simplest form of a low-pass filter, shows a capacitor-feedback arrangement in use with the HCU04 amplifier. Additional poles may be added with additional filter stages. In the example shown, the gain is unity and the 3-dB rolloff frequency is 5 kHz.

An emitter-follower may be coupled to the output and included in the feedback loop of the HCU04 amplifier, as shown in Fig. 19(f). The use of positive and negative power-supply voltages is optional. As another option, the output may be changed to a complementary-symmetry drive. With the emitter follower shown, the base-emitter offset of 0.7 volts reduces the linear dynamic range of the output drive signal.

The circuit of Fig. 19(g) is an adjustable current sink in which the current, I_{\circ} , in the output transistor, is approximately equal to 2.5/R. Fig. 19(h) shows a more general circuit for adjusting both voltage and current.

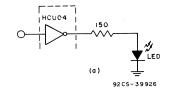


Fig. 19 - (a) LED driver.

Note: For circuits (a) through (e), +Vcc = 5 V, -Vcc = ground.

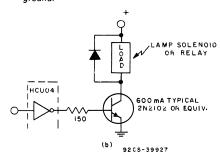


Fig. 19 - (b) Lamp, solenoid, or relay driver.

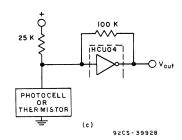


Fig. 19 - (c) Photocell or thermistor driver.

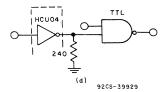


Fig. 19 - (d) TTL driver.

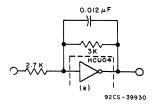


Fig. 19 - (e) Unity gain low-pass filter: 3-dB rolloff \sim 5 kHz.

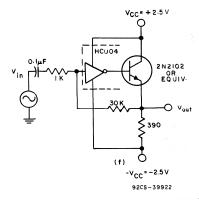


Fig. 19 - (f) Low Z_{OUT} amplifier.

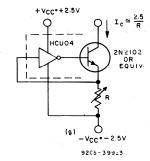


Fig. 19 - (g) Fixed-current-source driver.

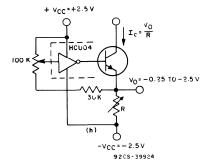


Fig. 19 - (h) Adjustable low-Z_{OUT} dc source or adjustable current sink.

Oscillator Applications

The circuit of Fig. 20(a) is a 3.58 MHz clock generator that may be VCO controlled by replacing the 10 pF capacitor with a varactor.

Uniformity of balance in the HCU04 leads to better frequency-range control in applications where the frequency is crossover dependent. The circuit of Fig. 20(b) can be changed in polarity of pulse and ramp output by changing the polarity of the 1N914 diode. The result is a -2V to +2V adjustable VCO with positive ramp and pulse outputs in the low switch position. In the high position, negative ramp and pulses are generated with a 2.6 V to 7 V control voltage. In both switch positions, the frequency range is 15 kHz to 180 kHz.

The VCO circuits of Figs. 20(c) and 20(d) are simpler, higher-frequency-range circuits with oscillator capability up to 25 MHz. The circuit of Fig. 20(d) shows a method of compensating effects of power-supply frequency change by adding some of the VCO change into the VCO input. At a center frequency of 5 MHz, for V_{in} = 0 V, the power-supply change is effectively cancelled for changes of $\pm 10\%$ V_{CC}.

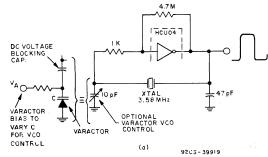
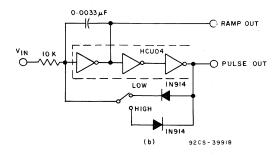



Fig. 20 - (a) 3.58-MHz clock or VCO circuit.

Note: For all Fig. 20 circuits, +V_{CC} = 5 V,

-V_{CC} = ground.

POSITIVE RAMP AND PULSE LOW ADJ RANGE 110 KHz AT 0 V VIN: -2 TO 2 V FREO: 180 KHz TO 15 KHz

NEGATIVE RAMP AND PULSE HIGH ADJ RANGE 100 KHz AT 5 V VIN: 2.6 V TO 7 V FREO: 15 KHZ TO 180 KHZ

Fig. 20 - (b) VCO pulse and ramp generator.

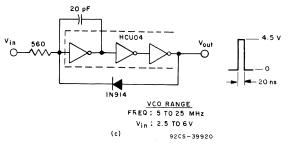


Fig. 20 - (c) High-frequency VCO pulse generator.

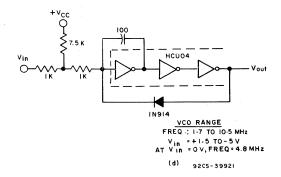


Fig. 20 - (d) Vcc -compensated VCO.

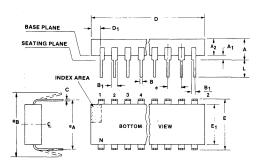
SUMMARY

The characterization and applications of the HCU04 shown illustrate how simple, high-speed CMOS device can be more widely used in both linear and digital circuits. Many applications require linear interface for buffer amplifiers, sensors, gain amplifiers, and multiple-line inverter circuits.

The power gain of the HCU04 is very high, although the voltage gain is typically less than 20. This feature makes the HCU04 an excellent driver for bipolar transistors driving lamps, relays, and solenoids.

REFERENCES

1. CD54/74HCU04, Hex Inverter Data Sheet; RCA Solid


State File No. 1655. The notation CD54/74HCU04 denotes two devices, the CD54HCU04F, the Hex Inverter in a ceramic package, and the CD74HCU04E, the Hex Inverter in a plastic package. Both devices are electrically identical. The notation HCU04 used in this Note refers to either device.

ACKNOWLEDGMENTS

Substantial portions of the gain-bandwidth technical characterization and related circuits in this Note were provided by J. Nadolski; HCU04 device-parameter information was provided by B. Petryna and R. Funk.

Dimensional Outlines

Dual-In-Line Plastic Packages

(E) Suffix (JEDEC MS-001-AC) 14-Lead Dual-In-Line Plastic Package

SYMBOL	INC	CHES	MILLIM	ETERS	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	_	0.210	_	5.33	9
A ₁	0.015	_	0.39	_	9
A ₂	0.115	0.195	2.93	4.95	7 4 4
В	0.014	0.022	0.356	0.558	
B ₁	0.045	0.070	1.15	1.77	3
С	0.008	0.015	0.204	0.381	
D	0.725	0.795	18.42	20.19	4
D ₁	0.005	_	0.13		12
E	0.300	0.325	7.62	8.25	5
E ₁	0.240	0.280	6.10	7.11	6, 7
e	0.10	0 BSC	2.54 BSC		8
e _A	0.30	0 BSC	7.62	BSC	9
eв	_	0.430	-	10.92	10
L	0.115	0.160	2.93	4.06	9
N		14	14	j	11

92CS-39901

Notes:

- Refer to JEDEC Publication No. 95 JEDEC Registered and Standard Outlines for Solid State Products, for rules and general information concerning registered and standard outlines, in Section 2.2.
- 2. Protrusions (flash) on the base plane surface shall not exceed 0.010 in. (0.25 mm).
- 3. The dimension shown is for full leads. "Half" leads are optional at lead positions

1, N,
$$\frac{N}{2}$$
 $\frac{N}{2}$ +1.

- Dimension D does not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 in. (0.25 mm).
- E is the dimension to the outside of the leads and is measured with the leads perpendicular to the base plane (zero lead spread).
- 6. Dimension E₁ does not include mold flash or protrusions.
- Package body and leads shall be symmetrical around center line shown in end view.
- Lead spacing e shall be non-cumulative and shall be measured at the lead tip. This measurement shall be made before insertion into gauges, boards or sockets.
- This is a basic installed dimension. Measurement shall be made with the device installed in the seating plane gauge (JEDEC Outline No. GS-3, seating plane gauge). Leads shall be in true position within 0.010 in. (0.25 mm) diameter for dimension eg.
- e_B is the dimension to the outside of the leads and is measured at the lead tips before the device is installed.
 Negative lead spread is not permitted.
- 11. N is the maximum number of lead positions.
- Dimension D₁ at the left end of the package must equal dimension D₁ at the right end of the package within 0.030 in. (0.76 mm).
- 13. Pointed or rounded lead tips are preferred to ease insertion.
- 14. For automatic insertion, any raised irregularity on the top surface (step, mesa, etc.) shall be symmetrical about the lateral and longitudinal package centerlines.

(E) Suffix (JEDEC MS-001-AA) 16-Lead Dual-In-Line Plastic Package

SYMBOL	IN	CHES	MILLIMI	ETERS	NOTES
STMBUL	MIN.	MAX.	MIN.	MAX.	NOIES
Α	_	0.210	_	5.33	9
A ₁	0.015	_	0.39	_	9
A ₂	0.115	0.195	2.93	4.95	
В	0.014	0.022	0.356	0.558	
B ₁	0.045	0.070	1.15	1.77	3
C	0.008	0.015	0.204	0.381	
D	0.745	0.840	18.93	21.33	4
D ₁	0.005	_	0.13	_	12
E	0.300	0.325	7.62	8.25	5
E ₁	0.240	0.280	6.10	7.11	6, 7
е	0.10	00 BSC	2.54 8	BSC	8
e _A	0.30	00 BSC	7.62	BSC	9
е _В	_	0.430	_	10.92	10
L	0.115	0.160	2.93	4.06	9
N		16	16	3	11

(E) Suffix (JEDEC MS-001-AE) 20-Lead Dual-In-Line Plastic Package

OVMBOI	IN	CHES	MILLIMETERS		NOTES	
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES	
A	-	0.210		5.33	9	
A1	0.015		0.39		9	
A ₂	0.115	0.195	2.93	4.95		
В	0.014	0.022	0.356	0.558		
B ₁	0.045	0.070	1.15	1.77	3	
c	0.008	0.015	0.204	0.381		
D	0.925	1.060	23.5	26.9	4	
D ₁	0.005	_	0.13	_	12	
E	0.300	0.325	7.62	8.25	5	
E ₁	0.240	0.280	6.10	7.11	6, 7	
e	0.10	00 BSC	2.54	BSC	8	
e _A	0.30	00 BSC	7.62	BSC	9	
e _B	_	0.430	_	10.92	10	
L	0.115	0.160	2.93	4.06	9	
N		20	2	0	11	

92CS-39900

92CS-39997

BASE PLANE SEATING PLANE INDEX AREA B1 2 3 4 B1 3 4

(EN) Suffix (JEDEC MS-001-AF) 24-Lead Dual-In-Line Plastic Package

aviano.	INC	CHES	MILLIM	MILLIMETERS		
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES	
A	_	0.210	-	5.33	9	
A ₁	0.015		0.39	_	9	
A ₂	0.115	0.195	2.93	4.95		
В	0.014	0.022	0.356	0.558	1	
B ₁	0.045	0.070	1.15	1.77	3	
c	0.008	0.015	0.204	0.381		
D	1.125	1.275	28.6	32.3	4	
D ₁	0.005	_	0.13	_	12	
E	0.300	0.325	7.62	8.25	5	
Ε1	0.240	0.280	6.10	7.11	6, 7	
e	0.10	0 BSC	2.54 1	BSC	8	
e _A	0.30	0 BSC	7.62 1	BSC	9	
e _B	-	0.430	-	10.92	10	
L	0.115	0.160	2.93	4.06	9	
N		24	24	i	11	

92CS-39943

(E) Suffix (JEDEC MS-011-AA) 24-Lead Dual-In-Line Plastic Package

	INC	CHES	MILLIM	MILLIMETERS	
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	_	0.250	_	6.35	9
A ₁	0.015	_	0.39	-	9
A ₂	0.125	0.195	3.18	4.95	
В	0.014	0.022	0.356	0.558	
B ₁	0.030	0.070	0.77	1.77	3
C	0.008	0.015	0.204	0.381	1
D	1.150	1.290	29.3	32.7	4
D ₁	0.005		0.13	-	12
E	0.600	0.625	15.24	15.87	5
E ₁	0.485	0.580	12.32	14.73	6, 7
•	0.10	0 BSC	2.54	BSC	8
•A	0.60	0 BSC	15.24	BSC	9
θВ	_	0.700	-	17.78	10
Ĺ	0.115	0.200	2.93	5.08	9
N		24	2	4	11

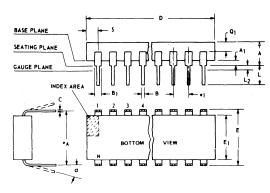
Dual-In-Line Plastic Packages

Notes:

- Refer to JEDEC Publication No. 95 JEDEC Registered and Standard Outlines for Solid State Products, for rules and general information concerning registered and standard outlines. in Section 2.2.
- Protrusions (flash) on the base plane surface shall not exceed 0.010 in. (0.25 mm).
- The dimension shown is for full leads. "Half" leads are optional at lead positions

1, N,
$$\frac{N}{2}$$
 $\frac{N}{2}$ +1.

- Dimension D does not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 in. (0.25 mm).
- E is the dimension to the outside of the leads and is measured with the leads perpendicular to the base plane (zero lead spread).
- 6. Dimension E₁ does not include mold flash or protrusions.
- Package body and leads shall be symmetrical around center line shown in end view.
- Lead spacing e shall be non-cumulative and shall be measured at the lead tip. This measurement shall be made before insertion into gauges, boards or sockets.
- This is a basic installed dimension. Measurement shall be made with the device installed in the seating plane gauge (JEDEC Outline No. GS-3, seating plane gauge). Leads shall be in true position within 0.010 in. (0.25 mm) diameter for dimension eg.
- eg is the dimension to the outside of the leads and is measured at the lead tips before the device is installed.
 Negative lead spread is not permitted.
- 11. N is the maximum number of lead positions.
- Dimension D₁ at the left end of the package must equal dimension D₁ at the right end of the package within 0.030 in. (0.76 mm).
- 13. Pointed or rounded lead tips are preferred to ease insertion.
- For automatic insertion, any raised irregularity on the top surface (step, mesa, etc.) shall be symmetrical about the lateral and longitudinal package centerlines.


(E) Suffix (JEDEC MS-011-AB) 28-Lead Dual-In-Line Plastic Package

DV11DQ1	INCHES		MILLIM	NOTES	
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	-	0.250	_	6.35	9
A ₁	0.015		0.39	_	9
A ₂	0.125	0.195	3.18	4.95	
В	0.014	0.022	0.356	0.558	Į
B ₁	0.030	0.070	0.77	1.77	3
С	0.008	0.015	0.204	0.381	
D	1.380	1.565	35.1	39.7	4
D ₁	0.005	. —	0.13	_	12
E	0.600	0.625	15.24	15.87	5
E ₁	0.485	0.580	12.32	14.73	6, 7
e	0.10	0 BSC	2.54 [3SC	. 8
e _A	0.60	0 BSC	15.24	BSC	9
eв	_	0.700	_ ,-	17.78	10
L	0.115	0.200	2.93	5.08	9
N		28	28	<u> </u>	11

92CS-40000

92CS-40001

Dual-In-Line Frit-Seal Ceramic (CERDIP) Packages

(F) Suffix (JEDEC MO-001-AB) 14-Lead Dual-In-Line Frit-Seal Ceramic Package

SYMBOL	INCHES		CHES MILLIMETERS		NOTES
PIMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	0.155	0.200	3.94	5.08	
A ₁	0.020	0.050	0.51	1.27	
В	0.014	0.020	0.356	0.508	
B ₁	0.050	0.065	1.27	1.65	
С	0.008	0.012	0.204	0.304	1
D	0.745	0.770	18.93	19.55	
Ε	0.300	0.325	7.62	8.25	
E ₁	0.240	0.260	6.10	6.60	
e ₁	0.1	00 TP	2.54 TP		2
eA	0.3	00 TP	7.62	TP	2, 3
L	0.125	0.150	3.18	3.81	
L ₂	0.000	0.030	0.00	0.76	
а	0°	15°	. 0°	15°	4
N		14	14		5
N ₁		0	0		6
Q ₁	0.040	0.075	1.02	1.90	
s	0.065	0.090	1.66	2.28	

92SS-4296R3

(F) Suffix 20-Lead Dual-In-Line Frit-Seal Ceramic Package

SYMBOL	INC	CHES	S MILLIMETERS		NOTES
SIMBUL	MIN.	MAX.	MIN.	MAX.	NOTES
A	0.120	0.250	3.10	6.30	
A ₁	0.020	0.070	0.51	1.77	
В	0.016	0.020	0.407	0.508	}
B ₁	0.028	0.070	0.72	1.77	İ
С	0.008	0.012	0.204	0.304	1
D	0.942	0.990	23.93	25.15	
E	0.300	0.325	7.62	8.25	ŀ
E ₁	0.240	0.280	6.10	7.11	4
e ₁	0.1	00 TP	2.54	TP	2
e _A	0.3	00 TP	7.62	TP	2, 3
L	0.100	0.200	2.54	5.00	1
L ₂	0.000	0.030	0.00	0.76	
α	0°C	15° C	0°C	15°C	4
N	20		20		5
N ₁		0	0		6
Q ₁	0.040	0.075	1.02	1.90	
S	0.040	0.100	1.02	2.54	

92CM-35137R1

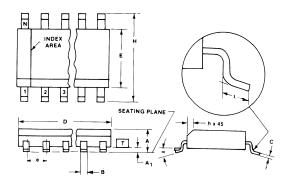
NOTES:

Refer to JEDEC Publication No. 95 for Rules for Dimensioning Axial Lead Product Outlines.

- When this device is supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013 in. (0.33 mm).
- 2. Leads within 0.005 in. (0.127 mm) radius of True Position (TP) at gauge plane with maximum material condition.
- 3. eA applies in zone L2 when unit is installed.
- 4. Applies to spread leads prior to installation.
- 5. N is the maximum quantity of lead positions.
- 6. N₁ is the quantity of allowable missing leads.

(F) Suffix (JEDEC MO-001-AC) 16-Lead Dual-In-Line Frit-Seal Ceramic Package

SYMBOL	IN	CHES	MILLIMI	ETERS	NOTES
STMBUL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	0.155	0.200	3.94	5.08	
A ₁	0.020	0.050	0.51	1.27	
В	0.014	0.020	0.356	0.508	
B ₁	0.035	0.065	0.89	1.65	
С	0.008	0.012	0.204	0.304	1
D	0.745	0.785	18.93	19.93	
E	0.300	0.325	7.62	8.25	
E ₁	0.240	0.260	6.10	6.60	
e ₁	0.1	00 TP	2.54	2	
eA	0.3	00 TP	7.62 TP		2, 3
L	0.125	0.150	3.18	3.81	
L ₂	0.000	0.030	0.00	0.76	Ĭ
а	0°	15°	0°	15°	4
N		16	16		5
N ₁	0		0		6
Q ₁	0.040	0.075	1.02	1.90	
S	0.015	0.060	0.39	1.52	


92CM-15967R4

(F) Suffix (JEDEC MO-015-AA) 24-Lead Dual-In-Line Frit-Seal Ceramic Package

SYMBOL	IN	CHES	MILLIM	ETERS	NOTES
STMBUL	MIN.	MAX.	MIN.	MAX.	NOIES
Α	0.120	0.250	3.10	6.30	
A ₁	0.020	0.070	0.51	1.77	
В	0.016	0.020	0.407	0.508	1
B ₁	0.028	0.070	0.72	1.77	
c	0.008	0.012	0.204	0.304	1
D	1.200	1.290	30.48	32.76	
Ε	0.600	0.625	15.24	15.87	
E ₁	0.515	0.580	13.09	14.73	
e ₁	0.1	00 TP	2.54	1 TP	2
eA	0.6	00 TP	15.24	4 TP	2,3
L	0.100	0.200	2.54	5.00	
L ₂	0.000	0.030	0.00	0.76	
α	0°C	15° C	0° C	15°C	4
N		24	2	24	
N ₁		0	()	6
Q ₁	0.040	0.075	1.02	1.90	
S	0.040	0.100	1.02	2.54	

92CS-26938R3

Dual-In-Line Surface Mount Plastic Packages

NOTES

- 1. Refer to applicable symbol list.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. "T" is a reference datum.
- "D" and "E" are reference datums and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .15mm (.006 in.).
- The chamfer on the body is optional. If it is not present, a visual index feature must be located within the cross hatched area.
- "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- 9. Controlling dimensions: MILLIMETERS.

(M) Suffix (JEDEC MS-012-AB) 14-Lead Dual-In-Line Surface-Mount Plastic Package

SYMBOL	IN	CHES	MILLIMI	MILLIMETERS	
STMBUL	MIN.	MAX.	MIN.	MAX.	NOTES
A	0.0532	0.0688	1.35	1.75	
A ₁	0.0040	0.0098	0.10	0.25	
В	0.0138	0.0192	0.35	0.49	
С	0.0075	0.0098	0.19	0.25	
D	0.3367	0.3444	8.55	8.75	4
E	0.1497	0.1574	3.80	4.00	4
е	0.05	0 BSC	1.27 E	sc	
н	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N		14	14	1	7
α	0°	8°	0°	8°	

92CS-38924R1

(M) Suffix (JEDEC-MS-012-AC) 16-Lead Dual-In-Line Surface-Mount Plastic Package

SYMBOL	IN	CHES	MILLIM	ETERS	NOTES
STMBUL	MIN.	MAX.	MIN.	MAX.	NOTES
A	0.0532	0.0688	1.35	1.75	
A ₁	0.0040	0.0098	0.10	0.25	
В	0.0138	0.0192	0.35	0.49	
С	0.0075	0.0098	0.19	0.25	
D	0.3859	0.3937	9.80	10.00	4
E	0.1497	0.1574	3.80	4.00	4
e	0.05	0 BSC	1.27 E	BSC	
н	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0:40	1.27	6
N .		16	10		7
α	0°	8°	0°	8°	

Notes: 1, 2, 3, 8, 9 92CS-38925R1

(M) Suffix (JEDEC-MS-013-AC) 20-Lead Dual-In-Line Surface-Mount Plastic Package

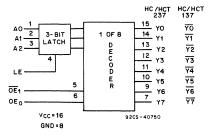
SYMBOL	IN	CHES	MILLIM	ETERS	NO.
STMBUL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	0.0926	0.1043	2.35	2.65	
A ₁	0.0040	0.0118	0.10	0.30	
В	0.0138	0.0192	0.35	0.49	
С	0.0091	0.0125	0.23	0.32	
D	0.4961	0.5118	12.60	13.00	4
E	0.2914	0.2992	7.40	7.60	4
е	0.05	0 BSC	1.27		
н	0.394	0.419	10.00	10.65	
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N		20	2	7	
α	0°	8°	0°	8°	

Notes: 1, 2, 3, 8, 9

Notes: 1, 2, 3, 8, 9

92CS-38926R1

(M) Suffix (JEDEC MS-013-AD) 24-Lead Dual-In-Line Surface-Mount Plastic Package


SYMBOL	IN	CHES	MILLIM	ETER\$	NOTES		
STMBUL	MIN.	MAX.	MIN.	MAX.	NOTES		
A	0.0926	0.1043	2.35	2.65			
A ₁	0.0040	0.0118	0.10	0.30			
В	0.0138	0.0192	0.35	0.49			
С	0.0091	0.0125	0.23	0.32			
D	0.5985	0.6141	15.20	15.60	4		
E	0.2914	0.2992	7.40	7.60	4		
e	0.05	0 BSC	1.27 [BSC			
Н	0.394	0.419	10.00	10.65			
h	0.010	0.029	0.25	0.75	5		
L	0.016	0.050	0.40	1.27	6		
N		24	2	7			
α	0°	8°	0°	8°			

Notes: 1, 2, 3, 8, 9

92CS-39037R1

New Datasheets and Application Note (Product Preview Types in SSD-290C)

High-Speed CMOS Logic

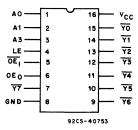
3-to-8 Line Decoder/Demultiplexer With Address Latches

HC/HCT137 - Inverting HC/HCT237 - Non-Inverting

Type Features:

- Select one of eight data outputs (active LOW for 137, active HIGH for 237)
- I/O port or memory selector
- 2 Enable inputs to simplify cascading
- Typical propagation delay of 13 ns @ V_{CC} = 5 V, 15 pF, T_A = +25° C (HC237)

FUNCTIONAL DIAGRAM


The RCA-CD54/74HC137, 237 and CD54/74HCT137, 237 are high speed silicon gate CMOS decoders, and are well suited to memory address decoding or data routing applications. Both devices feature low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL logic.

Both circuits have three binary select inputs (A0, A1, and A2) that can be latched by an active High Latch Enable (LE) signal to isolate the outputs from select-input changes. A "Low" LE makes the output transparent to the input and the circuit functions as a one-of-eight decoder. Two Output Enable inputs $(\overline{OE}_1$ and OE_0) are provided to simplify cascading and to facilitate demultiplexing. The demultiplexing function is accomplished by using the A0, A1, A2 inputs to select the desired output and using one of the Output Enable inputs as the data input while holding the other Output Enable input in its active state. In the HC/HCT137 the selected output is a "Low"; in the HC/HCT237 the selected output is a "High".

The CD54HC137, 237 and CD54/74HCT137, 237 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC137, 237 and CD74HCT137, 237 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line small-outline plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature/Range: CD74HC/HCT: -40 to +85° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 μA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT FOR HC/HCT137 FOR HC/HCT237 ALL Y's ARE Y's

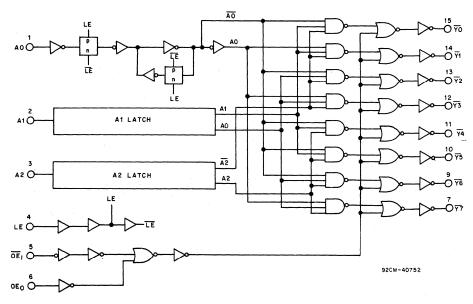


Fig. 1 - Logic diagram for HC/HCT137.

TRUTH TABLE CD54/74HC137, CD54/74HC137

		INPU	TS						OUT	PUTS			
LE	OE ₀	ŌĒ1	A ₂	A ₁	Ao	Y ₀	Y 1	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y ₇
Х	X	Н	X	X	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	L	X	х	Х	X	Н	. н	Н	Н	Н	Н	Н	Н
L	Н	L	L	L	L	· L	Н	Н	Н	Н	Н	Н	Н
L	н	L	L	L	н	Н	L	н	н	н	н	н	Н
L	Н	L	L	H	L	Н	Н	L	н	н	Н	н	Н
L	Н	L	L	Н	Н	Н	Н	н	L	н	Н	Н	Н
L	Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
L	. н	L	н	L	н	Н	н	н	н	н	L	н	Н
L	Н	L	н	Н	L	Н	Н	Н	Н	Н	Н	L	н
<u> </u>	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
н	н	L	х	Х	Х					*			

^{*} Depends upon the address previously applied while LE was at a logic low.

H = High Level, L = Low Level, X = Don't Care.

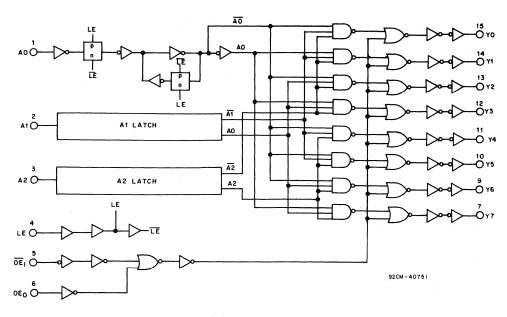


Fig. 2 - Logic diagram for HC/HCT237.

TRUTH TABLE CD54/74HC237, CD54/74HCT237

		INPU	TS				OUTPUTS								
LE	OE ₀	ŌE ₁	A ₂	A ₁	Ao	Yo	Y ₁	Y	2	Y ₃		Y ₄	Y ₅	Υ ₆	Y ₇
Х	Х	Н	Х	Х	Х	L	L	L		L		L	L	L	L
. X	L	X	х	X	Х	L	L	L		L		L	L	. L	L
L	Н	L	L	L	L	Н	L	L		L		L	L	L	L
L	н	L	L	L	н	L	Н	L		L		L	L	Ľ	L
L	н	L	L	Н	L	L	L	Н	ı	· · L		L	L	L,	L
L	н	L	L	н	Н	L	L	L		н		L	. L	L	L
L	Н	L	Н	L	L	L	L	L		L	-	Н	L	L	L
. L	н	L	Н	L	Н	L	L	· L		L		L	Н	L.	L
· L	н	L	н	н	L	L	L	L		L		L	L	ч	L
L	Н	L	Н	н	Н_	L	L	L		L		L	L	L	н
Н	Н	L	х	х	X						*				
* Depen	ds upon	the addr	ess prev	iously a	pplied wh	ile LE	was at	a logic l	ow.					-1 1	

H = High Level, L = Low Level, X = Don't Care.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_1 < -0.5 \text{ V OR } V_1 > V_{CC} + 0.5 \text{ V})$	± 20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} + 0.5$ V)	± 20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc + 0.5 V)	± 25 mA
DC V _{cc} OR GROUND CURRENT (I _{cc})	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70° C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F, H	
PACKAGE TYPE E, M	40 to +85° C
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265° C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN		
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{CC} : *			
CD54/74HC Types	2	6	. v
CD54/74HCT Types	4.5	5.5	v
DC Input or Output Voltage, V _{in} , V _{out}	0	V _{cc}	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t, t _f :			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*} Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

		CD74HC137/237, CD54HC137/237							CD	74HC	T137/	237, (CD54	нст1	37/23	7											
V .			TEST IDITIOI	45		IC/54	-	741 TYF		54) TYF		TEST CONDITION	45			74HCT/54HCT TYPES								ICT PES	54H TYF		UNITS
CHARACTERIS	TIC	V ₁	lo	Vcc		+25° C	;	-4 +85		-5 +12		V,	Vcc		+25° C		-40 +85			5/ 5°C	UNITS						
		v	mA.	v	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max							
High-Level				2	1.5	-	-	1.5	_	1.5	_		4.5														
Input Voltage	VIH	l		4.5	3.15	_	<u> </u>	3.15	_	3.15	_	-	to	2	-	-	2	-	2	-	V						
				6	4.2	<u> </u>	<u> </u>	4.2	_	4.2	_		5.5					ļ									
Low-Level				2	_	_	0.5	_	0.5	<u> -</u>	0.5		4.5	1													
Input Voltage	V_{IL}			4.5	<u> -</u>	=	1.35	_	1.35	_	1.35	_	to	-	-	0.8	-	0.8	-	8.0	V						
				6	_	_	1.8	_	1.8	_	1.8		5.5	ļ	_		L	-		_							
High-Level		VIL		2	1.9	=	<u> </u>	1.9		1.9	-	VIL		١			١	1	١		.,						
Output Voltage	VoH	or	-0.02	4.5	4.4	_	 -	4.4	_	4.4	-	or	4.5	4.4	-	-	4.4	-	4.4	-	V						
CMOS Loads		V _{IH}		6	5.9	=	<u> </u>	5.9	_	5.9	_	V _{IH}		-	-	-	<u> </u>	-	-	-							
		VIL	<u> </u>		-		ļ	-		_	-	VIL									v						
TTL Loads		or	-4	_	3.98	=	-	3.84	<u> </u>	3.7	_	or	4.5	3.98	-	-	3.84	-	3.7	-	· V						
		ViH	-5.2	6	5.48	=	 	5.34	_	5.2	-	VIH	_	-		-	├	┼	-	-							
Low-Level		VIL		2	=	=	0.1	_	0.1	_	0.1	Or Or	4.5	_	_	0.1	_	0.1	_	0.1	v						
Output Voltage	Vol	or	0.02	4.5 6	=	=	0.1	=	0.1	=	0.1	ViH	4.5	-	_	0.1	_	0.1	_	0.1							
CMOS Loads		V _{IH}		6	-	<u> </u>	0.1	<u> </u>	0.1	_	0.1	VIL		-	-		-	┼	 	├							
TTL Loads		ViL	4	4.5	_	-	0.26	 	0.33	-	0.4	or	4.5	l		0.26	l_	0.33	_	0.4	v						
TTE LOads		Or Viii	5.2	6	=	=	0.26	⊨	0.33	=	0.4	VIH	7.5	_		0.20	_	0.00		0.4	·						
Input Leakage		VIH	5.2	-	-	 -	0.26	+=	0.33	Ε-	0.4	Any	-	 	 	-	 	\vdash	 	+							
Current	- Iı	Vcc					ì		İ			Voltage			1				ļ								
Guirein	. "	or		6	-	-	±0.1	-	±1	-	±1	Between	5.5	-	-	±0.1	-	±1	-	±1	μΑ						
		Gnd										V _{cc} & Gnd															
Quiescent		Vcc	ļ	<u> </u>			<u> </u>					Vcc		<u> </u>			<u> </u>	T	T	1							
Device Current	lcc	or	0	6	_	_	8	_	80	_	160	or	5.5	_	l _	8	l _	80	l –	160	μΑ						
		Gnd	[.									Gnd															
Additional																<u> </u>											
Quiescent Device													4.5							100							
Current per input												V _{cc} -2.1	to	-	100	360	-	450	-	490	μΑ						
pin: 1 unit load	Δlcc*												5.5			1				1							

^{*}For dual-supply systems theoretical worst case (V_1 = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
All	1.5

^{*} Unit Load is Δl_{cc} limit specified in Static Characteristic Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, C_L = 15 pF, input t_r, t_f = 6 ns)

CHARACTERISTIC		13	37	2:	UNITS	
		нс	нст	нс	нст	
Propagation Delay, Address to Output Y (C _L = 15pF) (Fig. 3)	t _{PLH}	15	16	13	16	ns
Power Dissipation Capacitance *	* C _{PD}	19	19	23	23	pF,

 $^{^{\}star}$ C_{PD} is used to determine the dynamic power consumption, per package.

PD = $V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = input frequency

C_L = output load capacitance

V_{cc} = supply voltage

PREREQUISITE FOR SWITCHING FUNCTION

								LIN	IITS						
				25	°C			-40°C t	+85°	С	-	С			
CHARACTER	ISTIC	Vcc	н	С	н	СТ	74	нс	74F	HCT	54	нс	541	HCT	UNITS
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
CD54/74HC	137, CD	54/74	HCT13	37										<u></u>	
A _n to LE		2	50	T -	I -	<u> </u>	65	_	_	T —	75	_	_	T -	
Setup		4.5	10	-	10		13		13	_ '	15	-	15	-	ns
Time	tsu	6	9	_	-	_	11		_	_	13	! <u>-</u>		_	
A _n to LE		2	30	-	_	_	40	_	_	T -	45	_	I –	T -	
Hold		4.5	6		7		8	-	9	-	9		- 11		ns
Time	t _H	6	5	-	_		7		_	-	8	_	_	_	
LE Pulse		2	50	Ι	—	_	65		_	T -	75	_	-	_	
Width	tw	4.5	10	-	10	_	13	-	13	-	15	-	15	_	ns
		6	9		_	_	. 11	-			13	-	_	_	
CD54/74HC23	37, CD5	4/74H	CT237					-							
A _n to LE		2	50	_	_	<u> </u>	65	Ι –	_	Ι –	75	_	_	T -	
Setup		4.5	10	_	10	-	13	_	13	_	15	_	15	-	ns
Time	ts∪	6	9	_	-	_	11	_	_	_	13	_	_		
A _n to LE		2	30	_	-	_	40	T -	_	I -	45	_	_	T -	
Hold		4.5	6	_	5	-	8	-	5	_	9	_	5	_	ns
Time	tн	6	5		_	_	7	_	_		8	_	-		
LE Pulse		2	50	_	Γ-	_	65	-	_	_	75	_	_	-	
Width	tw	4.5	10	-	10	_	13	_	13	<u> </u>	15	_	15	-	ns
		6	9	-	_	_	11	_	-	-	13	_	_		

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t, = t, = 6 ns)

							LIM	IITS						
			25	°C			-40°C to	o +85° (•		55°C to	+125°	С	
CHARACTERISTIC	Vcc	н	C	н	CT	74	нс	74F	ICT	54	нс	541	ICT	UNITS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Propagation Delay	tel	.н, t _{РНL}												
CD54/74HC137, CD54/74HCT137														
	2	-	180	-	-	-	225		-	_	270	-	-	
A_n to any \overline{Y}	4.5	_	36	-	38	-	45	-	48	_	54	-	57	ns
	6		31				38				46			<u> </u>
	2	-	145	-	-	-	180	-	-	-	220	-	-	
OE₀ to any Y	4.5	—	29	-	35	-	36	-	44	_	44	-	53	ns
	6		25		_		31				38			
	2	-	145	-	-	-	180	-	_	- '	220	-	-	
OE₁ to any Y	4.5	_	29	-	37	-	36	-	46	-	44	_	56	ns
	6		25				31				38			
	2	_	190	-	-	-	240	_	-		285	-	-	}
LE to any Y	4.5	-	38	-	44	-	48	_	55	_	57	-	66	ns
	6	_	32				41	_			48			
Propagation Delay	t _{PL}	н, t _{РНL}												
CD54/74HC237, CD54/74HCT237														
	2	_	160	_	-	-	200		_		240	_	_	÷
A _n to any Y	4.5		32	_	38	_	40	_	48	_	48	-	57	ns
	6		27				34				41			
	2	_	145	_	_	_	180	_	_	-	220	—		-
OE₀ to any Y	4.5	_	29	_	33	_	36		41	-	44	_	50	ns
	6		25	_			31				38			
	2	_	145	_	_	_	180	_	_	-	220	_	-	
OE₁ to any Y	4.5	_	29	_	35	_	36	_	44	_	44	-	53	ns
	6		25				31				38			
	2	_	190	_	_	-	240	_	-		285	-		
LE to any Y	4.5		38	_	42	-	48		53	_	57		63	ns
	6		32				41		<u></u>		48			
Output	2		75	_	_	_	95	_	_	_	110	_	_	
Transition	4.5		15	_	15	-	19	_	19		22	_	22	ns
Times t _{THL} , t _{TLH}	6		13				16				19			
Input Capacitance C	_	_	10	_	10	_	10	_	10	_	10	_	10	pF

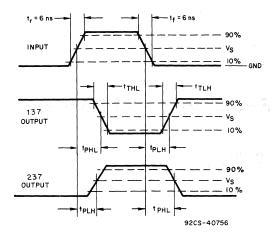


Fig. 3 - Transition times and propagation delay times.

	54/74HC	54/74HCT
Input Level	V _{cc}	3 V
Switching Voltage, V _S	50% V _{CC}	1.3 V

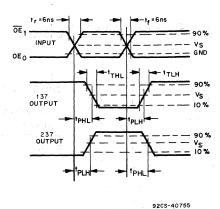


Fig. 4 - Transition times and propagation delay times.

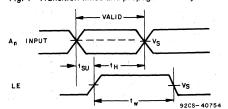
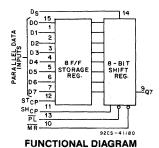



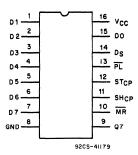
Fig. 5 - Latch enable setup and hold times.

High-Speed CMOS Logic

when PL is high.

8-Bit Shift Register with Input Storage

Type Features:


- Buffered Inputs
- Asynchronous Parallel Load
- Typical $f_{MAX} = 60 \text{ MHz}$ @ $V_{CC} = 5 \text{ V}$, $C_L = 15 \text{ pF}$, $T_A = 25^{\circ} \text{ C}$

The RCA-CD54/74HC597 and CD54/74HCT597 are high-speed si-gate CMOS devices that are pin-compatible with the LSTTL 597 devices. Each device consists of an 8-flip-flop input register and an 8-bit parallel-in/serial-in, serial-out shift register. Each register is controlled by its own clock. A "low" on the parallel load input (PL) shifts parallel stored data asynchronously into the shift register. A "low" master input (MR) clears the shift register. Serial input data can also be synchronously shifted through the shift register

The CD54HC/HCT597 devices are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT597 devices are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +125° C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I₁ ≤ 1 μA @ V_{OL}, V_{OH}
- Alternate Source is Philips/Signetics

TERMINAL ASSIGNMENT

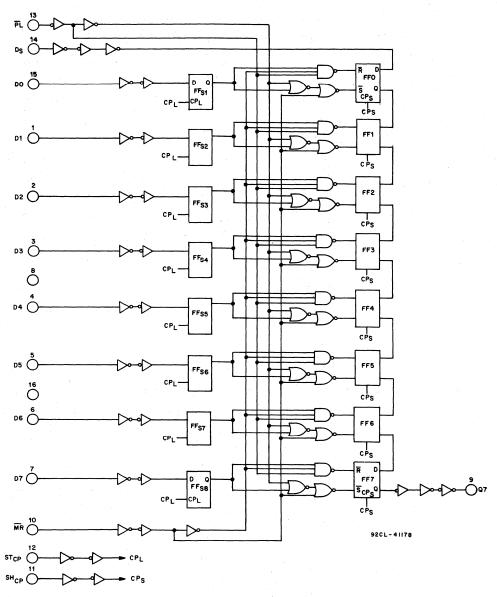


Fig. 1 — Logic diagram for the CD54/74HC597 and CD54/74HCT597.

STATIC ELECTRICAL CHARACTERISTICS

	1	TEST NDITIONS	7440/5440		нс	74HC -55/ +125°C		TEST CONDITIONS		74H0	74HCT/54HCT			ст	54HCT -55/ +125°C					
CHARACTERISTIC	V,	l _o	v _{cc}		+25° C	;	1	0/ 5° C	741 -4 +12	0/	V _i	v _{cc}		+25° C	;	ı	10/ 5° C	-4	ICT 0/ 5°C	UNITS
	V	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	_	1.5	_	1.5	_		4.5								
Input Voltage V _{IH}			4.5	3.15		_	3.15	_	3.15	_	-	to	2	-	-	,2	- 1	2	-	v
Low-Level			6	4.2	_	0.5	4.2	0.5	4.2	0.5		5.5 4.5			-	-	-		-	
Input Voltage V _{II}		-	4.5	_	_	1.35		1.35	_	1.35	_	to	_	_	0.8	_	0.8	_	0.8	v
. 3			6		_	1.8	_	1.8	_	1.8		5.5								
High-Level	V _{IL}		2	1.9	_	_	1.9	-	1.9	_	V _{IL}									
Output Voltage Von	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	-	or	4.5	4.4	_	_	4.4	_	4.4	_	v
CMOS Loads	ViH		6	5.9	_	_	5.9	_	5.9	-	Vıн							ŀ		
	ViH										ViH									
TTL Loads	or	-4	4.5	3.98	_		3.84	_	3.7	_	or	4.5	3.98	ļ. —	-	3.84	-	3.7	-	v
	V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	_	V _{IH}									
Low-Level	V _{IL}		2	_	-	0.1	_	0.1		0.1	V _{IL}									
Output Voltage Vol	or	0.02	4.5	_		0.1	_	0.1		0.1	or	4.5	-	_	0.1	_	0.1	-	0.1	v
CMOS Loads	VIL		6	_	_	0.1	_	0.1		0.1	V _{IL}									
	V _{IL}										V _{IL}									
TTL Loads	or	4	4.5	_	_	0.26	_	0.33	_	0.4	or	4.5	_	-	0.26	-	0.33	-	0.4	v
	V _{IH}	5.2	6	<u> </u>	_	0.26	_	0.33		0.4	V _{IH}									
Input Leakage	Vcc										Any Voltage									
Current I	or		6		-	±0.1	-	±1	_	±1	Between V _{cc}	5.5	-	-	±0.1	-	±1	-	±1	μΑ
	Gnd		<u> </u>								& Gnd							L		
Quiescent	V _{cc}										V _{CC}									
Device	or	0	6	-	-	8	-	80	-	160	or	5.5	-	_	8	-	80	-	160	μΑ
Current Ico	Gnd	1 1					L		L		Gnd									
Additional Quiescent Device Current per input pin: 1 unit load											V _{cc} -2.1	4.5 to 5.5	_	100	360	_	450	_	490	μΑ

^{*}For dual-supply systems theoretical worst case ($V_1 \approx 2.4 \text{ V}$, $V_{CC} = 5.5 \text{ V}$) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
D₅	0.2
Dn	0.3
PL, MR	1.5
ST _{CP} , SH _{CP}	1.5

^{*}Unit Load is $\Delta l_{\rm Cc}$ limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1\!<\!-0.5~V$ OR $V_1\!>\!V_{CC}$ +0.5 V)	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V)	
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR –0.5 V $<$ V0 $<$ Vcc +0.5 V) $\ldots.$	±25 mA
DC V _{cc} OR GROUND CURRENT (I _{cc})	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +100°C (PACKAGE TYPE E)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/° C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +125°C
STORAGE TEMPERATURE (Tstg)	65 to +150° C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	UNITS		
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} :*				
CD54/74HC Types	2	6		
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage V _I , V _O	0	Vcc	V	
Operating Temperature T _A :				
CD74 Types	-40	+125	°C	
CD54 Types	-55	+125		
Input Rise and Fall Times tr, tr				
at 2 V	0	1000		
at 4.5 V	0	500	ns	
at 6 V	0	400		

^{*}Unless otherwise specified, all voltages are referenced to ground.

SWITCHING CHARACTERISTICS (V $_{cc}$ = 5 V, T $_{A}$ = 25°C, Input t, t, = 6 ns)

	CHARACTERISTIC	CL	SYMBOL	TYP	CAL	UNITS	
	CHARACTERISTIC	(pF)	STIMBUL	HC	HCT	014112	
Propagation Delay: SH _{CP} to Q7		15	t _{PHL}	14	16		
PL to Q7		15	t _{PLH}	17	20	ns	
MR to Q7		15		14	18	113	
ST _{CP} to Q7		15		20	23		
Power Dissipation Ca	apacitance*		C _{PD}	13.5	18.5	pF	

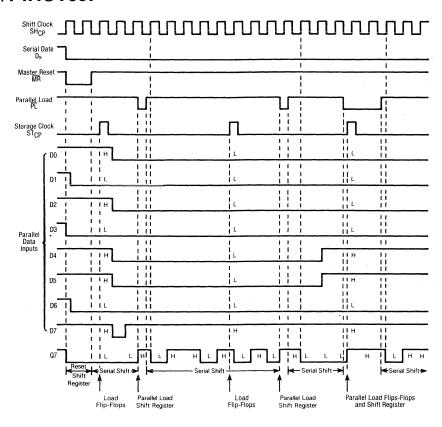
^{*}C_{PD} is used to determine the dynamic power consumption, per package.

f_i = input frequency

fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage


 P_D = $C_{PD} \; V_{CC^2} \; f_i + \Sigma \; (C_L \; V_{CC^2} \; f_o)$ where:

PRE-REQUISITE FOR SWITCHING FUNCTION

				25			-4	0°C t	o +85°	C	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	V _{cc}	Н	С	Н	СТ	74	НС	74H	ICT	54	HC	54F	ICT	UNITS
]		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Min.	Max.] .
SH _{CP} Frequency		2	6	_	_	_	5		_		4	_	_		
	f _{MAX}	4.5	30	_	25	_	25	_	20	l —	20	_	16	_	MHz
	1	6	35	_	_		29	—	_	_	23	_	_	_	
SH _{CP} Pulse Width		2	80	_		_	100		_	_	120	_	_	_	
SHCP Pulse Width	tw	4.5	16	_	20	-	20	_	25	. —	24	_	30	_	ns
		6	14		_	_	17		_	_	20	l —		_	
ST _{CP} Pulse Width		2	60	_	_	_	75		_	_	90	_	_	_	
STop Pulse Width	tw	4.5	12		13	l —	15	_	16		18	_	20	_	ns
	"	6	10	_	_	_	13	_		_	15			_	
75 p. t. 115 m.		2	80	_	_	_	100		_	_	120	_	_		
MR Pulse Width	t _w	4.5	16	_	18	_	20	_	23	_	24		27		ns
		6	14	_		_	17	_	_	_	20	_		_	
		2	70				90		_		105	_		_	
PL Pulse Width	tw	4.5	14	_	16	_	18	_	20	_	21		24	_	ns
		6	12	l —	_	_	15	_		_	18	_	l _	_	
<u> </u>		2	100	_	_	_	125	_	_	_	150	_		_	
ST _{CP} to SH _{CP}	tsu	4.5	20	l	24		25	_	30	_	30		36	_	ns
Setup Time		6	17			_	21	_	_		26	_		_	
D . 0		2	50	_	_		65	_	_	_	75	_	_		
Ds to SH _{CP}	tsu	4.5	10	-	10	_	13	_	13	_	15	_	15		ns
Setup Time		6	9	_			11	_	_		13		_	_	-
.		2	50	_	_	_	65		_	_	75	_	_	_	
D _n to ST _{CP}	tsu	4.5	10		10		13		13	l —	15	_	15	_	ns
Setup Time		6	9	_			11	-	_	_	13			_	
OT . O		2	0	_			0	_	_	_	0	_			
ST _{CP} to SH _{CP}	t⊬	4.5	0	_	0	_	0		0	_	0	_	0	_	ns
Hold Time		6	0		_		0		_	_	0	_ :			
B		2	3	_	_	_	3	_	-	_	3	_	_	_	
Ds to SH _{CP}	t _H	4.5	3	l —	3	_	3		3	_	3	_	3		ns
Hold Time		6	3				3			_	3	_	_		-
_		2	3	_	_	_	3		<u> </u>	T —	3			_	
D _n to ST _{CP}	t _H	4.5	3		3	_	3	_	3		3	_	3	_	ns
Hold Time	- "	6	- 3	_		_	3		_		3		_	_	
MD+ OU		2	3	_	_		3	_	_	_	3	_		_	
MR to SH _{CP}	t _{REM}	4.5	3		10		3		13	_	3	_	15		ns
Removal Time		6	3	_		_	3	_	_		3	_	_		

SWITCHING CHARACTERISTICS (C_L = 50 pF, Input t, t, = 6 ns)

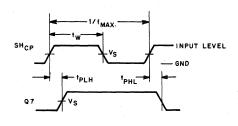
				25	°C		-4	10°C t	o +85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC	SYMBOL	Vcc	HC		H	СТ	74	HC	74HCT		54	HC	54h	ICT	UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Min.	Max.	
Propagation Delay	t _{PLH}	2	_	175	_	_	_	220	_	_		265	_	_	
SH _{CP} to Q7	t _{PHL}	4.5	-	35	-	38		44	—. ·	48	-	53	-	57	ns
		6	_	30		_	_	37				45			
	tplH	.2	_	200	_	_	_	250	-	_	_	300	-	_	
PL to Q7	tphL	4.5	-	40	-	48	-	50	—	60	_	60	-	72	ns
		6	_	34	_	_		43	_	_		51			
	tpLH	2	-	240	_	_	-	300	-	_	_	360	_	-	
ST _{CP} to Q7	tpHL	4.5		48		56	-	60	-	70	-	72	l —	84	ns
		6		41	_		_	51			_	61			
		2	_	175	_	_	_	220	-	_		265	_	_	
MR to Q7	t _{PHL}	4.5	_	35	_	44		44	-	55	-	53	-	66	ns
		6		30		_	_	37		_	_	45	-		
	tTLH	2	_	75	_	_	_	95	_	_	_	110	-	-	
Output Transition	t _{THL}	4.5		15	_	15	_	19		19	-	22	-	22	ns
Time		6	<u> </u>	13				16				19			
Input Capacitance	Cı	_	_	10	-	10	_	10	_	10	_	10	_	10	pF

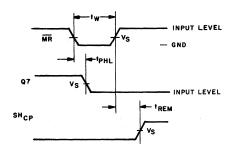
TIMING DIAGRAM

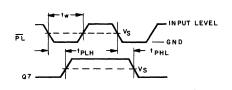
FUNCTION TABLE

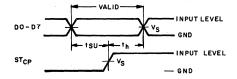
ST _{CP}	SH _{CP}	PL	MR	FUNCTION
/	X	Х	Х	data loaded to input Flip-Flops
/	Х	L	Н	data loaded from inputs to shift register
no clock edge	х	L	Н	data transferred from input Flip-Flops to shift register
х	х	L	L	invalid logic, state of shift register indeterminate when signals removed
х	х	н	L	shift register cleared
х		Ι	н	shift register clocked Qn = Qn-1, Q0 = D _s

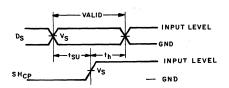
H = HIGH voltage level

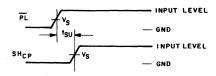

L = LOW voltage level

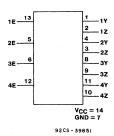

X = don't care


____ = LOW-to-HIGH CP transition


SWITCHING WAVEFORMS







	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

High-Speed CMOS Logic

Quad Bilateral Switch

Type Features:

- Wide analog-input-voltage range: 0-10 V
- Low "ON" resistance: 45Ω typ. @ V_{CC} =4.5 V 35 Ω typ. @ V_{CC} =6 V

30 Ω typ. @ $V_{CC}=9$ V

- Fast switching and propagation delay times
- Low "OFF" leakage current
- Built-in "Break-before-make" switching
- Suitable for Sample and Hold applications

FUNCTIONAL DIAGRAM

The RCA CD54/74HC/HCT4016 contains four independent digitally controlled analog switches that use silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

Each switch has two input/output terminals (nY,nZ) and an active high enable input (nE). Current through the switch will not cause additional $V_{\rm CC}$ current provided the analog voltage is maintained between $V_{\rm CC}$ and Gnd.

The CD54HC4016 and CD54HCT4016 are supplied in 14-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4016 and CD74HCT4016 are supplied in 14-lead dual-in-line plastic packages (E suffix) and in 14-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Wide operating temperature range: CD74HC/HCT: -40 to +125° C
- **■** CD54HC/CD74HC types:

2 V to 10 V operation High noise immunity:

 $N_{\rm IL} = 30\%$, $N_{\rm IH} = 30\%$ of $V_{\rm CC}$; @ $V_{\rm CC} = 5$ V

■ CD54HCT/CD74HCT types:

Direct LSTTL input logic compatibility

V_{II} = 0.8 V max., V_{IH} = 2 V min.

 $V_{IL} = 0.8 \text{ V max.}, V_{IH} = 2 \text{ V min.}$ CMOS input compatibility

 $I_1 \leq 1 \,\mu A \otimes V_{OL}, V_{OH}$

■ Alternate Source is Philips/Signetics

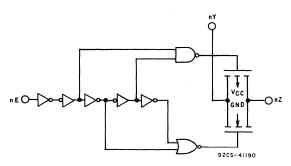
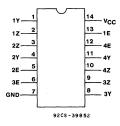


Fig. 1 - Logic diagram.


TRUTH TABLE

INPUT nE	SWITCH
L	OFF
Н	ON

H = High Level Voltage L = Low Level Voltage

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (Vcc):	
(Voltages referenced to ground)	
HCT Types	0.5 to +7 V
HC Types	0.5 to +10.5 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_I < -0.5$ V OR $V_I > V_{CC} + 0.5$ V)	
DC SWITCH DIODE CURRENT, I_{OK} (FOR V_{O} $<$ -0.5 V OR V_{O} $>$ V_{CC} +0.5 V) $\ldots \ldots \ldots$	
DC SWITCH CURRENT, I_0 (FOR $V_1 > -0.5$ V OR $V_1 < V_{CC} +0.5$ V)	+25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +100°C (PACKAGE TYPE E)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE E)	
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +125°C
STORAGE TEMPERATURE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ in. $(1.59 \pm 0.79 \text{ mm})$ from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead tips only	+300°C

TERMINAL ASSIGNMENT

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LI	UNITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For TA=Full Package-Temperature Range)			
Vcc.*		ľ	1
CD54/74HC Types	2	10	v
CD54/74HCT Types	4.5	5.5	· ·
DC Input Voltage, V _c , and Analog Switch Voltage, V _{I/O}	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+125	· · · c
CD54 Types	-55	+125	
Input Rise and Fall Times, t _r ,t _f (Control Inputs)			
at 2 V	0	1000	
at 4.5 V	O	500	ns
at 6 V	0	400	115
at 9 V	0	250	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

	co	TEST INDITIONS		741	1C/54	нс	741	нс	541 -5 +12	5/	-	EST DITIONS		74HC	CT/54	нст	74H	СТ	54H -5 +12	5/	
CHARAC- TERISTIC	LOGIC V _I	SWITCH V _{IS}	v cc		+25° C	:	-4 +85	0/ 5°C	741 -4 +12	0/	LOGIC V _i	SWITCH V _{IS}	v _{cc}	,	+25° C	;	-4 +85		74H -4 +12	0/	UNITS
	v	v	v	Min	Тур	Max	Min	Max	Min	Max	٧	v	v	Min	Тур	Max	Min	Max	Min	Max	
High-Level			2	1.5	_	-	1.5	-	1.5	_			4.5								
Input			4.5	3.15	_	_	3.15	_	3.15	_	_	-	to	2	-	-	2	l –	2	-	
Voltage V _{IH}			6	4.2	_	_	4.2	_	4.2	-			5.5			l] ,,
Low-Level			2	_	-	0.5	_	0.5	_	0.5			4.5							Г	١ ٧
Input			4.5	_	_	1.35	_	1.35		1.35	_	_	to	_	-	0.8	-	0.8	_	0.8	
Voltage V _{IL}			6	_	_	1.8	_	1.8	_	1.8		l	5.5				l	1	l		1
"On"	VIL	Vcc	4.5	-	45	180	_	225		270	VIL	Vcc	4.5	_	45	180	—	225	_	270	
Resistance	or	or	6	_	35	160	_	200		240	or	or		_	_	-	Γ-	-	-	I -	1
Ron	VIH	Gnd	9	-	30	135	_	170	_	205	ViH	Gnd		_	_	_	-	-	-	—	1
lo = 1 mA	Vil	V _{cc}	4.5	_	85	320	<u> </u>	400	_	480	VIL	Vcc	4.5	_	85	320	T -	400	T-	480	1
	or	to	6	_	55	240	_	300	_	360	or	to		_	-	-	I –	T-	T -	—	Ω
	VIH	Gnd	9	_	35	170	_	215	_	255	ViH	Gnd		_		—	_	_	<u> </u>	Ι-]
Maximum "On" Resistance	VIL	V _{cc}	4.5	_	10	-	-	_	_	-	VIL	Vcc	4.5	_	10	-	Ι-	T -	T-	I -	1
between any	or	to			-	-	-	-		-	or	to	-	 	├─	├	├	├	├-	├	┨
two switches ΔR_{on}	ViH	Gnd	6	_	8.5	_	_	_	_	-	ViH	Gnd					<u> </u>	l –		_	
Switch Off		Vcc	6	_	_	30.1	_	±1	_	±1		Vcc	5.5	_	_	±0.1	_	±1	-	±1	
Leakage	En=Gnd	or		├		\vdash	├	├-	├─	-	En≈Gnd	or	-	-	 	├─	╁	╁	├─	├	1
Current lız		Gnd	10			±0.1		±1		±1		Gnd				_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	j
Logic	Vcc															1					
Input Leakage	or	-	6	-	-	±0.1	-	±1	-	±1	••	-	5.5	-	-	±0.1	-	±1	-	±1	
Current I _i	Gnd				<u> </u>											<u> </u>	<u></u>		L		_
Quiescent	Vcc	V _{cc}	6	-	-	2	-	20	-	40	Vcc			1		1	l				μА
Device Current loc	or	or		├	L	 	-	 	 	\vdash	or	-	5.5	-	-	2	-	20	-	40	ĺ
lo = 0 mA	Gnd	Gnd	10	<u> </u>	_	16	_	160	_	320	Gnd					<u> </u>				<u> </u>	1
Additional Quiescent Device Current per input pin: 1 unit load Δlcc*		-	-	_	_	-	_	-	_	_	V _{cc} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	

^{*}For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
Е	1

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

^{**}Any voltage between Vcc and Gnd.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25° C, Input t,t=6 ns)

CHARACTERISTIC	0 (=5)	TYPICAL	UNITS		
CHARACTERISTIC	C _L (pF)	HC	нст	UNIIS	
Propagation Delay Time:					
Switch In to Switch Out	tplH, tpHL		4	4	
Switch Turn Off		1 45	10	14	٦
E to Out	t _{PLZ} , t _{PHZ}	15	12		ns
Switch Turn On	tezh		16	14	
E to Out	t _{PZL}		16	22	
Power Dissipation Capacitance*	CPD		12	12	pF

^{*}CPD is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{CC}^2 fi + \Sigma (C_L + C_S) V_{CC}^2 f_o$ where

f_i = input frequency

fo = output frequency

C_L = output load capacitance

C_s = switch capacitance

V_{cc} = supply voltage.

SWITCHING CHARACTERISTICS (CL=50 pF, input t,,t,=6 ns)

		LIMITS													
			25° C				-40° C to +85° C				-55° C to +125° C				
CHARACTERISTIC			c HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay Time	t _{PLH}	2	_	60	_	_	_	75	_	I —	- I	90	_	—	
Switch In to Out	t _{PHL}	4.5	_	12	—	12	 	15	-	15	_	18	_	18	
		6	l –	10		-	-	13		—	_	15	—	_	
		9	 -	8		l –	—	10	-	_	_	12	_		
Switch Turn-On		2	I —	190	_	T —	_	240	_	_	_	285	_	_	
En to Out		4.5	 —	38	_	35	_	48		44	—	57	_	53	
	t _{PZH}	6	—	32		1_		41	_	-	—	48	_	-	
		9	-	28	—	_		35		l —	_	42	-	 -	ns
		2	-	190	—	_	_	240	_	_		285	_	_	113
		4.5	—	38		52	-	48	—	65	l —	57	_	73	
	t _{PZL}	6		32	—			41		-		48	-	—	
		9	_	28	_	—	 	35	-	_	_	42	_	<u> </u>	
Switch Turn-Off		2	_	145	_	T = T	_	180	_	_	_	220	_	—	
En to Out	t _{PHZ}	4.5	-	29	—	35	 —	36	-	44	l —	44	-	53	
	t _{PLZ}	6	-	25	—	-	—	31	-		—	38	_	-	
		9	_	22	_		—	28		_	_	33	_	-	
Input (Control) Capacitance	Сі	_	_	10	_	10	_	10	_	10	_	10	_	10	pF

ANALOG CHANNEL CHARACTERISTICS - Typical Values at TA = 25°C

CHARACTERISTIC		TEST CO	NDITIONS	V _{cc} V	нс	нст	UNITS	
Switch Frequency Response Bandwidth at -3 dB (Fig. 13)		Fig. 4 Notes 1 a	ınd 2	4.5	>200	>200	MHz	
Crosstalk Between Any Two Switches (Fig. 14)		Fig. 5 Notes 2 a	ınd 3	4.5	TBE	TBE	dB	
Total Harmonic Distortion		1 kHz,	V _{IS} =4 V _{p-p}	4/5	0.078	0.078	- %	
Total Harmonic Distortion		Fig. 6	V _{is} =8 V _{p−p}	9	0.018	0.018	70	
Control to Switch Foodthrough Naise		Fig. 7		4.5	TBE	TBE		
Control to Switch Feedthrough Noise		Fig. 7		9	TBE	TBE	- mV	
Switch "OFF" Signal Feedthrough		Fig. 8		4.5	-62		40	
(Fig. 14)		Notes 2 a	nd 3	4.5	-62	-62	dB	
Switch Input Capacitance	Cs			_	5	5	pF	

Notes:

- 1. Adjust input level for 0 dBm at output, f = 1 MHz.
- 2. Vis is centered at Vcc/2.
- 3. Adjust input for 0 dBm at Vis.

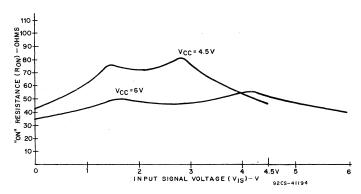


Fig. 2 - Typical "ON" resistance vs. input signal voltage.

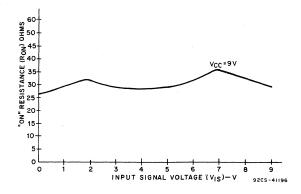


Fig. 3 - Typical "ON" resistance vs. input signal voltage.

ANALOG TEST CIRCUITS ٧cc SWITCH 50 Ω 10 pF dB METER Fig. 4 - Frequency response test circuit. VIS. 10 µF Vos **⋛10 KΩ ┼50 pF** DISTORTION METER Vcc/2 fis = 1 kHz TO 10 kHz Fig. 6 - Total harmonic distortion test circuit. Vos SWITCH ALTERNATING ON AND OFF \$600Ω VCC/2 t_r , t_f ≤ 6 ns fCONT = 1 MHz 50 % DUTY CYCLE

Fig. 7 - Control-to-switch feedthrough noise test circuit.

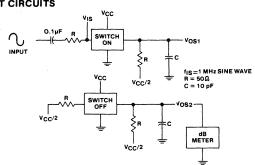


Fig. 5 - Crosstalk between two switches test circuit.

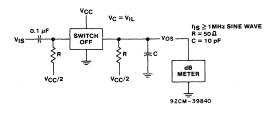


Fig. 8 - Switch off signal feedthrough.

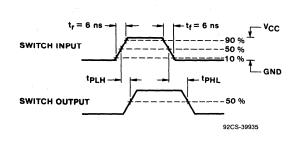


Fig. 9 - Switch propagation - delay times waveforms.

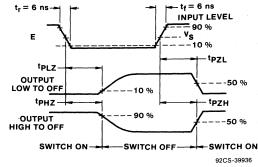


Fig. 10 - Switch turn-on and turn-off propagation delay times waveforms.

	54/74HC	54/74HCT			
Input Level	Vcc	3 V			
Switching Voltage, Vs	50% V _{cc}	1.3 V			

Fig. 11 - Switch on/off propagation delay time test circuit.

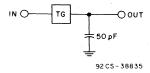


Fig. 12 - Switch-in to switch-out propagation delay time test circuit.

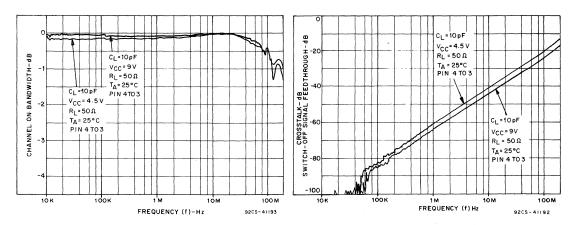
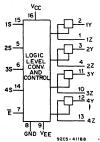



Fig. 13 - Switch frequency response.

Fig. 14 - Switch-off signal feedthrough and crosstalk vs. frequency.

High-Speed CMOS Logic

FUNCTIONAL DIAGRAM

Quad Analog Switch with Level Translation

Type Features:

- Wide analog-input-voltage range (V_{CC}-V_{EE}): 0-10 V
- Low "ON" resistance: 45 \Omega typ. @ Vcc=4.5 V

35 Ω typ. @ V_{cc}=6 V

- 30 Ω typ. @ V_{CC}-V_{EE}=9 V
- Fast switching and propagation delay times
- Low "OFF" leakage current
- Built-in "Break-before-make" switching
- Logic-level translation to enable 5 V logic to i accommodate ±5 V analog signals

The RCA CD54/74HC/HCT4316 contains four independent digitally controlled analog switches that use silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

In addition these devices contain logic-level translation circuits that provide for analog signal switching of voltages between ± 5 V via 5 V logic. Each switch is turned on by a high-level voltage on its select input (S) when the common Enable (E) is Low. A High E disables all switches. The digital inputs can swing between V_{CC} and Gnd; the analog inputs/outputs can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. Voltage ranges are shown in Figs. 2 and 3.

The CD54HC4316 and CD54HCT4316 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC4316 and CD74HCT4316 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

Family Features:

- Wide operating temperature range: CD74HC/HCT: -40 to +125° C
- CD54HC/CD74HC types: 2 V to 10 V operation High noise immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}; @ V_{CC} = 5 V
- CD54HCT/CD74HCT types: Direct LSTTL input logic compatibility V_{IL} = 0.8 V max., V_{IH} = 2 V min. CMOS input compatibility I_I ≤ 1 µA @ Vo_L, Vo_H
- Alternate Source is Philips/Signetics

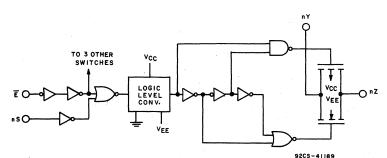


Fig. 1 - Logic diagram (one switch).

TRUTH TABLE

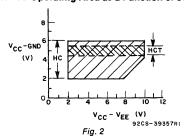
INP	UTS	SWITCH			
Ē	S	SWITCH			
L	L	OFF			
L	н	ON			
н	X	OFF			

H = High Level Voltage

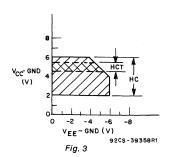
L = Low Level Voltage

X = Don't Care

MAXIMUM RATINGS, Absolute-Maximum Values: (All voltages referenced to Gnd unless otherwise shown) DC SUPPLY-VOLTAGE (V_{CC}-V_{EE})-0.5 to +10.5 V DC SUPPLY-VOLTAGE (Vcc) -0.5 to +7 V DC SUPPLY-VOLTAGE (V_{EE}) +0.5 to -7 V DC SWITCH CURRENT (FOR $V_i > V_{EE}$ -0.5 V OR $V_i < V_{CC}$ +0.5 V) +25 mA DC V_{CC} OR GROUND CURRENT (I_{CC}) ±50 mA DC V_{EE} CURRENT (I_{EE}) -20 mA POWER DISSIPATION PER PACKAGE (PD): OPERATING-TEMPERATURE RANGE (Ta): PACKAGE TYPE F, H-55 to +125°C PACKAGE TYPE E, M-40 to +125°C STORAGE TEMPERATURE (Tstg) -65 to +150°C LEAD TEMPERATURE (DURING SOLDERING): At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s max. +265°C +265°C Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead tips only +300°C +300°C


RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:


OHADAOTEDIOTIO	LII	WITS	LIMITO	
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A =Full Package-Temperature Range) V _{cc} :*				
CD54/74HC Types	2	6	V	
CD54/74HCT Types	4.5	5.5	v	
Supply-Voltage Range (For T _A =Full Package-Temperature Range) V _{CC} -V _{EE} CD54/74HC Types, CD54/74HCT Types, See Fig. 2	2	10	V	
Supply-Voltage Range (For T_A =Full Package-Temperature Range) V_{EE} :*	0	-6	v	
CD54/74HC Types, CD54/74HCT, See Fig. 3				
DC Input Control Voltage, V ₁	Gnd	Vcc	V	
Analog Switch I/O Voltage, V _{IS}	V _{EE}	Vcc	V	
Operating Temperature, T _A :				
CD74 Types	-40	+125	°C	
CD54 Types	-55	+125		
Input Rise and Fall Times, tr,tr:				
at 2 V	0	1000		
at 4.5 V	0	500	ns	
at 6 V	О	400		

^{*}Unless otherwise specified, all voltages are referenced to Ground.

Recommended Operating Area as a Function of Supply Voltages

720 _

STATIC ELECTRICAL CHARACTERISTICS

	1	TEST IDITION	NS		741	HC/54	нс	74	нс	-5	HC 55/ 5° C	c	TES			74H	CT/54	нст	74H	СТ	-5	ICT 5/ 5°C		
CHARAC- TERISTIC	TERISTIC		V, Vee V	/, V _{EE} V	v _{cc}		+25° (;	ı	10/ 5°C	-4	HC 10/ 5° C	V _{is}	V ₁	VEE	v _{cc}		+25° C	,	-4 +85			ICT 0/ 5°C	UNITS
	V	٧	٧	V	Min	Тур	Max	Min	Max	Min	Max	٧	\ \	V	V	Min	Тур	Max	Min	Max	Min	Max		
High-Level				2	1.5	_	_	1.5	_	1.5	_				4.5									
Input			•	4.5	3.15		_	3.15	_	3.15	_				to	2	-	- '	2	-	2	-	٧	
Voltage V _{IH}		ļ	<u> </u>	6	4.2	_		4.2	_	4.2	_				5.5									
Low-Level			l	2		_	0.5	_	0.5		0.5				4.5									
input			İ	4.5			1.35	_	1.35	<u> </u>	1.35				to	-	-	0.8	L-1	0.8	-	0.8	V	
Voltage V _{IL}		ļ	<u> </u>	6	<u> </u>	_	1.8	-	1.8	_	1.8			L	5.5						1 4		<u> </u>	
"On"	Vcc	1	0	4.5	<u> </u>	45	180		225	_	270	1		0	4.5	_	45	180	_	225	_	270	1	
Resistance	or	VIL	0	6	<u> </u>	35	160		200	_	240			_	_	_	_	_	_		-	_	Ω	
lo = 1 mA Ron	Vee	or	-4.5	4.5	<u> </u>	30	135	_	170	_	205			-4.5	4.5		30	135	_	170	_	205		
· · · · ·	Vcc	Vin	0	4.5	_	85	320	_	400		480			0	4.5		85	320		400		480	1	
(Fig. 4 & 5)	to	VIH.	0	6	<u> </u>	55	240	_	300	<u> </u>	360	Same	Same	_	_	_	_			_	_		Ω	
	Vee	<u> </u>	-4.5	4.5	<u> </u>	35	170	_	215		255	as	as	-4.5	4.5	_	35	170	_	215	_	255		
Maximum "On" Resistance		1	0	4.5	<u> </u>	10	_	_		<u> </u>	_	нс	нс	0	4.5	_	10	_	_	_	<u> </u>	_	1	
between any two channels			0	6		8.5		_	_		_							_	_		_	_	Ω	
ΔRon		<u> </u>	-4.5	4.5	-	5	_	_	_	_		Ì		-4.5	4.5	_	5	_	_	_	_	_		
Switch Off		VIL	0	6		-	±0.1	-	±1	-	±1			0	6		l –	±0.1	-	±1	_	±1		
Leakage	Vcc-VEE	or	-5	5											_		_		_		_		μΑ	
Current liz		VIH	-5	L°		_	±0.1		±1	_	±1			-5	5		_	±0.1	_	±1	7.	±1		
Control Input		Vcc																						
Leakage		or	0	6	-	-	±0.1	_	±1	_	±1	_			5.5	-	-	±0.1	_	±1	-	±1	μА	
Current IIL		Gnd			ŀ													1						
Quiescent	When																							
Device	V _{IS} = V _{EE} ,	١.,	0	6	-	_	8	_	80	-	160		_	0	5.5	–	_	8	_	80	_	160	1	
Current lcc	Vos = Vcc.	Vcc										Same	Same			١.				l	İ		١.	
lo = 0	When	or Gnd							-			as	as										μΑ	
	Vis = V _{CC} ,	Gna	-5	5	-	_	16	_	160	-	320	нс	HC	-4.5	5.5	_	-	16	-	160	-	320		
	Vos = Vee																							
Additional Quiescent															4.5									
Device Current per																		360		450	_	490	µA.	
input pin:		1											V _{cc} -2.1		to	-	100	360	-	450	-	490	μΑ	
1 unit load															5.5		Ι.			1		1		

^{*}For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*
All	0.5

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

^{**}Any voltage between Vcc and Gnd.

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input t,,t=6 ns)

			0 (=5)	TYPICA	UNITS	
	CHARACTERISTIC		C _L (pF)	HC	HCT	UNITS
Turn "ON" Time	E to Out	4		17	18	
	nS to Out	tezн		14	17	
Turn "ON" Time E to Out			15	17	24	ns
	nS to Out	t _{PZL}	13	14	18	
Turn "OFF" Time	E to Out	t _{PLZ} , t _{PHZ}		. 17	21	
	nS to Out	tPLZ, tPHZ		14	18	
Power Dissipation	Capacitance*	СРВ	_	42	47	pF

^{*}C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{CC}^2 fi + \Sigma (C_L + C_S) V_{CC}^2 f_o$ where

f_i = input frequency

fo = output frequency

C_L = output load capacitance

C_s = switch capacitance

V_{cc} = supply voltage.

SWITCHING CHARACTERISTICS (CL=50 pF, Input tr,tr=6 ns)

		Τ	Γ	Τ					LIM	ITS						T
					25	°C		-4	0°C to	o +85°	°C	-5	5°C to	+125	°C	
CHARACTERIS	TIC	VEE	Vcc	HC		HCT		74HC		74HCT		54HC		54F	ICT	UNITS
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay	tpLH	0	2	-	60	_	_		75	_	_	_	90	<u> </u>	_	
Switch In to Out	t _{PHL}	0	4.5	—	12	—	12		15	_	15	_	18	-	18	
· ·		0	6	_	10	—	—	—	13	 -	 —	_	15	 -	_	
		-4.5	4.5		8	<u> </u>	8	_	10	_	10		12		12	
Turn "ON" Time	t _{PZH}	0	2	I -	205	_	_	_	255	_	_	-	310	_	-	
E to Out		0	4.5	—	41	-	44	—	51	—	55		62	-	66	
		0	6	-	35	-	_	_	43	—	-	-	53	-	_	
		-4.5	4.5	<u> </u>	37		42		47		53	_	56		63	
	tpzL	0	2	Γ-	205	 -	_	_	255	_	_	-	310	-	-	
		0	4.5	-	41	-	56		51	-	70	-	62	—	85	
		0	6	-	35	-	-	-	43	-	-	-	53	-	-	
		-4.5	4.5	_	37		42		47		53		56		63	
Turn "ON" Time	t _{PZH}	0	2	_	175	_	_	-	220	-	-	-	265	-	_	1.0
nS to Out		0	4.5	_	35	—	40	-	44	-	53	-	53	-	60	ns
		0	6	-	30	-	-	_	37	_	-	-	45		-	
		-4.5	4.5		34		34	_	43		43		51		51]
	t _{PZL}	0	2	-	175			-	220	-	-	-	265		-	
		0	4.5	-	35	-	50	_	44	-	63	-	53	-	75	
		0	6	-	30	-	-	-	37	-	-	-	45		-	
		-4.5	4.5		34		34	<u> </u>	43	<u> </u>	43	_	51	_	51	
Turn "OFF" Time		0	2	_	205		-	-	255	-	_	-	310	-	-	
E to Out		0	4.5	-	41	-	50	-	51	-	63	-	62	-	75	
		0	6	-	35	-	-	-	43	-	_	-	53	-	-	
	t _{PLZ} ,	-4.5	4.5	<u> </u>	37	_	46		47	<u> </u>	58		56	<u> </u>	69	1
Turn "OFF" Time	t _{PHZ}	0	2	-	175	-	-	-	220	-		-	265	-	_	
nS to Out		0	4.5	-	35	-	44	-	44	-	55		53	-	66	
		0	. 6	_	30	-	-	-	37	-		-	45	-	-	
		-4.5	4.5		34	<u> </u>	40		43		50	1=	51	 -	60	ļ
Input (Control) Capacitance	Cı	_	_	_	10	_	10	_	10	_	10	<u></u>	10	_	10	pF

ANALOG CHANNEL CHARACTERISTICS - Typical Values at TA = 25°C

CHARACTERISTIC	TEST CONDITIONS	V _{cc}	нс	нст	UNITS	
Switch Frequency Response Bandwidth at -3 dB (Fig. 15)	Fig. 6 Notes 1 and 2	4.5	>200	>200	MHz	
Crosstalk Between Any Two Switches (Fig. 16)	Fig. 7 Notes 2 and 3	4.5	TBE	TBE	dB	
Total Harmonic Distortion	1 kHz, V _{IS} =4 V _{pp} ,	4.5	0.078	0.078	%	
Total Harmonic Distortion	Fig. 8 V _{IS} =8 V _{pp}	9	0.018	0.018	7 %	
Control to Switch Feedthrough Noise	Fig. 9	4.5	TBE	TBE	mV	
Control to Switch Feedin ough Noise	rig. 9	9	TBE	TBE	ヿ ''' 'ヾ .!	
Switch "OFF" Signal Feedthrough (Fig. 16)	Fig. 10 Notes 2 and 3	4.5	-62	-62	dB	
Switch Input Capacitance Cs	- - 1		5	5	pF	

Notes:

- 1. Adjust input level for 0 dBm at output, f = 1 MHz.
- 2. Vis is centered at Vcc/2.
- 3. Adjust input for 0 dBm at Vis.

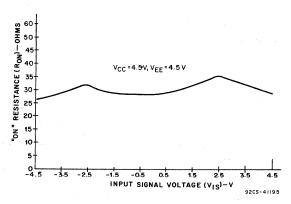


Fig. 4 - Typical "ON" resistance vs. input signal voltage.

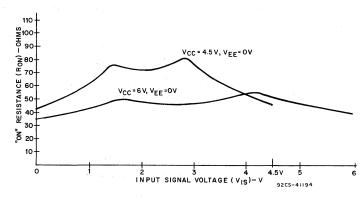


Fig. 5 - Typical "ON" resistance vs. input signal voltage.

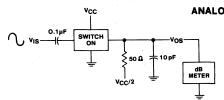


Fig. 6 - Frequency response test circuit.

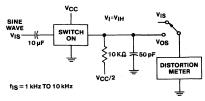


Fig. 8 - Total harmonic distortion test circuit.

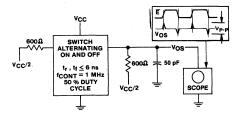


Fig. 9 - Control-to-switch feedthrough noise test circuit.

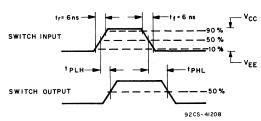


Fig. 11 - Switch propagation - delay times waveforms.

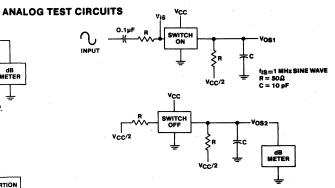


Fig. 7 - Crosstalk between two switches test circuit.

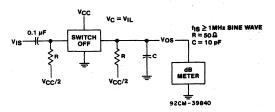


Fig. 10 - Switch off signal feedthrough.

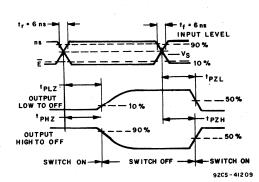


Fig. 12 - Switch turn-on and turn-off propagation delay times waveforms.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% Vcc	1.3 V

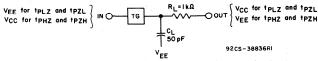


Fig. 13 - Switch on/off propagation delay time test circuit.

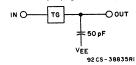


Fig. 14 - Switch-in to switch-out propagation delay time test circuit.

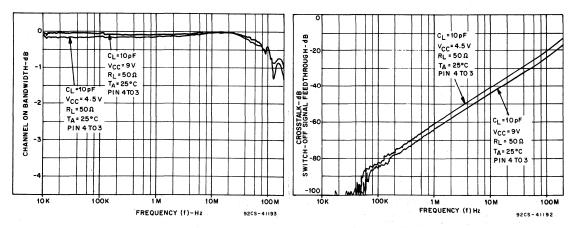
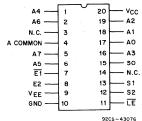



Fig. 15 - Switch frequency response.

Fig. 16 - Switch-off signal feedthrough and crosstalk vs. frequency.

CD54/74HC/HCT4351 TERMINAL ASSIGNMENT

Analog Multiplexers/Demultiplexers With Latch

Type Features:

- Wide analog input voltage range: ± 5 V max.
- Low "on" resistance: 70 Ω type (V_{CC}-V_{EE} = 4.5 V) 40 Ω type (V_{CC}-V_{EE} = 9 V)
- Low crosstalk between switches
- Fast switching and propagation speeds
- "Break-before-make" switching

The RCA CD54/74HC/HCT4351, 4352, and 4353 are digitally controlled analog switches which utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

These analog multiplexers/demultiplexers are, in essence, the HC/HCT4051, 4052, and 4053 preceded by address latches that are controlled by on active low Latch Enable input ($\overline{\text{LE}}$). Two Enable inputs, one active low ($\overline{\text{E1}}$), and the other active high (E2) are provided allowing enabling with either input voltage level.

The CD54HC/HCT4351, 4352, and 4353 are supplied in 20-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/HCT4351, 4352, and 4353 are supplied in 20-lead plastic packages (E suffix) and in 20-lead surface mount plastic packages (M suffix). All devices are also available in chip form (H suffix).

Family Features:

- Wide Operating Temperature Range: CD74HC/HCT: -40°C to +125°C
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation, control; 0 to 10 V, switch High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of Vcc; @ Vcc = 5 V
- CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation, control; 0 to 10 V, switch Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

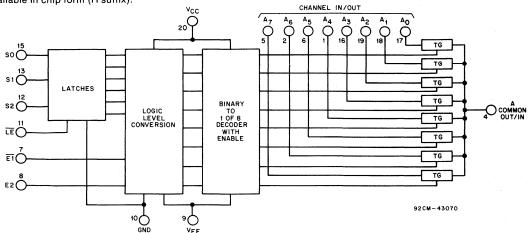


Fig. 1 - Functional diagram of HC/HCT4351.

TRUTH TABLE CD54/74HC/HCT4351

1.74	INP	UT STA	TES		"ON"
E1	E2	S2	S1	SO	SWITCHES LE = H *
L	Н	L	L	L	Ao
L	Н	L	L	Н	A ₁
L	Н	L	Н	L	A ₂
L	Н	L	Н	н	A ₃
Ľ	Н	Н	L	L	A ₄
L	Τ	Ι	L	Н	A ₅
. L	Н	Н	Н	L	A ₆
L	Н	Н	Н	Н	A ₇
Н	L	Х	Х	Х	None

X = Don't Care.

^{*} When LE is low S0-S2 data are latched and switches cannot change state.

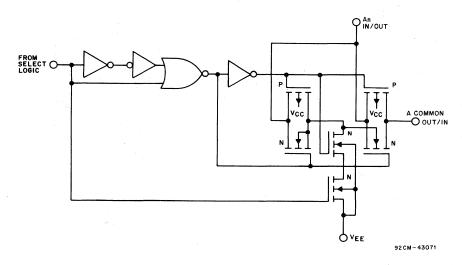


Fig. 2 - Detail of one HC/HCT4351 switch.

728.

CD54/74HC4351, CD54/74HCT4351 CD54/74HC4352, CD54/74HCT4352 CD54/74HC4353, CD54/74HCT4353

20 BO - Vcc B2 19 - A1 N.C. 3 18 - A2 B COMMON 17 - A COMMON В3 5 16 - 40 - A3 В1 Ē1 14 - N.C. E2 13 - so ٧EE - S1 - LE GND 10 11 92CS-43077

CD54/74HC/HCT4352 TERMINAL ASSIGNMENT

TRUTH TABLE CD54/74HC/HCT4352

	INPUT S	STATES	"ON" CHANNELS	
Ē1	E2	S 1	SO	LE = H *
L	Н	L	L	A ₀ , B ₀
L	H	L	Н	A ₁ , B ₁
L	Н	Ŧ	L	A ₂ , B ₂
L	Н	Н	Н	A ₃ , B ₃
н	L	Х	×	None

X = Don't Care.

* When Latch Enable is "Low" channel-select data is latched and switches cannot change state.

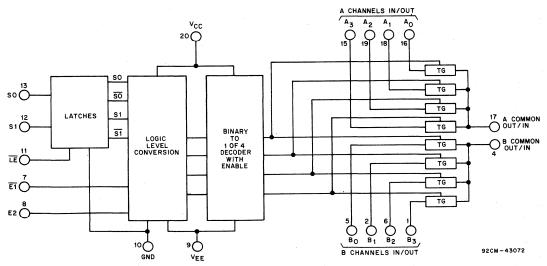
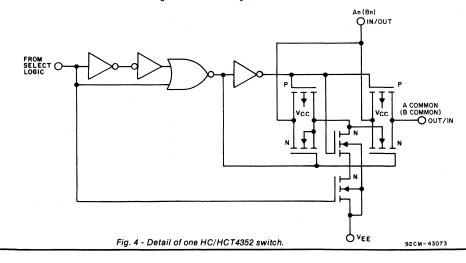
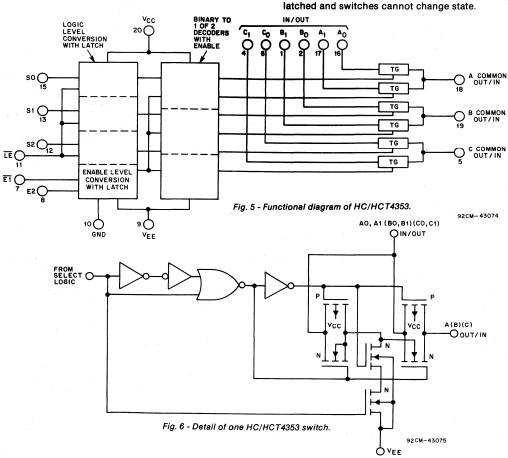



Fig. 3 - Functional diagram of HC/HCT4352.

TRUTH TABLE CD54/74HC/HCT4353


В1 —	1	20	├─ vcc
во —	2	19	- B COMMON
N.C. ——	3	18	- A COMMON
C1 ——	4	17	A1
C COMMON	5	16	AO
co —	6	15	so
E1	7	14	N.C.
E2	8	13	S1
ν _{ΕΕ}	9	12	S2
GND	10	11	TE
•			92CS-43078

CD54/74HC/HCT4353
TERMINAL ASSIGNMENT

	INF	UT STA	TES		"ON"
Εī	E2	S2	S1	SO	LE = H *
L	Н	L	L	L	C ₀ , B ₀ , A ₀
L	Н	L	L	Н	C ₀ , B ₀ , A ₁
L	Н	L	Н	L	C ₀ , B ₁ , A ₀
L	Н	L	Н	Н	C ₀ , B ₁ , A ₁
L	Н	Н	L	L	C ₁ , B ₀ , A ₀
L	Н	Н	L	Н	C ₁ , B ₀ , A ₁
L	Н	Н	Н	L	C ₁ , B ₁ , A ₀
L	Н	Н	Н	Н	C ₁ , B ₁ , A ₁
Н	Х	Х	Х	х	None
х	L	х	Х	х	None

X = Don't Care.

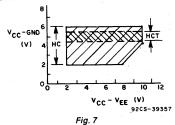
* When Latch Enable is "Low" channel-select data is latched and switches cannot change state.

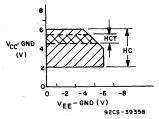
	Data

MAXIMUM RATINGS, Absolute-Maximum Values: (All voltages referenced to Gnd unless otherwise shown)

DC SUPPLY-VOLTAGE (Vcc-VEE)	0.5 to +10.5 V
DC SUPPLY-VOLTAGE (Vcc)	0.5 to +7 V
DC SUPPLY-VOLTAGE (VEE)	+0.5 to -7 V
DC INPUT DIODE CURRENT, I_{IK} (FOR $V_1 < -0.5$ V OR $V_1 > V_{CC} + 0.5$ V)	±20 mA
DC SWITCH DIODE CURRENT, I_{OK} (FOR $V_1 < V_{EE}$ -0.5 V OR $V_1 > V_{CC}$ + 0.5 V)	±20 mA
DC SWITCH CURRENT (FOR V ₁ > V _{EE} -0.5 V OR V ₁ < V _{CC} +0.5 V)	+25 mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±50 mA
DC Vee CURRENT (lee)	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +100°C (PACKAGE TYPE E)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F, H)	500 mW
For T _A = +100 to +125° C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/° C to 70 mW
ODEDATING TEMPERATURE BANGE (T.)	
PACKAGE TYPE F, H	-55 to +125°C
PACKAGE TYPE F, M.	40 to ±125°C
PACKAGE TYPE E, M	40 to +125 C
STORAGE TEMPERATURE (T _{stg})	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	.0050.0
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

In certain applications, the external load-resistor current may include both V_{cc} and signal-line components. To
avoid drawing V_{cc} current when switch current flows into the transmission gate inputs, the voltage drop across the
bidirectional switch must not exceed 0.6 volt (calculated from R_{oN} values shown in Electrical Characteristics chart).
No V_{cc} current will flow through R_L if the switch current flows into terminal 3 on the HC/HCT4351; terminals 3 and
13 on the HC/HCT4352; terminals 4, 14 and 15 on the HC/HCT4353.


RECOMMENDED OPERATING CONDITIONS:


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	IITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{cc} : *			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	V
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} -V _{EE} CD54/74HC Types CD54/74HCT Types See Fig. 7	2	10	V
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{EE} : * CD54/74HC Types CD54/74HCT Types See Fig. 8	0	-6	V
DC Input Control Voltage, V _I	Gnd	Vcc	V
Analog Switch I/O Voltage, V _{IS}	VEE	Vcc	V
Operating Temperature T _A :	1		
CD74 Types	-40	+125	°C
CD54 Types	-55	+125	°C
Input Rise and Fall Times, tr, tr			
at 2 V	0	1000	ns
at 4.5 V	0	500	ns
at 6 V	0	400	ns

^{*} Unless otherwise specified, all voltages are referenced to Ground.

RECOMMENDED OPERATING AREA AS A FUNCTION OF SUPPLY VOLTAGES

STATIC ELECTRICAL CHARACTERISTICS

Fia. 8

STATICEL	ECTRICAL	CHA	HAC	, I El	1151	108						T					Fig. 8			100			
	Т	CD	74HC	/CD54		1, 435 IC/541		741	4C	541	HC:		TEST		HCT/		HCT43	151, 435 HCT	74H		54H	CT	
CHAR-		DITIONS			1	TYPES		TYP		TYP		١.	CONDITI			i	TYPES		TYF		TYF		ŀ
ACTERISTIC	COM	THOMS	, —	Г	 '	TPES	<u> </u>	-4		-5:		 '	JONDIII	I	_	├	TPES		-4		-5		UNITS
ACTENISTIC	V _{IS}	Vi	VEE	Vcc		+25° C		+85		+12!		Vis	V ₁	VEE	Vcc		+25°C		+85		+12		
	٧	٧	٧	v	Min	Тур	Max	Min	Max	Min	Max	٧	٧	٧	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_	_	1.5	-	1.5	-				4.5								
Input				4.5	3.15			3.15	_	3.15	_			1	to	2	-	-	2		2	-	V
Voltage V _{ін}				6	4.2		<u> </u>	4.2		4.2	_				5.5								
Low-Level				2	_	_	0.5	_	0.5	_	0.5				4.5	Ì		l					
Input			ł	4.5	_	<u> </u>	1.35		1.35		1.35				to	-	-	8.0	_	0.8	-	0.8	V
Voltage V _{IL}				6			1.8	-	1.8	_	1.8		İ		5.5								
"On"	Vcc		0	4.5		70	160	_	200	_	240	1	١	0	4.5	<u> </u>	70	160	_	200	_	240	1
Resistance	or	\ ,	0	6	_	60	140	_	175	_	210			E	_	<u> </u>	-		_	_	_	_	Ω
lo = 1 mA	Vee	ViL	-4.5	4.5	-	40	120	-	150	T-	180]		-4.5	4.5	[-	40	120	<u> </u>	150	-	180	ļ
R _{on}	Vcc	or	0	4.5	-	90	180	-	225	_	270	1	1	0	4.5	T-	90	180	_	225	-	270	
(Fig. 20)	to	ViH	0	6	1-	80	160	_	200	_	240	Same	Same	_	_	Γ-	_	Ι_	_	_	_	-	Ω
	VEE		-4.5	4.5	1-	45	130	_	162	-	195	as	as	-4.5	4.5	1-	45	130	_	162	-	195	
Maximum "On"			0	4.5	-	10	T_	_	-	-	-	нс	нс	0	4.5	T-	10	-	_	_	-	-	
Resistance between any			0	6	T-	8.5	1_	-	_	-	_	1		_	_	Ι	_	Ī —	_	-	-	T-	Ω
two channels			-4.5	4.5	<u> </u>	5	1_	-	-	-	1_	1	1	-4.5	4.5	Ι_	5	Ι_	_	_	_	-	1
Switch On/Off	For Switch		†	J	·		J	L				ĺ	i	_									
Leakage	OFF:		1									l .	i	l									ļ
Current I _{IZ}	When V _{is} =V _{cc} V _{os} ≠ V _{EE} ;	VIL										ł											l .
1&2 Channels	When V _{IS} =V _{EE} ,		0	6	I	_	±0.1	_	±1	Γ-	±1	1		0	6	T-	_	±0.1	_	±1	T –	±1]
(4353)	Vos ≃ Vcc For Switch	or	-5	5	T-	Ī-	±0.1	_	±1	Ι-	±1	1		-5	5	T –	_	±0.1	_	±1	T -	±1	1
4 Channels	ON:		0	6	1-	-	±0.1	_	±1	-	±1	1 .	1	0	6	—	_	±0.1	_	±1	I –	±1	μA
(4352)	All Applicable	ViH	-5	5	-	_	±0.2	-	±2	-	±2	1		-5	5	1-	_	±0.2	_	±2	T-	±2	1
8 Channels	Combinations of V _{IS} & V _{OS}		0	6	-	_	±0.2		±2	-	±2	1	Ì	0	6	1-	_	±0.2	_	±2	T-	±2	1
(4351)	Voltage Levels		-5	5	-	—	±0.4	-	±4	Ι_	±4	1		-5	5	1-	_	±0.4	_	±4	<u> </u>	±4	1
Control Input		Vcc			T		T			1	T	1											
Leakage		or		6	_	_	±0.1	_	±1	_	±1	-		1	5.5	-	-	±0.1	_	±1	_	±1	μA
Current IIL		Gnd			1				1	1		1										1	
Quiescent	When			1	T	<u> </u>			t	\vdash	T	†	\vdash	†		1		<u> </u>				T	T
Device	VIS = VEE,		0	6		_	8	_	80		160	1	1	0	5.5	_	_	8		80	_	160	ľ
Current Icc	Vos = Vcc,	V _{cc}							-		1	Same	Same	ľ	1			1		1]
lo = 0	When	or			<u> </u>		T		\vdash	 	t^-	as	as		t^-	1	-	†					μΑ
	V _{IS} = V _{CC} ,	Gnd	-5	5	_	_	16	_	160	_	320	нс	HC -	-4.5	5.5	_	_	16	_	160	-	320	
	Vos = Vee			1					"		1		1	"	"					-			
Additional						L	Ь					 	†	<u> </u>	\vdash	T	_	_	_	 	\vdash	T	\vdash
Quiescent Device													1	1	4.5	ļ				1			.
Current												1	Vcc-2.1	1	to	l _	100	360		450	1_	490	μA
per input pin:												1	VCC-2.1	1	5.5	-	100	555		"		"	1 -
1 unit load ∆lcc*												1	1		3.5]				1			1
2.00												Ц	Ь	Ь	Ь	ــــــــــــــــــــــــــــــــــــــ	Ь			Ь			

 $^{^{\}circ}$ For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{cc} = 5.5 V) specification is 1.8 mA.

^{**} Any voltage between Vcc & Gnd.

N	ew	ata	
IW	PW.	 2112	

HCT INPUT LOADING TABLE

TYPE	INPUT	UNIT LOADS *
All	E1, E2, S _n	0.5
(4351, 4352, 4353)	<u>LE</u>	1.5

^{*} Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25° C.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns)

		LIMITS								
CHARACTERISTIC			43	351	43	352	43	UNITS		
		pF	нс	нст	нс	нст	нс	нст		
Turn "On" Time	t _{PZH}		27	35	35	40	21	23		
E1, E2, or S _n to Vos	t _{PZL}]	21	33	35	40	21	23		
Turn "Off" Time	t _{PHZ}	15	21	23	21	25	19	21	ns	
E1, E2, or S _n to Vos	t _{PLZ}		21	23	21	25	19	21	<u> </u>	
Power Dissipation Capacitance *	C _{PD}		50	52	74	76	38	42	pF	

^{*} C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{CC}^2 f_i + \sum (C_L + C_S) V_{CC}^2 f_o.$

fo = output frequency.

 f_i = input frequency.

C_L = output load capacitance.

Cs = switch capacitance.

V_{cc} = supply voltage.

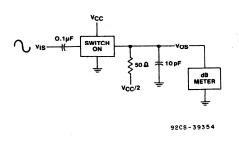
SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r , t_f = 6 ns)

								LIN	IITS						
				+25	°C			40°C to	o +85°	С	-5	5°C to	+125	°C	
CHARACTERISTIC	VEE	Vcc	Н	ıc	Н	СТ	74	нс	741	ICT	54	нс	54H	ICT	UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Propagation Delay te	н 0	2	-	35		-	_	45	T-	_	-	55	_	- ·	
Switch In to Out te	4L 0	4.5	_	7	_	7	-	9	_	9	_	11	–	11	
4351, 4352, 4353	0	6	-	6	-	-	-	8	-	-	-	9	-	-	
	-4.5	4.5		5	_	5	_	7		7	_	8		8	
Maximum Switch te	эн 0	2	_	300	-	I –	 -	375	-	j T		450	_	I -	
Turn "On" Delay te	zL O	4.5	_	60	_	75	_	75	_	94	_	90	l –	113	
4351	0	6	-	51	-	_	_	64	_	-	-	77	_	_	
E1, E2, LE to Vos	-4.5	4.5	<u> </u>	55	_	60	<u> </u>	69	_	75		83	_	90	
4351	0	2	-	300		-	Ī —	375	-	_	-	450	-	_	
S _n to Vos	0	4.5	-	60	-	75	_	75	-	94	-	90	-	113	
	0	6	-	51	_	_	_	64	_	-	-	77	l –	-	
	-4.5	4.5	-	50	_	60	_	63	_	75] _	75	_	90	
4352	0	2	1-	350	T-	_	_	440	_	_	_	525	l —	_	
E1, E2, LE to Vos	0	4.5	_	70	_	80	_	88	_	100	<u> </u>	105	-	120	
	0	6	i	60	h	_ '	_	75	_	-	_	90	_	_	
	-4.5	4.5	_	60	_	65	_	75		81	_ '	90	_	98	
4352	0	2	1-	375	T-	1_	1-	470	<u> </u>	-	<u> </u>	565		_	1
S _n to Vos	0	4.5	_	75		80	_	94	_	100	_	113		120	
	0	6	_	64	_	1_	l – .	80	_	_	_	96	_	_	1
	-4.5	4.5	_	55	_	65	_	69	_	81	_	83	_	98	١
4353	0	2	1=	300	1_	†	_	375			T _ 1	450	<u> </u>	1 -	ns
E1, E2, LE to Vos	0	4.5	-	60	_ ·	75	_	75	_	94	_	90	_	113	
	0	6	\ <u></u>	51	_	_		64	-	_		77	_	-	
	-4.5	4.5	_	55	_	60	_	69	_	75	_	83	_	90	
4353	0	2	T	300	<u> </u>	† _	1_	375	<u> </u>	1_	T-	450	<u> </u>	1 -	1
S _n to Vos	0	4.5	_	60	_	75	_	75	_	94		90	_	113	
		6	_	58	l _	1_	l _	69	_	_	_	77	l _	_	
	-4.5	1	-	50	_	60	1 _ 1	63	_	75	_	75	l _	90	
Maximum Switch t _P		2	+=	250	 	1=	1_	315	 	-	+=	375	 -	=	1
Turn "Off" Delay te	- 1	4.5	_	50		55	_	63	_	69	_	75	_	83	1
4351	0	6	_	43	_		-	54	_		_	64		_	
E1 to Vos	-4.5	į	1-	40	_	40	_	50	_	50	_	60	_	60	
4351	0	2	+-	250	-	†=	t_	315	+=	+=	1 - 1	375	+=	+=	1
E2 to Vos		4.5	_	50	1_	60	_	63		75	l _	75	_	90	
19 108	0	6		43		_	1_	54	_	_	_	64	_	_	
	-4.5	1		40		50		50		63		60		75	
4351	0	2	+	+	\vdash	30	+=-	345	-	 	-	415	=	1/3	1
LE to Vos	0	1	1	275	_	-		69	i	75		83	_	90	
LE IO VOS		4.5	-	55	-	60	-	59	-	1	-	71	_	30	
	0	6	_	47	-		-	59	_	-	-	''	-	1 -	1

New	Data
New	uaia

SWITCHING CHARACTERISTICS (C_L = 50 pF, input t_r, t_r = 6 ns) (Continued)

									Lin	IITS						
					+25	s°C			40°C t	o +85°	С	-:	55°C to	+125	°C	
CHARACTERISTIC	3	VEE	V _{cc}	н	C	н	СТ	74	нс	741	ICT	54	нс	54	нст	UNITS
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Maximum Switch	t _{PHZ}	0	2	T-	275	_	1-	1-	345	-	-	-	415	-	-	
Turn "Off" Delay	t _{PLZ}	0	4.5	_	55	_	65	_	69	-	81	-	83	-	98	
4351		0	6	-	47	-	-	-	59	-	-	-	71	-	-	
S _n to Vos		-4.5	4.5	<u> </u>	48		55	_	60	_	69		71	_	83	
4352		0	2	-	275	-	-	-	345	-	-	-	415	-	-	
E1, E2, LE to Vos		0	4.5	-	55	-	60	-	69	-	75	_	83	-	90	
		0	6	-	47	-	-	-	59	-	-	-	71	-	-	
		-4.5	4.5	<u> </u>	50	<u> </u>	50	<u> </u>	63	_	63	<u> </u>	75	<u> </u>	75	
4352		0	2	-	300	-	-	-	375	-	-		450	-	-	
S _n to Vos		0	4.5	-	60	-	60	-	75	-	75	-	90	-	90	
		0	6	-	51	-		-	64	-	-	-	77	-	-	
		-4.5	4.5	 -	50	<u> </u>	50	<u> </u>	63		63	<u> </u>	75	 -	75	
4353		0	2	-	275	-	-	-	345	-	-	-	415	-		
E1, E2, LE to Vos		0	4.5	-	55	-	60	-	69	-	75	-	83	-	90	
		0	6	-	47	-	-	-	59	-	-	-	71	-	-	
		-4.5	4.5	↓ =_	45	<u> </u>	55	<u> </u>	56		69	<u> </u>	68	1=	83	}
4353		0	2	-	275	-	-	-	345	-	-	-	415	-	-	
S _n to Vos		0	4.5	-	54	-	65	-	69	-	81	-	83	-	98	ns
		0	6	1-	47	-	-	-	59	-	-	-	71	-	-	""
		-4.5	4.5	┼=	45	├	55	<u> </u>	56		69	-	68	<u> </u>	83	
Setup Time		0	2	60	-	-	-	75	-	-	-	90	-	-	-	
4351 and 4353		0	4.5	12	-	12	-	15	-	15	-	18	-	18	-	
S _n to LE		0 .	6	10	-	_	-	13	-	-	-	15	-	-	-	
		-4.5	4.5	18	┼─	14	 -	23	+=-	18	+-	27	\vdash	21	+	
Hold Time		0	2	5	-	-	-	5	-	-	-	5	-	-	_	
All		0	4.5	5	-	5	-	5	-	5	-	5	-	5	-	
S _n to LE		0	6	5	-	-	-	5	-	_	-	5	_	-	-	
Duda - Mr. Int.		-4.5	4.5	5	┼=-	5	+=-	5	+=-	5	+=-	5	+	5	+-	1
Pulse Width	tw	0	2	100	-	-	_	125	-	-	-	150	-	-	17.	
4351 and 4353 LE		0	4.5	20	-	25	_	25	-	31	-	30	-	28	_	1
LE		0	6	17	-	-	-	21		21	_	26	-	20	-	
4352		-4.5 0	4.5	100	+=	25	+-	125	+=-	31	-	150	$+ \equiv$	38	$+ \equiv$	
LE LE		1		1	-	20	-	1		25		30	_	30		100
LE		0	4.5	17	-	20	_	25	_	25	_	26	_	30	_	
		-4.5		1	-		1 .	31		31	-	38	_	38	_	
Input (Control)	Cı	-4.5	4.5	25	╀	25	+=-	31	 - -	131	+	1 30	+=	1 36	+	-
Input (Control) Capacitance	C ₁				10		10	_	10	_	10	_	10	_	10	pF
All			_	1	10	-	10	Ī -	"	_	10	_	10	_	"	PF.
			1		<u> L</u>	<u> </u>		l			<u> </u>	<u> </u>		<u> </u>		


ANALOG CHANNEL CHARACTERISTICS - TYPICAL VALUES AT TA = 25°C

					LIMITS		
CHARACTERISTIC		TEST CONDITIONS	TYPES	V _{EE} (V)	V _{cc} (V)	нс/нст	UNITS
Switch Input Capacitance	Ci		All			5	
Common Capacitance	Ссом		4351			25	_
			4352			12	pF
	+ /		4353	19-11	114	8	
Minimum Switch Frequency	f _{MAX}	See Fig. 9	4351			145	
Response @ -3 dB		Notes 1, 2	4352	-2.25	2.25	165	
Figs. 14, 16, 18			4353			200	
			4351			180	MHz
			4352	-4.5	4.5	185	
			4353			>200	
Crosstalk Between Any Two		See Fig. 10	4351		10.0	N/A	
Switches		Notes 2, 3	4352	-2.25	2.25	(TBE)	
Note 4			4353			(TBE)	dB
			4351			N/A	ив
			4352	-4.5	4.5	(TBE)	
			4353			(TBE)	
Sine-Wave Distortion		See Fig. 11	All	-2.25	2.25	0.035	%
			All	-4.5	4.5	0.018	90
E or S to Switch		See Fig. 12	4351				
Feedthrough Noise		Notes 2, 3	4352	-2.25	2.25	(TBE)	
			4353				mV
			4351				1110
			4352	-4.5	4.5	(TBE)	
			4353				
Switch "OFF"		See Fig. 13	4351			-73	
Signal Feedthrough		Notes 2, 3	4352	-2.25	2.25	-65	
Figs. 15, 17, 19			4353			-64	dB
		1.4	4351			-75	uв
			4352	-4.5	4.5	-67	
			4353			-66	

Notes:

- 1. Adjust input voltage to obtain OdBm @ Vos for fin = 1 MHz.
- 2. V_{IS} is centered at $(V_{CC} V_{EE})/2$.
- 3. Adjust input for OdBm.
- 4. Not applicable for HC/HCT4351.

ANALOG TEST CIRCUITS

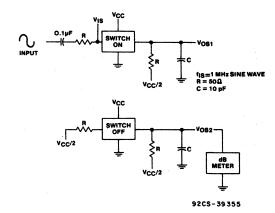
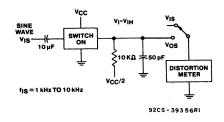



Fig. 9 - Frequency response test circuit.

Fig. 10 - Crosstalk between two switches test circuit.

VCC

SOOD AITERNATING ON AND OFF

It, It ≤ 6 ns
ICONT = 1 MHz
SO 96 DUTY
CYCLE

92CS-39352

Fig. 11 - Sine wave distortion test circuit.

Fig. 12 - Control-to-switch feedthrough noise test circuit.

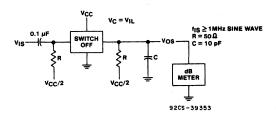


Fig. 13 - Switch off signal feedthrough.

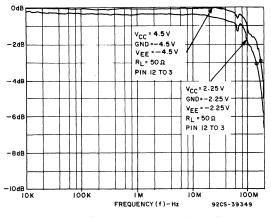


Fig. 14 - Channel on bandwidth (HC/HCT4351).

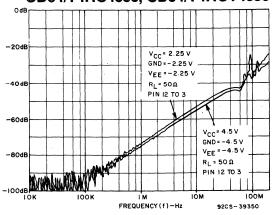


Fig. 15 - Channel off feedthrough (HC/HCT4351).

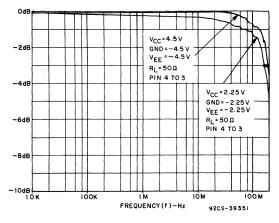


Fig. 16 - Channel on bandwidth (HC/HCT4352).

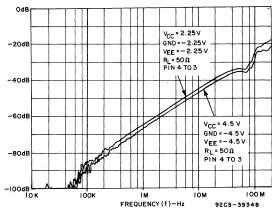


Fig. 17 - Channel off feedthrough (HC/HCT4352).

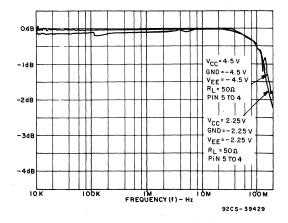


Fig. 18 - Channel on bandwidth (HC/HCT4353).

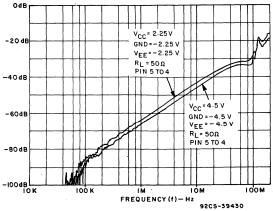


Fig. 19 - Channel off feedthrough (HC/HCT4353).

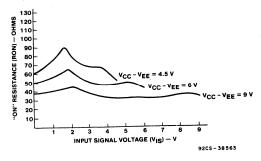
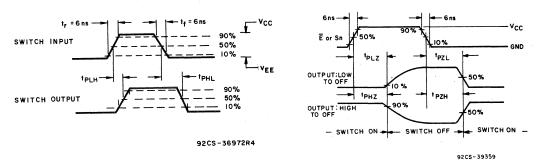



Fig. 20 - Typical ON resistance vs. input signal voltage.

HC4351, HC4352, HC4353

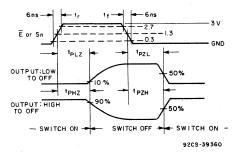


Fig. 21 - Switch propagation delay, turn-on, turn-off times.

HCT4351, HCT4352, HCT4353

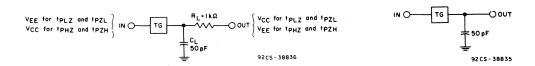
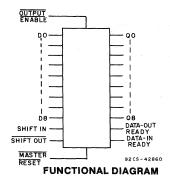



Fig. 22 - Switch on/off propagation delay test circuit.

Fig. 23 - Switch In to Switch Out propagation delay test circuit.

64-Word x 9-Bit FIFO Register; 3-State

Type Features:

- Synchronous or asynchronous operation
- 3-state outputs (standard)
- Master-reset inputs to clear data and control functions
- 25-MHz (typ.) shift-in, shift-out rates with flags
- 40-MHz (typ.) burst-in, burst-out rates without flags
- Cascadable to 25 MHz (typ.)
- Readily expandable in word and bit dimensions
- Pinning arranged for easy board layout: input pins directly opposite output pins
- Icc category: LSI
- Functionally equivalent and pin capatible with the TRW to TDC1030

The RCA-CD54HC/HCT7030 and CD74HC/HCT7030 are high-speed expandable silicon-gate CMOS first-in first-out (FIFO) memories organized as 64-word by 9-bit registers. A 25-MHz data-rates makes them ideal for high-speed applications. Burst data-rates of 40 MHz can be obtained in applications where the status flags are not used.

With separate controls for Shift-In (SI) and Shift-Out (\overline{SO}) , reading and writing operations are completely independent, allowing synchronous and asynchronous data transfers. Additional controls include a Master-Reset input (\overline{MR}) and and Output Enable Input (\overline{OE}) . Flags for Data-In-Ready (DIR) and Data-Out-Ready (DOR) indicate the status of the device.

Devices can be interconnected easily to expand word and bit dimensions. All output pins are directly opposite the corresponding input pins thus simplifying board layout in expanded applications.

INPUTS AND OUTPUTS

Data Inputs (Do to Da)

As there is no weighting of the inputs, any input can be assigned as the MSB. The size of the FIFO memory can be reduced from the 9 x 64 configuration, i.e. 8 x 64, 7 x 64, down to 1 x 64, by tying unused data input pins to $V_{\rm CC}$ or GND.

Data Outputs (Q₀ to Q₈)

As there is no weighting of the outputs any output can be assigned as the MSB. The size of the FIFO memory can be reduced from the 9×64 configuration as described for data inputs. In a reduced format, the unused data output pins must be left open.

Master-Reset (MR)

When $\overline{\text{MR}}$ is LOW, the control functions within the FIFO are cleared and data content is declared invalid; the Data-In-Ready (DIR) flag is set HIGH and the Data-Out-Ready flag (DOR) is set LOW. The output stage remains in the state of the last word that was shifted out, or in the random state existing at power-up.

Applications:

- Bit-rate smoothing
- CPU/terminal buffering
- Data communications
- Peripheral buffering
- Line printer input buffers
- Auto-dialers
- CRT buffer memories
- Radar data acquisition
- High-speed disc or tape controller
- Video synthesis
- I/O formatter for digital filters and FFTs

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT: -40 to +125° C
 - Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types:
 2 to 6 V Operation
 High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC},
 @ V_{CC} = 5 V
- CD54HCT/CD74HCT Types 4.5 to 5.5 V Operation Direct LSTTL Input Logic Compatibility V_{IL} = 0.8 V Max., V_{IH} = 2 V Min. CMOS Input Compatibility I_I ≤ 1 µA @ V_{OL}, V_{OH}

Status Flag Outputs (DIR, DOR)

Indication of the status of the FIFO is given by two status flags, Data-In-Ready (DIR) and Data-Out-Ready (DOR):

DIR = HIGH indicates the input stage is empty and ready to accept valid data;

DIR = LOW indicates that the FIFO is full or that a previous shift-in operation is not complete;

DOR = HIGH assures valid data is present at the outputs Q_0 to Q_0 (does not indicate that new data is awaiting transfer into the output stage);

DOR = LOW indicates the output stage is busy or there is no valid data.

Shift-In Control (SI)

Data is loaded into the input stage on a LOW-to-HIGH

transition of SI. A HIGH-to-LOW transition triggers an automatic data transfer process (ripple-through).

Shift-Out Control (SO)

A LOW-to-HIGH transition of \overline{SO} causes the DOR flag to go LOW. A HIGH-to-LOW transition of \overline{SO} causes upstream data to move into the output stage, and empty locations to move towards the input stage (bubble-up).

Output Enable (OE)

The outputs Q_0 to Q_0 are enabled when \overline{OE} = LOW. When \overline{OE} = HIGH the outputs are in the high impedance OFF-State.

These types are supplied in 28-lead dual-in-line plastic package E suffix. These types are also available in pellet (die) form H suffix.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltage referenced to ground)	
DC INPUT DIODE CURRENT, I_{iK} (FOR $V_i < -0.5 \text{ V OR } V_i > V_{CC} +0.5 \text{ V})$	±20 mA
DC OUTPUT DIODE CURRENT, I_{OK} (FOR $V_O < -0.5$ V OR $V_O > V_{CC} +0.5$ V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V):	
STANDARD OUTPUT	±25 mA
BUS DRIVER OUTPUT	±35 mA
DC V _{CC} OR GROUND CURRENT, (I _{CC}):	
STANDARD OUTPUT	±50 mA
BUS DRIVER OUTPUT	±70 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +100°C (PACKAGE TYPE E)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE H)	Derate Linearly at 8 mW/°C to 300 mW
OPERATING-TEMPERATURE RANGE (T _A):	
PACKAGE TYPE F, H	55 to +125°C
PACKAGE TYPE E, M	40 to +125°C
STORAGE TEMPERATURE (T _{stq})	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	IITS	UNITE	
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{CC} : *				
CD54/74HC Types	2	6	l	
CD54/74HCT Types	4.5	5.5	V	
DC Input or Output Voltage, V _I , V _O	0	Vcc		
Operating Temperature, T _A :				
CD74 Types	-40	+125	°c	
CD54 Types	-55	+125		
Input Rise and Fall Times, t _r , t _f :				
at 2 V	0	1000		
at 4.5 V	0	500	ns	
at 6 V	0	400		

* Unless otherwise specified, all voltages are referenced to Ground.

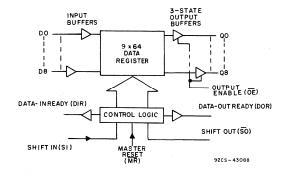


Fig. 1 - Functional block diagram.

GND-	1	28	<u> </u>	Vcc
GND	2	27	-	MR
DIR.	3	26	<u> </u>	<u>50</u>
SI	4	25	├-	DOR
DO	5	24	├	QO
D1	6	23	_	Q1
D2	7	22	-	Q2
D3	8	21	-	Q3
D4	9	20	-	Q4
D5	10	.19	├-	Q5
D6	11	18	<u> </u>	Q6
D7	12	17	<u> </u>	Q7
D8	13	16	├	Q8
GND -	14	15	-	ŌĒ
		9205-	J 42858	3

Fig. 2 - Terminal connections.

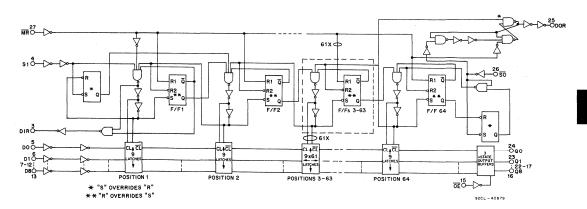


Fig. 3 - Logic diagram.

STATIC ELECTRICAL CHARACTERISTICS

			c	D741	HC70:	30/CE)54H(7030	ı				CD74	нст	7030/	CD54	нст7	030			
		l	TEST DITION	48		74HC/54HC TYPES					IC ES	TEST CONDITION	15	74HCT/54HCT TYPES				ICT PES	54HCT TYPES		LINUTE
CHARACTERIS	TIC	V,	lo	Vcc	4	-25° C	;	-4 +85		-5: +12!		V _i	Vcc		+25° C	:	ı	0/ 5°C	l	5/ 5°C	UNITS
		v	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
High-Level				2	1.5	_		1.5	_	1.5			4.5		—						
Input Voltage	VIH			4.5	3.15	_	-	3.15	=	3.15	_	_	to	2	_	l _	2	_	2	_	
				6	4.2	_	<u> </u>	4.2	_	4.2	_		5.5							l	
Low-Level				2	1_	_	0.5	_	0.5	-	0.5		4.5								
Input Voltage	VIL			4.5	_	_	1.35	_	1.35	-	1.35		to	-	-	0.8	—	0.8	_	0.8	
				6	-	_	1.8	_	1.8	_	1.8		5.5								
High-Level		VIL		2	1.9	_	Ì-	1.9	Ī-	1.9	_	V _{IL}									
Output Voltage	Von	or	-0.02	4.5	4.4	_	Ī-	4.4	—	4.4	-	or	4.5	4.4	-	l –	4.4	-	4.4	-	
CMOS Loads		V _{IH}		6	5.9	_	 	5.9		5.9		V _{IH}									l v
	-	VIL										VIL									
TTL Loads		or	-4	4.5	3.98	_	L_	3.84	_	3.7		ọr	4.5	3.98	-	-	3.84	-	3.7	-	
		V _{IH}	-5.2	6	5.48	_	<u> </u>	5.34		5.2	_	V _{IH}								L	
Low-Level		VIL		2	<u> </u>	_	0.1	<u></u>	0.1		0.1	VIL		Г	l			1		į	
Output Voltage	V_{OL}	or	0.02	4.5		_	0.1	_	0.1	_	0.1	or	4.5	-	-	0.1	-	0.1	-	0.1	
CMOS Loads		V _{IH}		6		_	0.1		0.1		0.1	V _{IH}						<u> </u>			
		VIL										V _{IL}				ĺ		[l	
TTL Loads		or	4	4.5		_	0.26	_	0.33	<u> </u>	0.4	or	4.5	-	-	0.26	-	0.33	-	0.4	
		V _{IH}	5.2	6	_	_	0.26	_	0.33		0.4	V _{IH}		<u> </u>	ļ		L_			_	
Input Leakage		Vcc							1			Any		ĺ		1	1				
Current	l ₁	or		6	_	_	±0.1		±1	_	±1	Voltage	5.5	_	_	±0.1	_	±1	_	±1	
		Gnd		ľ				l	ļ - ·			Between								ļ	
		<u> </u>			—		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Vcc & Gnd	_	├		<u> </u>	<u> </u>			├	
Quiescent		Vcc									1000	Vcc				50		500		1000	
Device Current (LSI)	Icc	or	0	6	-	_	50	-	500	-	1000		5.5	-	_	30	-	300	-	1000	
		Gnd	L	<u> </u>	1	L	L	L	<u> </u>	<u> </u>	L	Gnd	-	+-	 	├	-	 		├	μΑ
Additional													4.5								1
Quiescent Device												V _{cc} -2.1	to	-	100	360	-	450	-	490	
Current per input	A I . *												5.5							1	-
pin: 1 unit load 3-State Leakage	Δl _{cc} *	 , - 	N = N	г—	т	т	T	Т	т—	Т	г	\ <u>\</u>		+-		-	-	_	-	+	1
o-State Leakage Current		VIL	Vo=Vcc	1			40.5				±10	V _{IL}	5.5	_	_	±0.5		±5	_	±10	
Cunent	loz	or	or	6	-	-	±0.5	-	±5		10		5.5	_	-	10.5	_	1 23	_	10	}
		V _{IH}	Gnd	1	1	L	l	L		L	L	V _{IH}		1		L	<u></u>			L	1

 $^{^{\}star}$ For dual-supply systems theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT INPUT LOADING TABLE

INPUT	UNIT LOADS *
ŌĒ	1
SI, SO, MR	1.5
D _n	0.75

^{*} Unit Load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ Input } t_r, t_f = 6 \text{ ns}$)

OUADAOTEDIOTIO			CL	TYPI		
CHARACTERISTIC			(pF)	HC	HCT	UNITS
Propagation Delay		t _{PLH}				
		t _{PHL}				
MR to DIR, DOR	* a			21	26	ns
SO to Q _n			15	36	40	
SI to DIR		tpHL		20	21	
SO to DOR				25	26	
Maximum SI, SO Frequency			15	- 33	29	MHz
Power Dissipation Capacitance *		CPD		660	660	pF

^{*} C_{PD} is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where:

f_i = input frequency

C_L = output load capacitance

fo = output frequency Vcc = supply voltage

PRE-REQUISITE FOR SWITCHING FUNCTION

		TEST						LIM	ITS						
CHARACTERISTIC	1	CONDITIONS		+25	° C		-4	0° C to	+85°	С	-55	5° C to	+125°	, C	UNITS
CHARACTERISTIC	İ		HC		HCT		74	нС	74H	ICT	54HC		54H	ICT	1
		V _{cc} (V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SI Pulse Width t	w	2	50	-	_	_	65		_	l —	75	-	-	_	
HIGH or LOW		4.5	10	_	12	_	13	-	15	_	15		18	_	
Fig. 4		6	9	_	_	_	11	_	-	_	13	_	-	-	
SO Pulse Width t	w	2	100	_	1	_	125	_	_	_	150	_		-	
HIGH or LOW		4.5	20	_	15	_	25	_	19	_	30	-	22	_	
Fig. 7		6	17	_		_	21		_	_	26	_	_	_	
DIR Pulse Width t	w	2	50	145	_		_	180		_	_	220	_	_	
HIGH		4.5	10	29	13	37		36	_	46	_	44	_	56	
Fig. 5		6	9	25		_		31	_	_	_	38	_	_	
DOR Pulse Width	w	2	50	145	-	_		180	_	+	_	220	_	-	
HIGH		4.5	10	29	12	35	_	36	-	44	_	44	_	53	
Fig. 8		6	9	29	_	_	_	31	_	_	_	38			ns
MR Pulse Width	w	2	70	-	_	_	90	_	_	_	105	-	-		115
LOW		4.5	14	_	18	_	18	_	23	-	21	_	27	-	
Fig. 6		6	12	-	-	_	15	-	1	_	18				
Removal Time t _F	EM	2	80	_	-	_	100	_	-	_	120	_	_	-	
MR to SI		4.5	16	_	18	-	20	_	23	_	24	-	27	-	
Fig. 13		6	14	_	-	_	17	-	-	_	20	_	_		
Setup Time t	su	2	-35	-	-	-	-45	_	_	_	-55	_		-	
D _n to SI	ı	4.5	-7	_	-8	-	-9	_	-10	_	-11	-	-12	-	
Fig. 11		6	-6		-	_	-8	_	_	_	-9	_	_		
Hold Time		2	110	_	_	_	140	_	-	_	165	_	_	-	
D _n to SI	l	4.5	22	-	22	_	28	1-	28	-	33	_	33	-	
Fig. 11		6	19	_	_	_	24	_	_	_	28	_		_	
Maximum Clock Pulse fa	MAX	2	3.6	-	_	_	2.8	-	_	_	2.4	_		-	
SI, SO (Burst Mode or Using Flags)	l	4.5	18	-	15	_	14	_	12	_	12	-	10	-	
Figs. 4, 7, 9 and 10		6	21		-		16	_		_	14	_			MHz
Maximum Clock f	1AX	2	2.8	_		_	2.2	_	_	_	1.8	_	_	_	IVITIZ
Pulse Frequency SI, SO (Cascaded)		4.5	14	_	13	_	11	_	10	_	9.2	_	7.8	-	
Figs. 4 and 7		6	17	_		_	13	_	_		11		_	_	

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t, t, = 6 ns)

								LIM	ITS						
014 04 077010710		TEST		+25	°C		-4	10°C to	+85°	С	-5	5°C to	+125°	С	UNITS
CHARACTERISTIC		V _{cc} (V)	Н	нс		СТ	741	10	74HCT		54HC		54HCT		UNITS
			MIN.	мах.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	-
Propagation Delay	t _{PHL}	2	_	210	_		_	265	_	_	_	315	-	_	
MR to DIR, DOR	t _{PLH}	4.5		42	_	51	_	53		53	_	63	-	63	
Fig. 6		6	_	36		-		45	_	_	_	54	_		1
Propagation Delay	t _{PLH}	2	_	235	I —	_	_	295	-	-	-	355	_	_	
SI to DIR		4.5	-	47	_	49	-	59	_	61	-	71	_	74	-
Fig. 4		6	_	40		_		50		_		60			
Propagation Delay	t _{PHL}	2	_	315		T	_	395	-	_	_	475	<u> </u>	_	
SO to DOR		4.5	-	63	_	67	_	79	_	84	_	95	-	101	ns
Fig. 7		6	_	50	_	-	_	63		_	_	76	l —	_	
Propagation Delay	t _{PHL}	2	_	35	_	T -	_	45	-	-	_	55	· —	-	
DOR to Q _n	t _{PLH}	4.5	-	7	-	22		9	-	28	-	11	-	33	
Fig. 8		6	_	6	-	_	-	8		_	_	9	_	_	-
Propagation Delay	t _{PHL}	2		345	T -	T-	_	430	_	-	_	520	_	_	
SO to Q _n	t _{PLH}	4.5	_	69	_	78	_	86	- "	98	_	104	_	117	
Fig. 12		6	l –	55	-	_	_	69		_	-	83	_		
Propagation Delay	t _{PLH}	2	_	8	_	 	-	10	-	_	_	12	-	_	
Ripple through Delay		4.5	-	1.6	_	1.6	-	2	_	2	_	2.4	-	2.4	-
SI to DOR Fig. 8		6	_	1.3	_		_	1.6	_	_	_	1.9		_	
Propagation Delay	t _{PLH}	2	-	10	_	T —	<u> </u>	12.5	Ι-	T	_	15	_	_	μs
Ripple through Delay		4.5	_	2	_	2	_	2.5	_	2.5	_	3	-	3	
SO to DIR Fig. 5		6	_	1.6	_	-	<u> </u>	2	_	_		2.4		_	
3-State Output Enable	t _{PZH}	2	_	175	Γ-	-	_	220	—	T -	_	265	T -	_	
ŌĒ to Q _n	t _{PZL}	4.5	_	35	-	35	- .	44	-	44	-	53	-	53	
Fig. 14		6		30	_:	<u> </u>	<u> </u>	37	<u> </u>	<u> </u>	<u> </u>	45	_		
3-State Output Disable	t _{PHZ}	2	_	150	T	-	-	190	-	_	_	225	-	-	
ŌĒ to Q₁	t _{PLZ}	4.5	_	30	_	35	-	38	-	44	-	45	-	53	ns
Fig. 14		6	_	26	_	_	L	33	_	<u> </u>	_	38			
Output Transition Time	t _{THL}	2	_	75	_	_	-	95	—	-	-	110	-	—	
Standard Outputs	t _{TLH}	4.5	_	15	-	15	_	19	-	19	-	22	-	22	
Fig. 12		6	-	13			-	16	<u> </u>	<u> </u>	<u> </u>	19		<u> </u>	
Input Capacitance	Cı	_		10		10		10		10	_	10	_	10	pF
3-State Output Capacita	nce Co			15		15	_	15	_	15	_	15	_	15	

FUNCTIONAL DESCRIPTION

Data Input

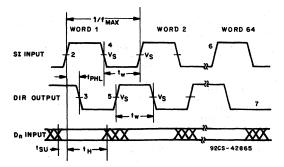
Following power-up, the Master-Reset (\overline{MR}) input is pulsed LOW to clear the FIFO memory. The Data-In-Ready flag (DIR = HIGH) indicates that the FIFO input stage is empty and ready to receive data. When DIR is valid (HIGH), data present at D₀ to D₈ can be shifted-in using the SI control input. With SI = HIGH, data is shifted into the input stage and a busy indication is given by DIR going LOW.

The data remains at the first location in the FIFO until SI is set to LOW. With SI = LOW the data moves through the FIFO to the output stage, or to the last empty location. If the FIFO is not full after the SI pulse, DIR again becomes valid (HIGH) to indicate that space is available in the FIFO. The DIR flag remains LOW if the FIFO is full (see Fig. 6).

With the FIFO full, SI can be held LOW until a Shift-Out (\$\overline{SO}\$) pulse occurs. Then, following a Shift-Out of data, an empty location appears at the FIFO input and DIR goes HIGH to allow the next data to be Shifted-In (this data remains at the first FIFO location until SI again goes LOW) (see Fig. 5).

Data Transfer

After data has been transferred from the input stage to the FIFO following SI = LOW, the data moves through the FIFO asynchronous and is stacked at the output end of the register. Empty locations appear at the input end of the FIFO as the data moves through the device.


Data Output

The Data-Out Ready flag (DOR = HIGH) indicates that there is valid data the output (Q_0 to Q_0). The initial Master-Reset at power on (\overline{MR} = LOW) sets DOR to LOW (see Fig. 6).

After $\overline{\text{MR}}$ = HIGH, data shifted onto the FIFO moves through to the output stage causing DOR to go HIGH.

As the DOR flag goes HIGH, data can be shifted-out using the \overline{SO} control input. With \overline{SO} = HIGH, data in the output stage is shifted out and a busy indication is given by DOR going LOW. When \overline{SO} is made LOW, data moves through

AC WAVEFORMS

The above waveforms show the SI input to DIR output propagation delay times; the SI, DIR pulse widths; and the SI maximum pulse-frequency.

Fig. 4 - Shift-In sequence timing waveforms (FIFO empty to FIFO full).

the FIFO to fill the output stage and an empty location appears at the input stage. When the output stage is filled DOR goes HIGH, but if the last of the valid data has been shifted out leaving the FIFO empty the DOR flag remains LOW (see Fig. 11). With the FIFO empty, the last word that was shifted-out is latched at the output Q_0 to Q_8 .

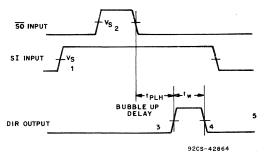
With the FIFO empty, the \overline{SO} input can be held HIGH until the SI control input is used. Following an SI pulse, data moves through the FIFO to the output stage, resulting in the DOR flag pulsing HIGH and a Shift-Out of data occuring. The \overline{SO} control must be made LOW before additional data can be shifted out (see Fig. 8).

High-Speed Burst Mode

If it is assumed that the Shift-In/Shift-Out pulses are not applied until the respective status flags are valid, it follows that the Shift-In/Shift-Out rates are determined by the status flags. However, without the status flags a high-speed burst-mode can be implemented. In this mode, the burst-in/burst-out rates are determined by the pulse-widths of the Shift-In/Shift-Out inputs and burst rates of 40 MHz can be obtained. Shift pulses can be applied without regard to the status flags but Shift-In pulses that would overflow the storage capacity of the FIFO are not allowed (see Fig. 9 and 10).

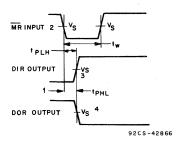
Expanded Format

With the addition of a logic gate, the FIFO is easily expanded to increase word length (see Fig. 19). The basic operation and timing are identical to a single FIFO, with the exception of an additional gate delay on the flag outputs. Word length can be expanded beyond the 18-bits x 64 words configuration shown in Fig. 15.


The "7030" is easily cascaded to increase the word capacity and no external components are needed. In the cascaded configuration, all necessary communications and timing are performed by the FIFOs themselves. The intercommunications speed is determined by the minimum flag pulse widths and the flag delays. The data rate of cascaded devices is typically 25 MHz. Word-capacity can be expanded to and beyond 128-words x 9-bits (see Fig. 16).

TEST VOLTAGES FOR FIGS. 4 TO 14.

TEST VOLTAGE	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V


NOTES:

- DIR initially HIGH; FIFO is prepared for valid data.
- 2. SI set HIGH; data loaded into input stage.
- 3. DIR drops LOW, input stage busy.
- 4. SI set LOW; data from first location "ripple through".
- DIR goes HIGH, status flag indicates FIFO prepared for additional data.
- Repeat process to load 2nd word through to 64th word into FIFO.
- DIR remains LOW; with attempt to shift into full FIFO, no data transfer occurs.

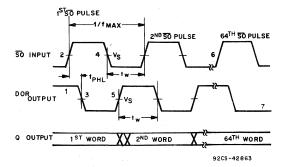

The above waveforms show bubble-up delay, $\overline{\text{SO}}$ input to DIR output and DIR output pulse-width.

Fig. 5 - Bubble-up delay timing waveforms.

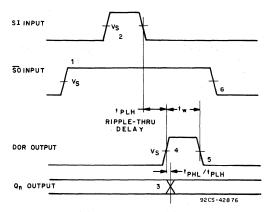
The above waveforms show \overline{MR} input to DIR, DOR output propagation delay times and the \overline{MR} pulse-width.

Fig. 6 - MR input timing waveforms.

The above waveforms show the \overline{SO} input to DOR output propagation delay times, the \overline{SO} , DOR pulse-widths, and \overline{SO} maximum pulse frequency.

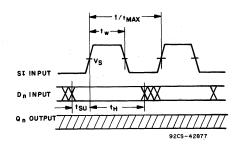
Fig. 7 - SO input timing waveforms.
(FIFO full to FIFO empty)

NOTES:


- 1. FIFO is initially full, shift-in is held HIGH.
- SO pulse; data in the output stage is unloaded, bubbleup process of empty location begins.
- DIR HIGH; when empty location reaches input stage, flag indicates FIFO is prepared for data input.
- 4. DIR goes LOW; data shift-in to empty location is complete, FIFO is full again.
- SI brought LOW; necessary to complete shift-in process, DIR remains LOW, because FIFO is full.

NOTES:

- 1. DIR LOW, output ready HIGH; assume FIFO is full.
- 2. MR pulse LOW; clears FIFO.
- DIR goes HIGH; flag indicates input prepared for valid data.
- 4. DOR drops LOW; flag indicates FIFO empty.


NOTES:

- DOR HIGH; no data transfer in progress, valid data is present at output stage.
- 2. SO set HIGH; results in DOR going LOW.
- 3. DOR drops LOW; output stage busy.
- SO set LOW; data in the input stage is unloaded, and new data replaces it as empty location bubbles-up to input stage.
- DOR goes HIGH; transfer process completed, valid data present at output.
- Repeat process to unload the 3rd through to the 64th word from FIFO after the specified propagation delay times.
- 7. DOR remains LOW; FIFO is empty.

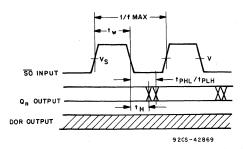

The above waveforms show ripple-through delay times, SI input to DOR output, DOR output pulse-width, and propagation delay times from the DOR pulse-width to the Q_n output.

Fig. 8 - Ripple-through delay timing waveforms.

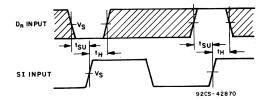
The above waveforms show SI minimum pulse-width and SI maximum pulse frequency, in high-speed Shift-In burst mode.

Fig. 9 - SI pulse-width timing waveforms.

The above waveforms show \overline{SO} minimum pulse-width and maximum pulse frequency, in high-speed, Shift-Out burst mode.

Fig. 10 - SO pulse-width timing waveforms.

NOTES:

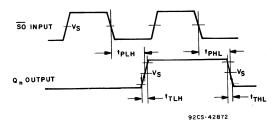

- 1. FIFO is initially empty, SO is held HIGH.
- SI pulse; loads data into FIFO and initiates ripple through process.
- Output transition; data arrrives at output stage (after specified propagation delay times between rising edge of the DOR pulse to Q_n output).
- DOR HIGH; DOR flag signals the arrival of valid data at the output stage.
- DOR goes LOW; data shift-out is complete, FIFO is empty again.
- SO set LOW, necessary to complete shift-out process. DOR remains LOW, because FIFO is empty.

NOTE:

In the high-speed mode, the burst-in rate is determined by the minimum Shift-In HIGH and Shift-In LOW specifications. The DIR status flag is a don't care condition, and a Shift-In pulse can be applied regardless of the flag. An SI pulse which would overflow the storage capacity of the FIFO is not permitted.

NOTE:

In the high-speed mode, the burst-out rate is determined by the minimum Shift-Out HIGH and Shift-Out LOW specifications. The DOR flag is a don't care condition and an \overline{SO} pulse can be applied regardless of the flag.



NOTE:

The shaded areas indicate when the input is permitted to change for predictable output performance.

The above waveforms show hold and set-up times for D_n and SI input.

Fig. 11 - Hold and set-up timing waveforms.

The above waveforms show $\overline{\text{MR}}$ output and SI input removal time.

92CS-42872

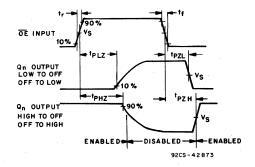

The above waveforms show \overline{SO} input to Q_n output, propagation delay times, and output transistion times.

Fig. 12 - Propagation delay and transition timing waveforms.

MR INPUT

SI INPUT

The above waveforms show the 3-state enable and disable times for input $\overline{\text{OE}}.$

Fig. 14 - 3-state enable and disable timing waveforms.

Application Information on Expanded Format

Fig. 16 shows two FIFOs connected in cascade. The obtained capacity is 128 words of 9 bits.

Fig. 17 shows the signals on the nodes of both FIFOs at the application of one Shift-In pulse when the FIFOs are initially empty. After a ripple through delay, data arrives at the output of FIFO A. As $\overline{SO}(A)$ is HIGH at this time instant a DOR(A) pulse is generated. The width of this DOR(A) pulse and the timing between the rising edge of this pulse and the signal change of $Q_n(A)$ meets the requirement of SI(B) and $D_n(B)$ of FIFO B. After a second ripple through delay data arrives at the output of FIFO B ($Q_n(B)$).

Fig. 18 shows the signals on these nodes after the application of an $\overline{SO}(B)$ pulse when both FIFOs are initially full. After a bubble-up delay a DIR(B) pulse is generated that serves as a $\overline{SO}(A)$ pulse for FIFO A. One word is transferred from the output of FIFO A to the input of FIFO B. The width of DIR(B) meets the requirements of the $\overline{SO}(A)$ pulse of FIFO A. After a second bubble-up delay an empty space arrives at $D_n(A)$ at which time instant DIR(A) goes HIGH.

Fig. 19 shows the waveforms at all external nodes of these two registers during a complete Shift-In and Shift-Out sequence.

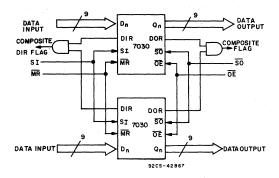


Fig. 15 - Functional diagram of expanded FIFO for increased word length - 64-words x 18-bits.

NOTE:

The 7030 is easily expanded to increase word length. Composite DIR and DOR flags are forced with the addition of an AND gate. The basic operation and timing are identical to a single FIFO, with the exception of an added gate delay for the flags.

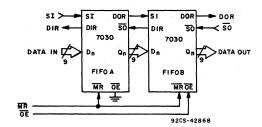


Fig. 16 - Functional diagram of cascaded FIFOs for increased word capacity - 128-words x 9-bits.

NOTE:

The 7030 is easily cascaded to increase word capacity without any external circuitry. In cascaded format, all necessary communications are handled by the FIFOs. Fig. 19 demonstrates the intercommunication timing between FIFO A and FIFO B. Figs. 17 and 18 gives an overview of pulses and timing of two cascaded FIFOs, when shifted full and shifted empty again.

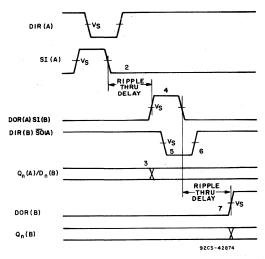


Fig. 17 - FIFO to FIFO communications timing waveforms, input timing under empty condition.

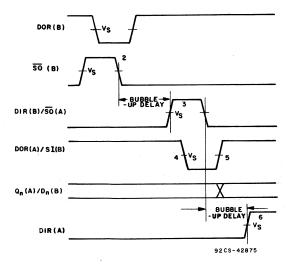


Fig. 18 - FIFO to FIFO communications timing waveforms, output timing under full condition.

NOTES:

- FIFO(A) and (B) initially empty, SO(A) held HIGH in anticipation of data.
- Load one word into FIFO(A) SI pulse applied, results in DIR pulse.
- DOR(A) and SI(B) pulse HIGH; (ripple through delay after SI(A) LOW) data is unloaded from FIFO(A) as a result of the data output ready pulse, data is shifted into FIFO(B).
- Data-out(A)/data-in(B) transition; valid data arrives at FIFO(A) output stage simultaneously with DOR flag, meeting data input set-up requirements of FIFO(B).
- 5. DIR(B) and SO(A) go LOW; flag indicates input stage of FIFO(B) is busy, shift-out of FIFO(A) is complete.
- DIR(B) and SO(B) go HIGH: automatically, input stage of FIFO(B) is again able to receive data, SO is held HIGH in anticipation of additional data.
- DOR(B) goes HIGH; (ripple through delay after SI(B) LOW) valid data is present one propagation delay-time later at the FIFO(B) output stage.

NOTES:

- FIFO(A) and (B) initially full, SI(B) held HIGH in anticipation of shifting in new data as empty location bubbles-up.
- Unload one word from FIFO(B); SO pulse applied, results in DOR pulse.
- DIR B and SO(A) pulse HIGH; (bubble-up delay after SO(B) LOW) data is loaded into FIFO(B) as a result of the DIR pulse, data is shifted out of FIFO(A).
- DOR(A) and SI(B) go LOW; flag indicates the output stage of FIFO A is busy, shift-in to FIFO(B) is complete.
- DOR(A) and SI(B) go HIGH; flag indicates valid data is again available at FIFO(A) output stage, SI(B) is held HIGH, awaiting bubble-up of empty location.
- DIR(A) goes HIGH; (bubble-up delay after SO(A) LOW) an empty location is present at input stage of FIFO(A).

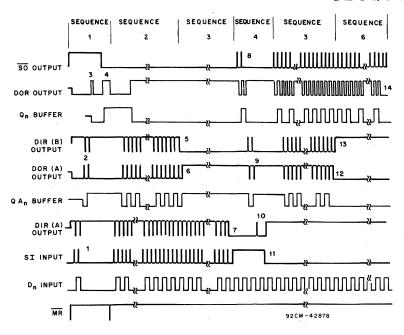


Fig. 19 - Function and intercommunication timing waveforms between two cascaded FIFOs (see Fig. 16 for corresponding pin description).

NOTES:

Sequence 1:

Both FIFOs are empty shift-in process starts.

After a $\overline{\text{MR}}$ pulse has been applied FIFO A and FIFO B are both empty. The DOR flag of both FIFOs become LOW because no valid data is present at the outputs. The DIR flags are set HIGH because the FIFOs are ready to accept data, $\overline{\text{SO}}$; (B) is held HIGH and two SI(A) pulses are applied (see instant 1). These pulses allow two data words to ripple through to the output stage of FIFO A, and they are loaded into FIFO B (see instant 2). When data arrives at the output of FIFO B, a DOR(B) pulse is generated (see instant 3). When at instant 4, $\overline{\text{SO}}$ (B) is turned LOW the first bit is shifted out and the second bit ripples to the output after which DOR(B) becomes HIGH.

Sequence 2:

FIFO B runs full.

After a $\overline{\text{MR}}$ pulse, a series of 64 SI pulses are applied by which 64 words are shifted in. Finally DIR(B) remains LOW because FIFO B is full (see instant 5). DOR(A) ends up LOW because FIFO A is again empty.

Sequence 3:

FIFO A runs full.

When 65 words are shifted in, DOR(A) remains HIGH because valid data remains at the output stage of FIFO A. After this $Q_n(A)$ remains HIGH being the polarity of the applied 65th data word (see instant 6). After the 128th SI pulse DIR(A) remains LOW because both FIFOs are full (see instant 7). At additional SI pulses no data transfer occurs.

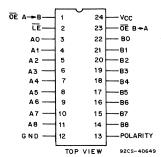
Sequence 4:

Both FIFOs are full shift out process starts.

SI(A) held HIGH and two \overline{SO} (B) pulses are applied (see instant 8). These pulses shift out two words and thus allow two empty locations to bubble up to the input stage of FIFO B, and then proceeding their way to FIFO A (see instant 9). When the first empty location arrives at the input of FIFO A a new word is shifted in immediately during which a DIR(A) pulse is generated (see instant 10). When at instant 11, SI is turned down the second empty location reaches the input after which DIR(A) remains HIGH.

Sequence 5:

FIFO A runs empty.


FIFO A contains 63 valid words now, because in sequence 4 two words were shifted out and one was shifted in again. An additional series of SO, (B) pulses is applied. After 63 SO, (B) pulses all words from FIFO A are shifted into FIFO B, DOR(A) remains LOW (see instant 12).

Sequence 6:

FIFO B runs empty.

After the next \overline{SO} (B) pulse, DIR(B) remains HIGH, because the input stage of FIFO B is empty now (see instant 13). After another 63 \overline{SO} (B) pulses, DOR(B) remains LOW, because both FIFOs are empty again (see instant 14). Additional \overline{SO} (B) pulses don't result in a transfer of information, but the last word remains available at the output Q_n .

High-Speed CMOS Logic

9-Bit Bus Transceiver With Latch

Type Features:

- 48 mA sink current
- Inverting and non-inverting data paths
- Open drain outputs
- Interface compatible with SCSI, multibus, and VME bus specifications

TERMINAL ASSIGNMENT

The RCA-CD54/74HC7038 and the CD54/74HCT7038 are high-speed CMOS 9-bit bidirectional transceivers with input data latch and data polarity selection capability. These data-bus interface products are intended for two-way asynchronous communications between data buses. The 48 mA output sink current meets the drive requirements for the SCSI/Q-02, multibus, and VME bus specifications. The HC/HCT7038 devices feature the low power consumption of standard CMOS circuits and the speed and drive capabilities of LSTTL and TTL circuits.

The CD54/74HC7038 and CD54/74HC77038 allow transmission and internal latch storage of 9 bits of positive or negative logic data from the "A" bus to the "B" bus. A low level on the Latch Enable input (LE) stores "A" bus data in a 9 bit latch. When LE is a high level, the latch is transparent and data flows from "A" to "B". The "B" bus output data drivers are open drain N-MOS transistors that allow the "B" bus high logic state level to be set by the B bus termination network which may be the SCSI/Q-02 (220/330 ohm) or

multibus/VME (dual 330/470 ohm) terminations. B-bus data may be transferred to the A-bus via appropriate $\overline{\text{OE}}$ control levels as shown in the Function Table.

Data polarity may be reversed in either direction as shown in the Function Table.

For the HC types, A-bus ports and control are compatible with CMOS logic levels. For the HCT types, the A-bus ports and control are compatible with CMOS or TTL logic levels. For both types, the B-bus ports are compatible with only TTL levels; the TTL high-logic-level must be set by the external bus termination network.

The CD54HC7038 and CD54HCT7038 are supplied in 24-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC7038 and CD74HCT7038 are supplied in 24-lead dual-in-line narrow body plastic packages (EN suffix) and in 24-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

FUNCTION TABLE

cc	NTROL IN	PUTS	OPERATION
ŌĒ A → B	ŌE B → A	POLARITY	OPERATION
L	н	Н	A _n to \overline{B}_n
L	н	L	A _n to B _n
Н	· L	н	B Data to A
Н	· · L	L	B Data to A
Н	н	Х	Isolation

When LE = L "A" data is latched When LE = H latch is transparent

H = High Level; L = Low Level; X = Irrelevant

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, I_{iK} (for $V_1 < 0$ V or $V_1 > V_{CC} + 0.5$ V)	±20 mA
DC INPUT VOLTAGE, V ₁	0.5 to V _{cc} +0.5 V
DC OUTPUT DIODE CURRENT, I_{OK} (for $V_O < 0$ V or $V_O > V_{OC} + 0.5$ V)	±20 mA
DC OUTPUT VOLTAGE, Vo	0.5 to V _{CC} +0.5 V
DC DRAIN CURRENT, PER OUTPUT, Io, A SIDE	±35 mA
B SIDE	±50 mA
DC VCC CURRENT, Icc	+200 mA
DC GROUND CURRENT, IGND	450 mA
STORAGE TEMPERATURE (Tatg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead tips only	+300°C

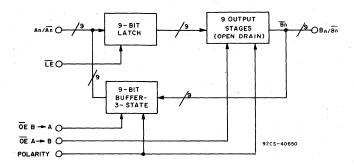


Fig. 1 - Logic block diagram.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIM	ITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range) V _{CC} : *	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t, t:	0	500	ns

^{*} Unless otherwise specified, all voltages are referenced to Ground.

STATIC ELECTRICAL CHARACTERISTICS

			c	D74HC	7038/C	D54HC	7038					CD74	HCT703	8/CD5	4HCT	7038		111	
CHARAC- TERISTIC	co	TEST NDITIO	NS	74HC/ TY		741 TY		54I TY		1	TEST CONDITIONS		74HCT/ 54HCT TYPE		74HCT TYPE		54HCT TYPE		UNITS
	V,	lo	Vcc	+25	°C	-40/+	85°C	-55/+	125° C	V,	V _{cc}	+25°C			-40/	-40/+85°C		-55/+125° C	
·	v	mA	v	Min.	Max.	Min.	Max.	Min.	Max.	v	٧	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
High-Level Input Voltage V _{IH}			4.5 to 5.5	0.7 Vcc	_	0.7 V _{CC}	_	0.7 Vcc	_	_	4.5 to 5.5	2	<u> </u>	-	2	_	2	-	٧
Low-Level Input Voltage V _{IL}			4.5 to 5.5	-	0.3 V _{CC}	-	0.3 V _{CC}	_	0.3 V _{cc}	_	4.5 to 5.5	-	-	0.8	-	0.8	_	0.8	٧
High-Level Output Voltage "A" Side Von	V _{IL} or V _{IH}	-0.02 -6	4.5	4.4	-	4.4	_	4.4	-	V _{IL} or V _{IH}	4.5	4.4	_	=	4.4	_	4.4	=	v
Low-Level Output Voltage	V _{IL}	0.02	4.5	_	0.1		0.1	_	0.1	V _{IL}	4.5	_	_	0.1	-	0.1	_	0.1	v
"A" Side VoL	V _{IH}	6	4.5	_	0.26		0.33	_	0.4	V _{IH}	4.5	_		0.26	=	0.33	=	0.4	
"B" Side	or V _{IH}	0.02	4.5 4.5	-	0.1	 - -	0.1	=	0.1	or Vih	4.5	-	-	0.1	-	0.1	_	0.1	V
Input Leakage Current	V _{I/O} = V _{CC} or Gnd		5.5	_	±0.5	_	±5	_	±10	V _{I/O} = V _{CC} or Gnd	5.5	_	_	±0.1	-	±1	_	±1	μА
Quiescent Device Current lcc	V _{cc} or Gnd	0	5.5	_	,8		80	_	160	V _∞ or Gnd	5.5		_	8	-	80		160	μА
Additional Quiescent Device Current per input pin: 1 unit load		A STATE OF THE STA				~				V _I =2.4V Other Inputs: at V _{CC} or Gnd I _O = 0	5.5	_	100	390	_	450	_	490	μΑ
3-State Leakage Current loz	V _{IL} or V _{IH}		5.5	_	±0.5	_	±5	_	±10	·V _{IL} or V _{IH}	5.5	_	_	±0.5	-	±5	-	±10	μΑ

HCT Input Loading Table

Input	Unit Loads
All	1

CD54/74HC7038 CD54/74HCT7038

SWITCHING CHARACTERISTICS ($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$, Input $t_r, t_r = 6 \text{ ns}$)

CHARACTERISTIC	C _L	TYP	1	
	(pF)	HC	нст	UNITS
Propagation Delay t _{PLZ} , A → B t _{PZL}		18	18	
A → B t _{PLZ}	15	17	17	ns
t _{PZL}	, 13	15	15] ""
B → A t _{PLH} , t _{PHL}		. 11	14	7
B → Ā t _{PLH} , t _{PHL}	Asset 1	9	10	7

PRE-REQUISITE FOR SWITCHING FUNCTION

		LIMITS														
CHARACTERISTIC	TEST		+25	5°C		-4	0°C t	o +85°	°C	-5	5°C to	+125	°C	UNITS		
CHARACTERISTIC	CONDITIONS	Н	нс		CT	74	нС	741	1CT	54	нс	54HCT		UNITS		
	V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.]		
	2	60	_	_	_	75	T —	_	T —	90	_	_	T-			
LE Pulse Width tw	4.5	12	l —	12	_	15	_	15	l —	18	-	18	-	l		
	6	10	-	_	_	13	—	 	—	15	_	l —	-			
Sat un Tima	2	35	-	_	-	45	—	_	-	55	_	_	_	1		
Set-up Time tsu Data to LE	4.5	7		7	_	.9	l — '	9	l —	11	_	11	-	ns		
Data to LE	6	6	— .	_		8	_	 -	_	9	_	—	-			
Hold Time Date	2	35	-	_	_	45	_	_		55	_	_	—]		
lold Time Data t⊣ o LE	4.5	7	_	7	_	9		9	I -	11	_	11	-			
	6	6	l —	_	_	8	l —	l —	l —	9	_	 —	-			

CD54/74HC7038 CD54/74HCT7038

SWITCHING CHARACTERISTICS (CL = 50 pF, Input t,t = 6 ns)

								LIM							
CHARACTERIST		TEST		+25	°C		-4	0°C to				5°C to	+125	°C	UNITS
CHARACTERIS	IC	CONDITIONS	Н	C	H	CT	74	HC	74H	ICT	54	HC	541	ICT	ONT
		V _{cc} (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation	ÎPLZ,	2	Ι –	220	T	_	_	275	-	_	-	330	_	_	
Delay	t _{PZL}	4.5	-	44		44	-	55	-	55	_	66	 	66	
A to B		6	-	37				47			_	56		_	
		2	T -	200	_	-	_	250	_	_	_	300	_	_	
	t _{PLZ}	4.5	—	40	-	40	_	50		50	_	60	-	60	
		6	l –	34				43	_	_	_	51	_	_	
		2	_	180	_	_	_	225	_	-	_	270	_	-	
A to $\overline{\mathbf{B}}$	tezL	4.5	-	36	-	36	-	45	-	45	_	54	—	54	
		6	-	31	 		_	38		_	_	46	_	_	
		2	_	260	I —	_	_	325	_	 -	_	390	_	—	
LE to Bn	t PLZ	4.5	_	52	_	52	_	65	-	65	_	78	-	78	
		6	-	44	_	_	_	55	-	-	_	66	-	_	
		2	T-	230	_	_	_	290	_	 	-	345	_	_	Ì
Polarity Low	tezL	4.5	l –	46	_	46	_	58	-	58	_	69	_	69	
•		6	-	39	_	 —	 -	49	-	-		59			100
	t _{PLZ} ,	2	T -	230	_	T —	_	290	_	_	_	345	_	-	
Polarity High	tezL	4.5	l –	46	-	46	_	58	 —	58	-	69		69	
		6		39	_] —	_	49	_	—	—	59	_	-	
ŌĒ A → B		2	T-	170		_	_	215	=	_	_	255	_		ns
Disable	telz	4.5	l –	34	l —	34	_	43		43	_	51	_	51	
		6	l —	29	_	_	_	37	_	_	_	43	_		
		2	_	170	-	—	 	215	_	_	_	255	_	T	1
Enable	tezu	4.5	<u> </u>	34	l —	34	 	43	 	43	_	51	_	51	l
		6		29	_	_	_	37	_	_	_	43	 		
	t _{PLH} ,	2	<u> </u>	140	<u> </u>	<u> </u>	_	175	_	T-	_	210	_	T =	
B to A	tens	4.5	_	28	l _	28	_	35	_	35	_	42	_	42	l
		6	_	24	l _	_		30	_		_	36	_	_	
	t _{PLH} ,	2	_	120	 	_	_	150	_	T_	T =	180	_	 	
B to \overline{A}	t _{PHL}	4.5	_	24	_	26	_	30	_	33	_	36	_	39	
		6	_	20	_	_	_	26	_	_	_	31	_	_	
ŌĒ B → A		2	 	185	t —	 	1=	230	_	1-	<u> </u>	280	 	-	1
	telz.	4.5	_	37	l _	37	_	46	_	46	_	56	_	56	
Disable	tenz	6	_	31	_	_	_	39	_	_	l _	48	l _	_	1
	tezu	2	+=	175	1=	 -	_	220	_	 	 	265	_	1 =	1
Enable	tezh	4.5	_	35		35	_	44	_	44	_	53		53	
-14016	*PZM	6		30	_			39		l	l	45	l	1 _	1

CD54/74HC7038 CD54/74HCT7038

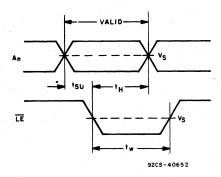


Fig. 2 - Latch enable pulse width, setup and hold times.

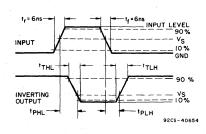
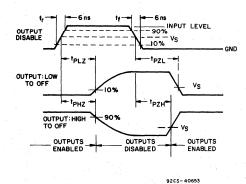
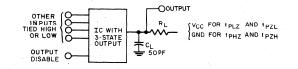




Fig. 3 - Transition times and propagation delay times, combination logic.

	V _{cc}	RL
Side A	4.5 V	1k Ω
Side B	3 V	133 Ω

92CS-35I29R2

Fig. 4 - Three-state propagation delay wave shapes and test circuit.

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, V _S	50% V _{CC}	1.3 V

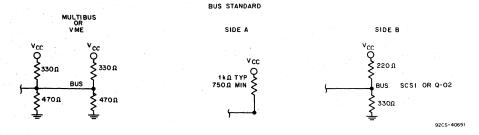
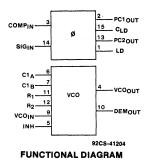
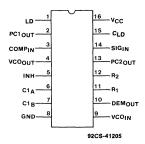



Fig. 5 - Recommended bus terminations.

Phase-Locked Loop with VCO And Lock Detector


Type Features:

- Center frequency of 18 MHz (typ.) at V_{cc} = 5 V
- Choice of two phase comparators: Exclusive-OR,
- Edge-triggered JK flip-flop
- Excellent VCO frequency linearity
 VCO-inhibit control for ON/OFF
- VCO-inhibit control for ON/OFF keying and for low standby power consumption
- Minimal frequency drift
- Zero voltage offset due to op-amp buffer
- Operating power-supply voltage range: VCO section 3 V to 6 V; Digital section 2 V to 6 V

The RCA-CD54/74HC7046A and CD54/74HCT7046A high-speed silicon-gate CMOS devices, specified in compliance with JEDEC Standard No. 7A, are phase-locked-loop (PLL) circuits that contain a linear voltage-controlled oscillator (VCO), two-phase comparators (PC1, PC2), and a lock detector. A signal input and a comparator input are common to each comparator. The lock detector gives a HIGH level at pin 1 (LD) when the PLL is locked. The lock detector capacitor must be connected between pin 15 (CL0) and pin 8 (Gnd). For a frequency range of 100 kHz to 10 MHz, the lock detector capacitor should be 1000 pF to 10 pF, respectively.

The signal input can be directly coupled to large voltage signals, or indirectly coupled (with a series capacitor) to small voltage signals. A self-bias input circuit keeps small voltage signals within the linear region of the input amplifiers. With a passive low-pass filter, the 7046A forms a second-order loop PLL. The excellent VCO linearity is achieved by the use of linear op-amp techniques.

The CD54HC7046A and CD54HCT7046A are supplied in 16-lead ceramic dual-in-line packages (F suffix). The CD74HC7046A and CD74HCT7046A are supplied in 16-lead plastic dual-in-line packages (E suffix) and in 16-lead small-outline plastic dual-in-line packages (M suffix). Both types are also available in chip form (H suffix).

TERMINAL ASSIGNMENT

Applications:

- FM modulation and demodulation
- Frequency synthesis and multiplication
- Frequency discrimination
- Tone decoding
- Data synchronization and conditioning
- Voltage-to-frequency conversion
- Motor-speed control
- For additional information, refer to application note, ICAN-8823.

Family Features:

- Fanout (over temperature range);
 Standard outputs 10 LSTTL loads
 Bus driver outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +125° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- Alternate source: Philips/Signetics
- CD54HC/CD74HC types: 2 V to 6 V operation High noise immunity:

N_{IL}=30%, N_{IH}=30% of V_{CC}; @V_{CC}=5 V

■ CD54HCT/CD74HCT types: 4.5 V to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I_I≤1 µA @ Vo_{IL} Vo_I

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, IIK (FOR VI < -0.5 V OR VI > VCC +0.5 V)	
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (Io) (FOR -0.5 V < Vo < Vcc +0.5 V)	±25 mA
DC Vcc OR GROUND CURRENT (Icc)	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +100°C (PACKAGE TYPE E)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F,H)	500 mW
For T _A = +100 to +125°C (PACKAGE TYPE F,H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mW
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F,H	55 to +125°C
PACKAGE TYPE E,M	40 to +125°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	+300°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIM	ITS	UNITS
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A =Full Package-Temperature Range)			
CD54/74HC Types	2	6	v
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A :			34
CD74 Types	-40	+125	°C
CD54 Types	-55	+125	·U
Input Rise and Fall Times, t _r ,t _r		1 47	
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6.V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.

PIN DESCRIPTION

Pin No.	Symbol	Name and Function
1	LD	Lock Detector output (active high)
2	PC1 _{out}	Phase Comparator 1 output
3	COMPIN	Comparator input
4		VCO output
5	INH	Inhibit input
6	C1 _A	Capacitor C1 connection A
7	C1 _B	Capacitor C1 connection B
8	Gnd	Ground (0 V)

Pin No.	Symbol	Name and Function
9	VCOIN	VCO input
10	DEMout	Demodulator output
11	R ₁	Resistor R1 connection
12	R ₂	Resistor R2 connection
13	PC2 _{out}	Phase Comparator 2 output
14	SIGIN	Signal input
15	CLD	Lock Detector Capacitor input
16	Vcc	Positive Supply Voltage

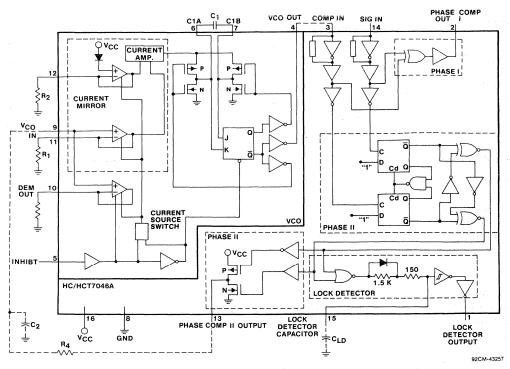


Fig. 1 - Logic diagram.

GENERAL DESCRIPTION

vco

The VCO requires one external capacitor C1 (between C1_A and C1_B) and one external resistor R1 (between R1 and Gnd) or two external resistors R1 and R2 (between R1 and Gnd, and R2 and Gnd). Resistor R1 and capacitor C1 determine the frequency range of the VCO. Resistor R2 enables the VCO to have a frequency offset if required. See logic diagram, Fig. 1.

The high input impedance of the VCO simplifies the design of low-pass filters by giving the designer a wide choice of resistor/capacitor ranges. In order not to load the low-pass filter, a demodulator output of the VCO input voltage is provided at pin 10 (DEMout). In contrast to conventional techniques where the DEMout voltage is one threshold voltage lower than the VCO input voltage, here the DEMour voltage equals that of the VCO input. If DEMout is used, a load resistor (Rs) should be connected from DEMout to Gnd; if unused, DEMout should be left open. The VCO output (VCOout) can be connected directly to the comparator input (COMPIN), or connected via a frequencydivider. The VCO output signal has a guaranteed duty factor of 50%. A LOW level at the inhibit input (INH) enables the VCO, while a HIGH level disables the VCO to minimize standby power consumption.

Phase Comparators

The signal input (SIG_{IN}) can be directly coupled to the self-biasing amplifier at pin 14, provided that the signal swing is between the standard HC family input logic levels, Capacitive coupling is required for signals with smaller swings.

Phase Comparator 1 (PC1)

This is an Exclusive-OR network. The signal and comparator input frequencies (f_i) must have a 50% duty factor to obtain the maximum locking range. The transfer characteristic of PC1, assuming ripple (f_i =2f_i) is suppressed, is:

 $V_{\text{DEMOUT}} = (V_{\text{CC}}/\pi) \ (\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}})$ where V_{DEMOUT} is the demodulator output at pin 10; $V_{\text{DEMOUT}} = V_{\text{PC1OUT}}$ (via low-pass filter).

The average output voltage from PC1, fed to the VCO input via the low-pass filter and seen at the demodulator output at pin 10 (V_{DEMOUT}), is the resultant of the phase differences of signals (SIGIN) and the comparator input (COMPIN) as shown in Fig. 2. The average of V_{DEM} is equal to ½ V_{CC} when there is no signal or noise at SIGIN, and with this input the VCO oscillates at the center frequency (f_0). Typical waveforms for the PC1 loop locked at f_0 are shown in Fig. 3.

The frequency capture range $(2f_c)$ is defined as the frequency range of input signals on which the PLL will lock if it was initially out-of-lock. The frequency lock range $(2f_c)$ is defined as the frequency range of input signals on which the loop will stay locked if it was initially in lock. The capture range is smaller or equal to the lock range.

With PC1, the capture range depends on the low-pass filter characteristics and can be made as large as the lock range. This configuration retains lock behavior even with very noisy input signals. Typical of this type of phase comparator is that it can lock to input frequencies close to the harmonics of the VCO center frequency.

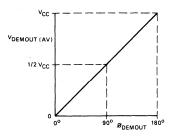


Fig. 2 - Phase comparator 1: average output voltage vs input phase difference:

 $V_{\text{DEMOUT}} = V_{\text{PC1OUT}} = (V_{\text{CC}}/\pi) (\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}});$ $\phi_{\text{DEMOUT}} = (\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}}).$

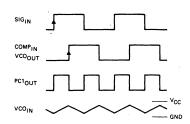


Fig. 3 - Typical waveforms for PLL using phase comparator 1, loop locked at f_o.

Phase Comparator 2 (PC2)

This is a positive edge-triggered phase and frequency detector. When the PLL is using this comparator, the loop is controlled by positive signal transitions and the duty factors of SIG_{IN} and COMP_{IN} are not important. PC2 comprises two D-type flip-flops, control-gating and a 3-state output stage. The circuit functions as an up-down counter (Fig. 1) where SIG_{IN} causes an up-count and COMP_{IN} a down-count. The transfer function of PC2, assuming ripple ($f_r = f_i$) is suppressed, is:

 V_{DEMOUT} = ($V_{\text{CC}}/4\pi$) (ϕ_{SIGIN} - ϕ_{COMPIN}) where V_{DEMOUT} is the demodulator output at pin 10; V_{DEMOUT} = V_{PC2OUT} (via low-pass filter).

The average output voltage from PC2, fed to the VCO via the low-pass filter and seen at the demodulator output at pin 10 (V_{DEMOUT}), is the resultant of the phase differences of SIG_{IN} and COMP_{IN} as shown in Fig. 4. Typical waveforms for the PC2 loop locked at f_0 are shown in Fig. 5.

When the frequencies of SIG_{IN} and COMP_{IN} are equal but the phase of SIG_{IN} leads that of COMP_{IN}, the p-type output driver at PC2_{OUT} is held "ON" for a time corresponding to the phase difference (ϕ_{DEMOUT}). When the phase of SIG_{IN} lags that of COMP_{IN}, the n-type driver is held "ON".

When the frequency of SIG_{IN} is higher than that of $COMP_{IN}$, the p-type output driver is held "ON" for most of the input signal cycle time, and for the remainder of the cycle both n-and p-type drivers are "OFF" (3-state). If the SIG_{IN} frequency is lower than the $COMP_{IN}$ frequency, then it is the n-type driver that is held "ON" for most of the cycle. Subsequently, the voltage at the capacitor (C2) of the low-pass filter connected to $PC2_{OUT}$ varies until the signal and comparator inputs are equal in both phase and frequency. At this stable point the voltage on C2 remains constant as the PC2 output is in 3-state and the VCO input at pin 9 is a high impedance.

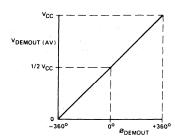


Fig. 4 - Phase comparator 2: average output voltage vs input phase difference:

 $V_{\text{DEMOUT}} = V_{\text{PC2OUT}} = (V_{\text{CC}}/4\pi) \ (\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}});$ $\phi_{\text{DEMOUT}} = (\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}}).$

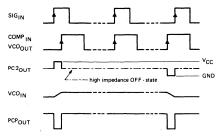


Fig. 5 - Typical waveforms for PLL using phase comparator 2, loop locked at fo.

Thus, for PC2, no phase difference exists between SIG_{IN} and COMP_{IN} over the full frequency range of the VCO. Moreover, the power dissipation due to the low-pass filter is reduced because both p- and n-type drivers are "OFF" for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range and is independent of the low-pass filter. With no signal present at SIG_{IN}, the VCO adjusts, via PC2, to its lowest frequency.

Lock Detector Theory of Operation

Detection of a locked condition is accomplished by a NOR gate and an envelope detector as shown in Fig. 6. When the PLL is in Lock, the output of the NOR gate is High and the lock detector output (Pin 1) is at a constant high level. As the loop tracks the signal on Pin 14 (signal in), the NOR gate outputs pulses whose widths represent the phase differences between the VCO and the input signal. The time between pulses will be approximately equal to the time constant of the VCO center frequency. During the rise time of the pulse, the diode across the 1.5-k Ω resistor is forward biased and the time constant in the path that charges the lock detector capacitor is

$$T = (150 \Omega \times C_{LD}).$$

During the fall time of the pulse the capacitor discharges through the 1.5 k Ω and the 150- Ω resistors and the channel resistance of the n-device of the NOR gate to ground

(T =
$$(1.5 \text{ k}\Omega + 150 \Omega + \text{Rn-channel}) \times C_{LD}$$
).

The waveform present at the capacitor resembles a sawtooth as shown in Fig. 7. The lock detector capacitor value is determined by the VCO center frequency. The typical range of capacitor for a frequency of 10 MHz is about 10 pF and for a frequency of 100 kHz is about 1000 pF. The chart in Fig. 8 can be used to select the proper lock detector capacitor value. As long as the loop remains locked and tracking, the

level of the sawtooth will not go below the switching threshold of the Schmitt-trigger inverter. If the loop breaks lock, the width of the error pulse will be wide enough to allow the sawtooth waveform to go below threshold and a level change at the output of the Schmitt trigger will indicate a loss of lock, as shown in Fig. 9. The lock detector capacitor also acts to filter out small glitches that can occur when the loop is either seeking or losing lock.

Note:

When using phase comparator 1, the detector will only indicate a lock condition on the fundamental frequency and not on the harmonics, which PC1 will also lock on. If a detection of lock is needed over the harmonic locking range of PC1, then the lock detector output must be OR-ed with the output of PC1.

92CS-42235

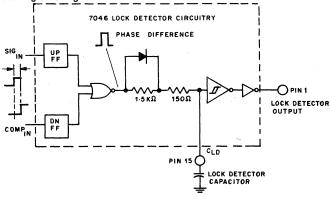
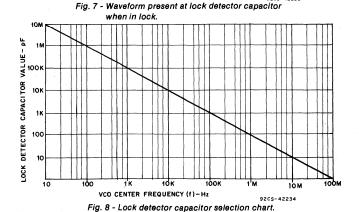


Fig. 6 - CD54/74HC/HCT7046A lock detector circuit.


PIN 15 CLD

LOCK DETECTOR
CAPACITOR

VCAP

VCAP

VTH

LOSS OF LOCK

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

1.5 KΩ

Fig. 9 - Waveform present at lock detector capacitor when unlocked.

STATIC ELECTRICAL CHARACTERISTICS

	1	TEST NDITIONS		741	HC/54	нс	74	нс	-5	HC 5/ 5° C	TEST CONDITION		74H	CT/54	нст	741	1CT	54HCT -55/ +125°C		
CHARACTERISTIC	V _I	Io	v _{cc}		+25° C	;	ı	10/ 5° C	-4	HC 0/ 5°C	V _i	v _{cc}		+25° (:	1	10/ 5°C	4	ICT 10/ 5°C	UNITS
	V	mA	v	Min	Тур	Max	Min	Max	Min	Max	٧	v	Min	Тур	Max	Min	Max	Min	Max	
VCO SECTION			,																	
INH High-Level	1		3	2.1	_	_	2.1	-	2.1	-		4.5								
Input Voltage V _{IH}			4.5	3.15	_	-	3.15		3.15	_	- ,	to	2	_	-	2	-	2	-	V
		ĺ	6	4.2	_	-	4.2	-	4.2	-	1.7	5.5								
INH			3	-	-	0.9	_	0.9	_	0.9		4.5								
Low-Level Input Voltage V _{IL}	1		4.5	-	_	1.35	-	1.35	_	1.35	_	to	-	-	0.8	-	0.8	-	0.8	V
			6	-	_	1.8	-	1.8	_	1.8		5.5								
VCO _{out}	VIL		3	2.9	_	-	2.9	-	2.9	_	VIL									
High-Level Output Voltage V _{он}	or	-0.02	4.5	4.4	_	-	4.4	-	4.4	_	or	4.5	4.4	_	_	4.4	_	4.4		٧
CMOS Loads	ViH		6	5.9	-	-	5.9	-	5.9	_	VIH									
	VIL		<u> </u>							-	V _{IL}						-		l	
TTL Loads	or	-4	4.5	3.98	_	1_	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_	3.7	_	v
	V _{IH}	-5.2	6	5.48	_	-	5.34	-	5.2	_	V _{IH}									
VCO _{OUT}	V _{IL}	:	2	 _ 	_	0.1	_	0.1	_	0.1	VIL		-	<u> </u>			 			
Low-Level Output Voltage Vol	or	0.02	4.5		_	0.1	_	0.1	-	0.1	or	4.5	_	_	0.1	_	0.1	-	0.1	v
CMOS Loads	V _{IH}		6	 	_	0.1	_	0.1	_	0.1	ViH					١.				
	VIL						-	-			VIL		-	-		-	-		-	
TTL Loads	or	4	4.5	_		0.26	_	0.33	_	0.4	or	4.5	_	_	0.26	_	0.33	_	0.4	V
TTE Education	ViH	5.2	6	-		0.26	_	0.33	-	0.4	V _{IH}				0.20		0.00			· ·
C1A, C1B	VIL	5.2	-		<u> </u>	0.20	-	0.00		0.4	VIL			_		-	-		-	
Low-Level Output Voltage	or	4	4.5	-	-	0.40	-	0.47		0.54	or	4.5	_		0.40		0.47	_	0.54	v
(Test purposes Vol.		5.2	6			0.40		0.47	_	0.54	V _{IH}	7.5			0.40		0.47		0.04	·
only)	V _{IH}	3.2	-	<u> </u>	-	0.40	_	0.47	_	0.54					-		ļ		-	
INH VCO _{IN} Input Leakage	Vcc					101	1				Any Voltage Between						11		±1	μΑ
Current I ₁	or		6	-	-	±0.1	-	±1	_	±1	V _{cc} and	5.5		-	±0.1	-	±1	_	1	μΑ
	Gnd		_			-					Gnd	_	-	<u> </u>	-	<u> </u>	-		-	
B. B.			3	<u> </u>	_	-	_	<u> </u>		_		4.5				}				1.0
R1 Range See Note 1			4.5	3	<u> </u>	_		_				4.5	3	-	-	_	-	_	-	kΩ
			6	_	_	_	_	_	_				<u> </u>	<u> </u>	-	ļ			-	
			3	<u> </u>	_		=	_	_											
R2 Range See Note 1			4.5	3	_	<u> </u>	_	_	L	_		4.5	3	-	-	-	-	-	- 1	kΩ
			6	_	-	_	L	_		_			<u> </u>	<u> </u>		<u> </u>			-	
			3	-		No L	-	-	-	_					No L					
C1 Capacitance Range			4.5	40	-	M	-	-	-	-		4.5	40	-	M	-	-	-	-	pF
nange			6			+	_	_	_	_					+					
VCO _{IN} Operating		e range ied for	3	0.9	_	1.9		-	-	_										
Voltage Range	R1 for L See Figs.	inearity 10 & 36-39 Note 2	4.5	0.9	-	3.2 4.6	_	-	— _	1 1		4.5	0.9	-	3.2	-	-	-	-	V

NOTES: 1. The value for R1 & R2 in parallel should exceed 2.7 kΩ; R1 & R2 values above 300 kΩ may contribute to frequency shift due to leakage currents.

2. The maximum operating voltage can be as high as V_{CC} -0.9 V; however, this may result in an increased offset voltage.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC			TEST		741	HC/54	нс	74	нс	-5	HC i5/ 5°C	TEST CONDITIO		74H0	CT/54	нст	74НСТ		54HCT -55/ +125°C		
CHARACTERIS	тіс	V _i	I _O	v _{cc}		+25° (;		0/ 5°C	-4	HC 10/ 5°C	V,	v _{cc}		+25° C	;	1	0/ 0°C	4	ICT 10/ 5°C	UNITS
		V	mA	٧	Min	Тур	Max	Min	Max	Min	Max		٧	Min	Тур	Max	Min	Max	Min	Max	
PHASE COMPA	RATO	SECTION	l							,				,		,				,	
SIG _{IN} , COMP _{IN} DC Coupled			Ì	2	1.5		_	1.5	_	1.5	_		4.5								
High-Level Input Voltage	V _{tH}			4.5	3.15	_		3.15	_	3.15	_	- '	to	3.15	-	-	3.15	-	3.15	-	v
Input voltage				6	4.2	_	_	4.2	-	4.2	-		5.5							- 4	
SIG _{IN} , COMP _{IN} DC Coupled				2	-	_	0.5	-	0.5	-	0.5		4.5								
Low-Level	VIL			4.5	_	_	1.35	_	1.35	_	1.35		to	-	_	1.35	_	1.35	_	1.35	V
Input Voltage				6	_	_	1.8	_	1.8	-	1.8		5.5								
LD, PCnout		V _{IL}		2	1.9	_	-	1.9	-	1.9	_	V _{IL}									
High-Level Output Voltage	V _{он}	or	-0.02	4.5	4.4	-	-	4.4	_	4.4	_	or	4.5	4.4	_	_	4.4		4.4	-	V
CMOS Loads		V _{IH}		6	5.9	_	_	5.9	_	5.9	_	V _{IH}					-				
		VIL										V _{IL}									
TTL Loads		or	-4	4.5	3.98	_	_	3.84	_	3.7	_	or	4.5	3.98	-	_	3.84	_	3.7	_	v
		V _{IH}	-5.2	6	5.48	_	_	5.34	_	5.2	-	V _{IH}									
LD, PCnout		VIL		2	_		0.1	-	0.1	_	0.1	V _{IL}									
Low-Level Output Voltage	VoL	or	0.02	4.5	_	_	0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1	_	0.1	v
CMOS Loads		V _{IH}		6	_	_	0.1	_	0.1	l —	0.1	V _{IH}									
		V _{IL}		-								V _{IL}									
TTL Loads		or	4	4.5	_		0.26	_	0.33	_	0.4	or ,	4.5	_	_	0.26	_	0.33	_	0.4	v
		V _{IH}	5.2	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
SIG _{IN} , COMP _{IN}				2	_	-	±3	_	±4	_	±5										
		Vcc		3	_	_	±7	_	±9	_	±11	Any Voltage									
Input Leakage Current	h	or		4.5	_	_	±18	_	±23	_	±29	Between V _{cc}	5.5	-	_	±30	-	±38	-	±45	μΑ
Tall I		Gnd		6	_	_	±30	_	±38	_	±45	and Gnd									
PC2 _{out}		V _{IL}		 			 				-							-			
3-State Off-State	loz	or		6	_	_	±0.5	_	±5	_	±10		5.5	_	_	±0.5	_	±5	_	±10	μΑ
Current		VIH																			
SIG _{IN} , COMP _{IN}		. V _I	at	3	_	800	-			_	-					 					
Input Resistance See Fig. 10	Rı	Oper.	Bias Point: 0.5 V	4.5	_	250	_	_	_	_	_		4.5	-	250	-	-	-	-	-	kΩ
230 Fig. 10		See F		6	_	150	_	_	_	-	_										

STATIC ELECTRICAL CHARACTERISTICS

		TEST IDITIONS		741	HC/54	нс	74	нс		HC 5/ 5°C	TEST CONDITIO		74HCT/54HCT			74HCT		-5	ICT 5/ 5°C	
CHARACTERISTIC	V _I	l _o	v _{cc}		+25° C	;	-40/ +85° C		74 -4 +12	0/	V _I	v _{cc}		+25° C	;		10/ 5° C		ICT 0/ 5°C	UNITS
	V	mA	٧	Min	Тур	Max	Min	Max	Min	Max	V	٧	Min	Тур	Max	Min	Max	Min	Max	
DEMODULATOR SEC	TION																			
Resistor	at R _s >		3	10	_	300				-										
Range R _s	Curre	nt can	4.5	10	_	300						4.5	10	_	300					kΩ
-	V _{DEN}		6	10	-	300														
Offset Voltage	V _I = V _{VCC}	DIN = VCC	3		±30	-														
VCOIN, to VDEM	Values over Rs	taken	4.5	-	±20	-						4.5	-	±20	_					mV
V _{OFF}	See F		6	-	±10	-				٠.										A
Dynamic Output Resistance at DEMour			3	-	25	_		-												
R _D	V _{DEMOU}	$_{T} = \frac{V_{CC}}{2}$	4.5	-	25	-						4.5	-	25	-			١.		Ω
110	- 1		6	-	25	_											<u> </u>			
Quiescent Device Current	Pins 3,										Vcc									
Device Current 160	Pin 9 a	t Gnd.	6	–	-	8	_	80	-	160	or	5.5	-	-	8	-	80	-	160	μΑ
	to be ex										Gnd									100
Additional Quiescent Device											V _{cc} -2.1	4.5								
Current Per Input Pin: 1 unit load Δl_{cc}^*											(Excluding Pin 5)	to 5.5	-	100	360	-	450	-	490	μΑ

^{*}For dual-supply systems theorectical worst case (V_1 = 2.4 V_1 , V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

Input	Unit Loads*					
INH	1					

^{*}Unit Load is $\Delta l_{\rm CC}$ limit specified in Static Characteristics Chart, e.g., 360 μA max. @ 25° C.

SWITCHING ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t, $t_{\rm r}$ = 6 ns)

CHARACTERISTIC		TEST CONDI	TIONS		25	°C		-40° C to +85° C				5°C to + 0°C to +			UNITS	
CHANACTERISTIC	•		V _{cc}	Н	IC :	н	CT	74	нс	741	нст	}	1C	Н	СТ	UNIIS
			*cc	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
PHASE COMPARATOR	SECTIO	ON														
Propagation Delay,			2	-	200	-	-	-	250	-	-	-	300	-	1-	
SIG _{IN} , COMPIN	t _{PLH}		4.5	_	40	-	45	-	50	-	56	_	60	-	68	
to PC1 _{out}	tpHL		6		34			_	43		_	<u> </u>	51	<u> </u>	_	
Output Transition			2	-	75		-	-	95	-	-	-	110	-	-	
Time	t_{THL}	-	4.5	-	15	-	- 15	-	19	-	19	-	22	-	22	1
	t _{TLH}		6		13				16	<u> </u>			19			ns
Output Enable Time,			2	_	280	-	-	-	350	-	-	-	420	-	-	
SIG _{IN} , COMP _{IN}	t_{PZH}		4.5	-	56	-	60	-	70	-	75	-	84	-	90	
to PC2 _{out}	t _{PZL}		6		48				60		-		71			Į
Output Disable Time,			2	-	325	-	-	-	405	-	-	-	490	-	-	l
SIG _{IN} , COMP _{IN}	t_{PHZ}		4.5	-	65		70	-	81	-	86	-	98	-	105	
to PC2 _{out}	t _{PLZ}		6		55	<u> </u>	<u>L-</u> _		69				83			
AC Coupled Input					TYP	ICAL		1								
Sensitivity (p-p) at		V ₁ (p-p)	3	l	1	1	1									
SIG _{IN} or COMP _{IN}		11(1)	4.5	1	5	1	5	1		1		İ		1		mV
			6	3	33	3	33	L	<u></u>	<u> </u>	L.	<u> </u>	<u> </u>	<u></u>	<u></u>	
VCO SECTION						·							т		1	
Frequency Stability		R ₁ = 100 kΩ	3	-	-	-	-	T	YP.	T	YP.	,				
with Temperature	Δτ	R ₂ = ∞	4.5	-	_	-	-	1	.11	0	.11					%/°C
Change			6			<u> </u>			T	ļ		<u> </u>	-	ļ	ļ	
Max. Frequency		C ₁ = 50 pF	3				_						ĺ			
		$R_1 = 3.5 \text{ k}\Omega$	4.5	2	24	2	24	1		1		İ			1	MHz
	f _{max.}	R ₂ = ∞	6			-			ļ	ļ	<u> </u>	ــــ	<u> </u>	ļ	ļ	
		C ₁ = 0 pF	3)	_	1	-]					
		$R_1 = 9.1 \text{ k}\Omega$	4.5	3	88	3	88									MHz
		R ₂ = ∞	6					<u> </u>		 -		├		 		
Center Frequency		C ₁ = 40 pF	3	-	_		_	1				1				*1
		R ₁ = 3 kΩ	4.5	1	7	1	17									
	fo	R ₂ = ∞	6	-	-	-	_	l								MHz
		$VCO_{IN} = \frac{V_{CC}}{2}$								İ	1					
		D 1001 -	-					 	├	 	 	+	 	 		
Frequency Linearity,		$R_1 = 100 \text{ k}\Omega$	3		_		-									
Δf_{vco}		R ₂ = ∞	4.5	0	.4	1 0	.4			1						%
Officet Francisco		C ₁ = 100 pF	6					 	 		-	-	+	 		
Offset Frequency		$R_2 = 220 \text{ k}\Omega$	3	ł		l l									1	, LU-
		C ₁ = 1 nF	4.5 6	1	00	j .	00		1				1			kHz
DEMODULATOR SECT	ION	l	ı.°	<u> </u>		1				L	Ь	L		L	L	L
Vout vs. fin	.014	R ₁ = 100 kΩ	T	Ι		T		T	Τ	1	T	Г	Т	T	T	Γ
VOUT VO. IIN		R ₁ = 100 kΩ						1								
		H ₂ = ∞ C ₁ = 100 pF	3	-	-	-	_							-		I
		R _s = 10 kΩ	4.5	3:	30	. 3	30					1		1	1	mV/kHz
		$R_s = 10 \text{ k}\Omega$ $R_3 = 100 \text{ k}\Omega$	6	-	-	-	-	1								
			1													
		C ₂ = 100 pF	L	L		L		L	L	L	<u> </u>			L	L	

Figure References for DC Characteristics

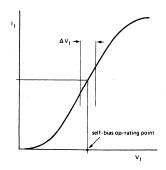


Fig. 10 - Typical input resistance curve at SIGin, COMPin.

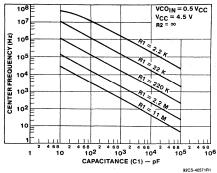


Fig. 11 - HC7046A typical center frequency vs. R1, C1.

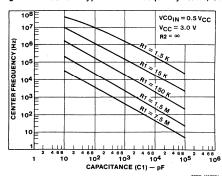


Fig. 13 - HC7046A typical center frequency vs. R1, C1.

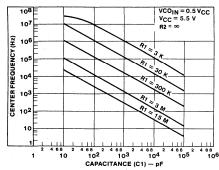


Fig. 15 - HCT7046A typical center frequency vs. R1, C1.

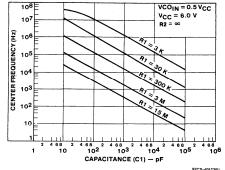


Fig. 12 - HC7046A typical center frequency vs. R1, C1.

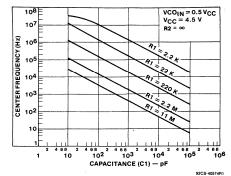


Fig. 14 - HCT7046A typical center frequency vs. R1, C1.

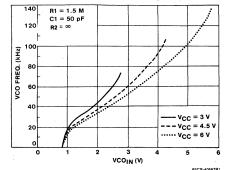
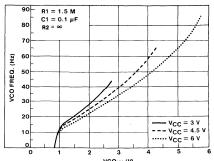



Fig. 16 - HC7046A typical VCO frequency vs. VCO_{IN}.

VCO_{IN} (V) Fig. 17 - HC7046A typical VCO frequency vs. VCO_{IN}, (R1=1.5 M Ω , C1=0.1 μ F).

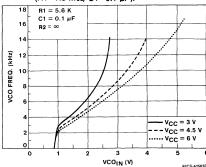


Fig. 19 - HC7046A typical VCO frequency vs. VCO_{IN},

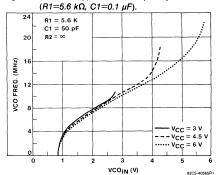
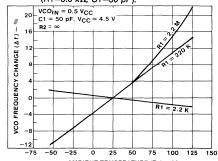



Fig. 21 - HC7046A typical VCO frequency vs. VCO_{IN}, (R1=5.6 kΩ, C1=50 pF).

AMBIENT TEMPERATURE (T_A) – °C 90CS-40579R1

Fig. 23 - HC7046A typical change in VCO frequency vs. ambient temperature as a function of R1.

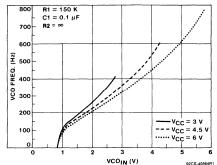


Fig. 18 - HC7046A typical VCO frequency vs. VCO_{IN}, (R1=150 k Ω , C1=0.1 μ F).

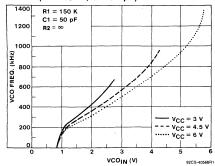
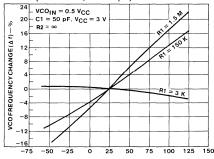



Fig. 20 - HC7046A typical VCO frequency vs. VCO_{IN}, (R1=150 kΩ, C1=50 pF).

AMBIENT TEMPERATURE (T_A)—*C 92C5-4057481

Fig. 22 - HC7046A typical change in VCO frequency vs.

ambient temperature as a function of R1 (Vcc=3 V).

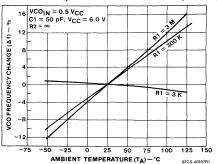


Fig. 24 - HC7046A typical change in VCO frequency vs. ambient temperature as a function of R1.

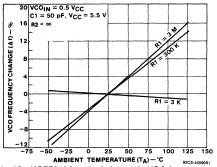


Fig. 25 - HCT7046A typical change in VCO frequency vs. ambient temperature as a function of R1.

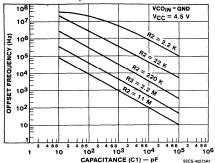


Fig. 27 - HC7046A offset frequency vs. R2, C1.

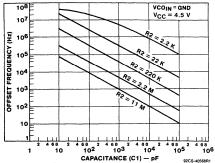


Fig. 29 - HCT7046A offset frequency vs. R2, C1 (Vcc=4.5 V).

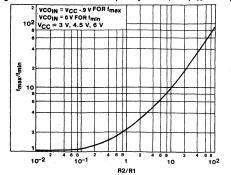


Fig. 31 - HC7046A fmax/fmin vs. R2/R1.

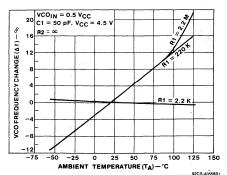


Fig. 26 - HC7046A typical change in VCO frequency vs. ambient temperature as a function of R1.

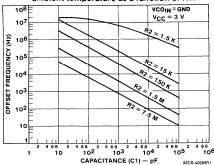


Fig. 28 - HC7046A offset frequency vs. R2, C1.

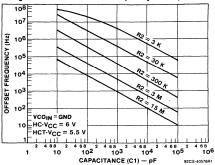


Fig. 30 - HC7046A and HCT7046A offset frequency vs. R2, C1.

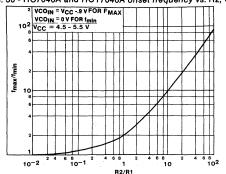


Fig. 32 - HCT7046A f_{MAX}/f_{MIN} vs. R2/R1.

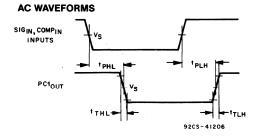


Fig. 33 - Waveforms showing input (SIG_{IN}, COMP_{IN}) to output (PC1_{OUT}) propagation delays and the output transition times.

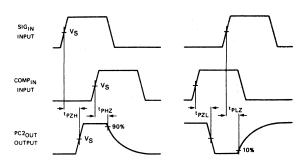


Fig. 34 - Waveforms showing the 3-state enable and disable times for PC2_{OUT}.

	HC	HCT
Input Level	V _{cc}	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

 $\Delta V = 0.5 \text{ V}$ over the V_{CC} range: for VCO linearity $f'_{O} = \frac{f_{1} + f_{2}}{2}$ linearity = $\frac{f'_{O} - f_{O}}{r} \times 100\%$

Fig. 35 - Definition of VCO frequency linearity.

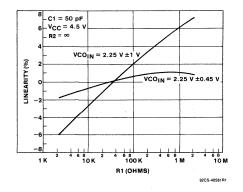


Fig. 36 - HC7046A VCO linearity vs. R1.

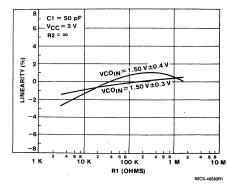
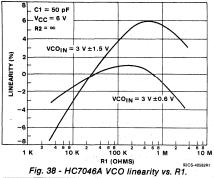



Fig. 37 - HC7046A VCO linearity vs. R1.

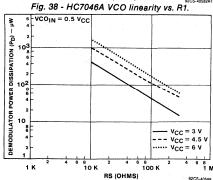


Fig. 40 - HC7046A demodulator power dissipation vs. RS (typ.).

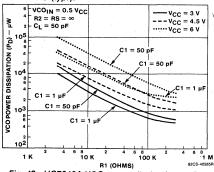


Fig. 42 - HC7046A VCO power dissipation vs. R1 (C1=50 pF, 1 μ F).

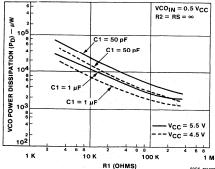


Fig. 44 - HCT7046A VCO power dissipation vs. R1 (C1=50 pF; 1 µF).

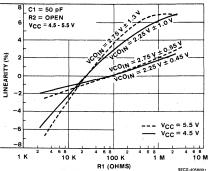


Fig. 39 - HCT7046A VCO linearity vs. R1.

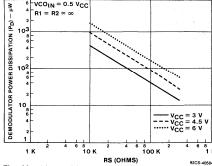


Fig. 41 - HCT7046A demodulator power dissipation vs. RS (typ.).

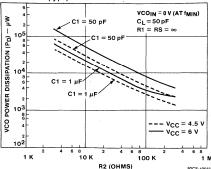


Fig. 43 - HCT7046A VCO power dissipation vs. R2 (C1=50 pF; 1 µF).

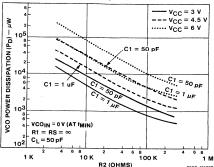


Fig. 45 - HC7046A VCO power dissipation vs. R2 $(C1=50 \text{ pF}, 1 \text{ } \mu\text{F}).$

HC/HCT7046A CPD

Chip Section	HC	HCT	Unit
Comparator 1	48	50	
Comparator 2	39	48	pF
VCO	61	53	

APPLICATION INFORMATION

This information is a guide for the approximation of values of external components to be used with the 74HC/HCT7046A in a phase-lock-loop system.

References should be made to Fig. 11 through 21 and 27 through 32 as indicated in the table

Values of the selected components should be within the following ranges:

R1 > 3 k Ω ; R2 > 3 k Ω ;

R1 || R2 parallel value $> 2.7 \text{ k}\Omega$; C1 greater than 40 pF.

rough 32 as indicated in		C1 greater than 40 pF.				
SUBJECT	PHASE COMPARATOR	DESIGN CONSIDERATIONS				
VCO Frequency without extra offset	PC1 or PC2	VCO Frequency Characteristic The characteristics of the VCO operation are shown in Figs. 11-21.				
(R2 = ∞)		'max +				
		¹vco				
		10 21 _L				
		f _{min} 1/2 V _{CC} V _{VCOIN} max.				
		Fig. 46 - Frequency characteristic of VCO operating without offset: f₀ = center frequency: 2f⊾ = frequency lock range.				
		Selection of R1 and C1				
	PC1	Given fo, determine the values of R1 and C1 using Figs. 11-15.				
	PC2	Given f_{max} and f_o , determine the values of R1 and C1 using Figs. 11-15. To obtain $2f_L$: $2f_L \approx \frac{2(\Delta VCO_{IN})}{R1C1}$				
		where 0.9 V <vco<sub>IN<v<sub>CC-0.9 V is the range of ΔVCO_{IN}</v<sub></vco<sub>				
VCO Frequency	PC1 or PC2	VCO Frequency Characteristic The characteristics of the VCO operation are shown in Figs. 27-30				
$(R2 > 3 k\Omega)$		*max +				
		fvco f _o 2f _L				
		t _{min}				
		min. 1/2 V _{CC} V _{VCOIN} max.				
		Fig. 47 - Frequency characteristic of VCO operating with offset: f _o = center frequency; 2f _o = frequency lock range.				
	PC1 or PC2	Selection of R1, R2 and C1 Given f ₀ and f ₁ , offset frequency, f _{min} , may be calculated from $f_{min} \approx f_0 - 1.6$ f ₁ .				
		Obtain the values of C1 and R2 by using Figs. 27-30. Calculate the value of R1 from the value of C1 and the product R10				

APPLICATION INFORMATION (Cont'd)

SUBJECT	PHASE COMPARATOR	DESIGN CONSIDERATIONS				
PLL Conditions with No Signal at the	PC1	VCO adjusts to f_o with ϕ_{DEMOUT} = 90° and V_{VCOIN} = ½ V_{CC} (see Fig. 2).				
SIG _{IN} Input	PC2	VCO adjusts to f _o with ϕ_{DEMOUT} = -360° and V _{VCOIN} = 0 V (see Fig. 4).				
PLL Frequency Capture	PC1 or PC2	Loop Filter Component Selection				
Range		$\begin{array}{c c} R3 & & F(j\omega) \\ \hline \\ INPUT & C2 & OUTPUT \\ \hline \\ \omega & & \\ \end{array}$				
		(a) τ_1 = R3 x C2 (b) amplitude characteristic (c) pole-zero diagram A small capture range (2f _c) is obtained if $\tau > 2f_c \approx (1/\pi) (2\pi f_c/\tau_1)^{1/2}$ Fig. 48 - Simple loop filter for PLL without offset.				
		INPUT R4 OUTPUT $C2$ $m = \frac{R4}{R3+R4}$ $-1/_{T2}$ $-1/_{T3}$				
		(a) $\tau_2 = R4 \times C2$; (b) amplitude characteristic (c) pole-zero diagram $\tau_3 = (R3 + R4) \times C2$ Fig. 49 - Simple loop filter for PLL with offset.				
PLL Locks on Harmonics	PC1	Yes				
at Center Frequency	PC2	No in the second of the second				
Noise Rejection at	PC1	High				
Signal Input	PC2	Low				
AC Ripple Content	PC1	f _r = 2f _i , large ripple content at ϕ_{DEMOUT} = 90°				
When PLL is Locked	PC2	$f_r = f_i$, small ripple content at $\phi_{DEMOUT} = 0^\circ$				

Lock Detector Circuit

The lock detector feature is very useful in data synchronization, motor speed control, and demodulation. By adjusting the value of the lock detector capacitor so that the lock output will change slightly before actually losing lock, the designer can create an "early warning" indication allowing corrective measures to be implemented. The reverse is also true, especially with motor speed controls, generators, and

clutches that must be set up before actual lock occurs or disconnected during loss of lock.

When using phase comparator 1, the detector will only indicate a lock condition on the fundamental frequency and not on the harmonics, which PC1 will lock on.

Application Note

CMOS Phase-Locked-Loop Applications Using the CD54/74HC/HCT4046A and CD54/74HC/HCT7046A

by W.M.Austin

This Application Note provides the circuit designer with information on the use of the CD54/74HC/HCT4046A Phase-Locked Loop (PLL) with voltage-controlled oscillator (VCO) and the CD54/74HC/HCT7046A Phase-Locked Loop with In-Lock Detection in phase-locked circuits. A description of the basic loop operation is included as an introduction to phase-lock techniques. In the description, the CMOS PLL IC provides the phase comparators, VCO, VCO inhibit, plus the lock detectors and indicators for the loop. Complete circuit designs with and without a frequency-divide ratio are included as examples. Examples are also given of various filters operating over a range of frequencies.

BASIC LOOP OPERATION

The CD54/74HC/HCT4046A Phase-Locked Loop (PLL) with voltage-controlled oscillator (VCO) is a High-Speed CMOS IC designed for use in general-purpose PLL applications including frequency modulation, demodulation, discrimination, synthesis, and multiplication. Specific applications include data synchronizing, conditioning and tone decoding, as well as direct VCO use for voltage-to-frequency conversion and speed-control applications.

The IC contains a VCO and a choice of phase comparators (PCs) for support of the basic PLL circuit, as shown in Fig. 1(a). The low-pass filter (LPF) is an essential part of the loop and is needed to suppress noise and high-frequency components. An optional fourth part of the loop is the divide-by-N frequency divider, which is needed when the VCO is run at a multiple of the signal-input reference frequency. To facilitate support of a variety of general-purpose applications, both the filter and divider are external to the HC/HCT4046A. These and other aspects of the application of the HC/HCT4046A are explained below through a variety of loop design examples.

For a full treatment of PLL theory, the reader is directed to the bibliography where there are a number of references that support the descriptions and explanations given below. The symbols and terminology used in this Note primarily follow the book, **Phase-Lock Techniques**, by Gardner, the details of derivations of the equations can be found in the references.

Some understanding of feedback theory as a background for designing PLL circuits is helpful, but lack of this understanding should not be a deterrent to anyone choosing

to apply the HCHCT4046A in relatively simple, secondorder PLL circuits. The purpose of the Note is to present a solid tutorial on CMOS PLL techniques, including extensive information on the VCO characteristics. A designer can then apply the information to a variety of circuit applications.

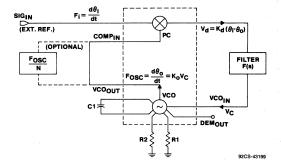


Fig. 1(a) - Block diagram of an HC/HCT4046A in a typical phase-locked-loop circuit.

Before beginning to apply the HC/HCT4046A in PLL circuits, a designer should have an understanding of the parameters and equations used to define loop performance. Further, the designer should recognize that PLL circuits are a special case of feedback systems. Where servomechanism feedback systems are primarily concerned with position control, PLL feedback systems are primarily concerned with the phase and tracking of a VCO relative to a reference signal input. While a phase error can be anticipated, no differential in frequency is desired after phase-lock is established. General feedback theory is applied in PLL use just as it is in servomechanism systems. Some of the symbols and terminology used to describe PLL systems were borrowed from servo systems, giving rise to such terms as damping factor, natural loop resonant frequency. and loop bandwidth.

DESCRIPTION OF THE HC/HCT4046A

The block diagram of the HC/HCT4046A, Fig. 1(b), illustrates the least complex form of external loop filtering. In addition to the VCO, the HC/HCT4046A provides a choice of three phase comparators. The HC/HCT7046A is an equivalent device, differing only in the trade-off of a third phase comparator (PC3) for a lock detector (LD). The pinouts of the HC/HCT4046A and HC/HCT7046A differ in minor way from that of the earlier CMOS PLL-type CD4046B, which differs functionally in that it has a zener reference diode in place of PC3 or the lock detector. Unless otherwise noted in the following information, all description and operational references apply to both the HC/HCT4046A and HC/HCT7046A.

Figs. 2(a) and 2(b) show the HC/HCT4046A and HC/HCT7046A functional block diagrams, respectively. The VCO of the HC/HCT4046A is identical to that of the HC/HCT7046A and has the same operating characteristics. The HCT versions of these oscillator circuits differ from the HC versions by having TTL logic levels at the inhibit inputs. Improved linear differential amplifiers are used to control the current bias established by resistors R₁ and R₂; amplifying current mirrors control the charge rate of the timing capacitor C₁. Descriptive and design information on frequency control of the VCO is given-below.

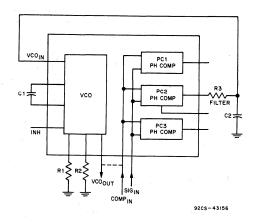


Fig. 1(b) - Block diagram of an HC/HCT4046A illustrating external loop filtering.

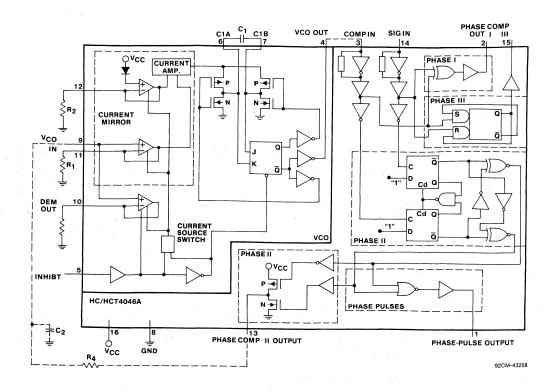


Fig. 2(a) - Functional block diagram of HC/HCT4046A.

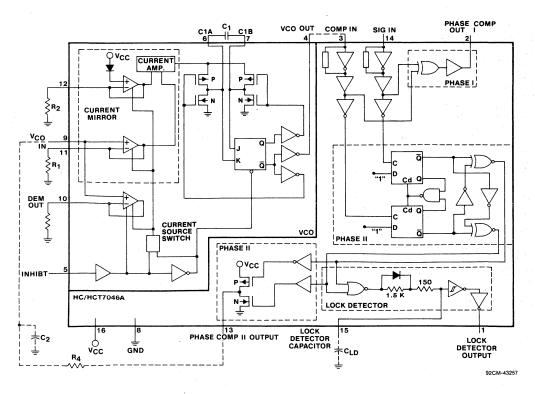


Fig. 2(b) - Functional block diagram of HC/HCT7046A.

PHASE COMPARATORS

While there are many types of phase comparators (PCs-also referred to as detectors), the ones chosen for the CMOS PLL design are based on accepted industry-standard types. The choice was also based on design flexibility and the compatibility of CMOS technology with PC applications. Fig. 2(a) shows the logic diagram of the phase-comparator circuit with PC1, PC2, and PC3 identified. The comparators consist of an Exclusive-OR (PC1), an edge-triggered JK flip-flop (PC2), and an edge-triggered RS flip-flop (PC3). The phase comparator inputs are in parallel, making the user's choice a matter of selecting the pinout to the preferred PC.

Both the external-reference signal input and the comparator input are internally self-biased to $V_{DD}/2$ to permit ac coupling from the drive signal sources. When ac-coupled input signals are used, the drive sensitivity is typically better than 50 mV_{PP}. The comparator input is normally used for the VCO direct-coupled input; however, the comparator section is independent of the VCO for stand-alone use.

The signals to both phase-comparator inputs are amplified with limiting that ignores amplitude changes. With respect to the HC4046A versus the HCT4046A, only the inhibit input

levels are different; the drive levels for the phase comparator inputs are the same. When TTL drive levels are used for the signal input to the detectors, either ac coupling or TTL-to-CMOS level conversion should be used to correctly drive the $V_{DD}/2$ switch level. Where the signal-input source voltage is less than the logic level in peak-to-peak amplitude, ac coupling is necessary. In addition, ac coupling is preferred with reduced drive signals to minimize transient switching and harmonic interference with the VCO.

Appendix I provides a summary of the phase-comparator options. An extended description of the three phase comparators follows.

Operation of Phase Comparator PC1

PC1 is an Exclusive-OR logic circuit. The signal and comparator input frequencies (f_i) must have a 50% duty factor for the maximum locking range to be obtained. The transfer characteristic of PC1, assuming the ripple frequency ($f_r = 2f_i$) is suppressed, is:

$$V_{DEMout} = (V_{CC}/\pi)(\phi SIG_{in} - \phi COMP_{in}) = V_{PC1out}$$

where V_{DEMout} is the demodulator output at pin 10 and equals V_{PC1out} via the low-pass filter (LPF). ϕ is the phase angle in degrees.

The average output voltage from PC1, fed to the VCO input via the LPF and seen at the demodulator output at pin 10, is the resultant of the phase differences of signals (SIG_{in}) and the comparator input (COMP_{in}), as shown in Fig. 3(a). The average of V_{DEMout} is equal to $V_{\text{CC}}/2$ when there is no signal or noise at SIG_{in}, and with this input the VCO oscillates at the center frequency (f_0). Typical waveforms for the PC1 loop locked at f_0 are shown in Fig. 3(b).

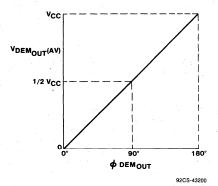


Fig. 3(a) - Phase comparator PC1 average output voltage as a function of input phase difference.

V_{DEMout} = V_{PC1out} = (V_{CC}/π)(φ_{SIGin} - φ_{COMPIn})
φ_{DEMout} = (φ_{SIGin} - φ_{COMPin})

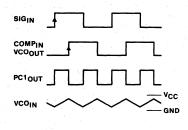


Fig. 3(b) - Typical waveforms for PLL using phase comparator PC1 loop locked at f₀.

92CS-43203

The frequency-capture range (2f_c) is defined as the frequency range of input signals on which the PLL will lock for initially out-of-lock conditions. The frequency lock range (2f_i) is defined as the frequency range of input signals on which the locked loop will remain in lock. The capture range is smaller or equal to the lock range. The capture range of PC1 depends on the LPF characteristics and can be made as large as the lock range. This configuration retains lock behavior even with very noisy signal input. PC1 can lock to input frequencies within the locking range of VCO harmonics.

Operation of Phase Comparator PC2

For most applications, the features of PC2 provide the most advantages. It is a positive-edge-triggered phase and frequency detector. When the PLL uses this comparator, the loop is controlled by positive signal transitions, and control of the duty factor of SIG_{in} and COMP_{in} is not required. PC2 is composed of two D-type flip-flops and a 3-state output stage and has controlled-gating. The circuit functions as an up-down counter, where SIG_{in} causes an up count and COMP_{in} a down count. The transfer function of PC2, assuming ripple ($f_r = f_i$) is suppressed, is:

$$V_{DEMout} = (V_{CC}/4\pi)(\phi \ SIG_{in} - \phi COMP_{in}) = V_{PC2out}$$
 or
$$V_{DEMout} = (V_{CC}/2\pi)(\phi \ SIG_{in} - \phi \ COMP_{in}) = V_{PC2out} \ ^*$$
 where the PC2 gain is mode dependent.

*(Refer to Appendix II.)

The average output voltage from PC2, fed to the VCO via the LPF and seen at the demodulator output at pin 10, is the resultant of the phase differences of SIG_{in} and COMP_{in}, as shown in Fig. 4(a). Typical waveforms for the PC2 loop locked at f₀ are shown in Fig. 4(b).

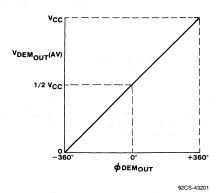


Fig. 4(a) - Phase comparator PC2 average output voltage as a function of input phase difference. $V_{\text{DEMout}} = V_{\text{PC2out}} = (V_{\text{CC}}/4\pi)(\phi_{\text{SIGin}} - \phi_{\text{COMPIn}})$ $\phi_{\text{DEMout}} = (\phi_{\text{SIGin}} - \phi_{\text{COMPIn}})$

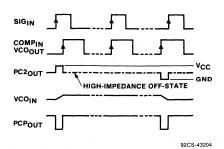


Fig. 4(b) - Typical waveforms for PLL using phase comparator PC2 loop locked at fo.

When the frequencies of SIG_{in} and COMP_{in} are equal, but the phase of SIG_{in} leads that of COMP_{in}, the PMOS device at the PC2 output (Fig. 2) is held on for a time corresponding to the phase difference. When the phase of SIG_{in} lags that of COMP_{in}, the NMOS device is held on. When the frequency of SIG_{in} is higher than that of COMP_{in}, the PMOS device is held on for a greater portion of the signal cycle time. For most of the remainder of the cycle time, the NMOS and PMOS devices are off (3-state). If the SIG_{in} frequency is lower than the COMP_{in} frequency, then it is the NMOS device that is held on for most of the cycle.

As locked conditions are achieved, the filtered output voltage from PC2 corrects the VCO until the comparator input signals are phase locked. Under stable phase-locked conditions, the VCO input voltage from the output of the LPF is constant, and the PC2 output is in a 3-state condition.

Operation of Phase Comparator PC3 (HC/HCT4046A Only)

The circuit of PC3 is a positive-edge-triggered sequential phase detector that uses an RS flip-flop. When PC3 is used as the PLL phase comparator, the loop is controlled by positive signal transitions. This type of detector is not sensitive to the duty factor of SIG_{in} and $COMP_{in}$. The transfer characteristic of PC3, assuming ripple ($f_r = f_i$) is suppressed, is:

$$V_{DEMout} = (V_{CC}/2\pi)(\phi SIG_{in} - \phi COMP_{in})$$

= V_{PC3out} via the LPF

The average output from PC3, fed to the VCO via the LPF and seen at the demodulator output, is the resultant of the phase differences of SIG_{in} and COMP_{in}, as shown in Fig. 5(a). The typical waveforms for the PC3 loop locked at f_o are shown in Fig. 5(b).

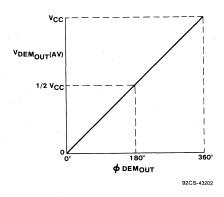


Fig. 5(a) - Phase comparator PC3 average output voltage as a function of input phase difference. $V_{\rm DEMout} = V_{\rm PC3out} = (V_{\rm CC}/2\pi)(\phi_{\rm SIGin} - \phi_{\rm COMPin})$ $\phi_{\rm DEMout} = (\phi_{\rm SIGin} - \phi_{\rm COMPin})$

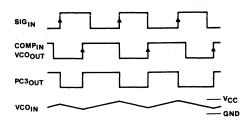


Fig. 5(b) - Typical waveforms for PLL using phase comparator PC3 loop locked at f_o.

92CS-43205

The phase characteristics of PC3 differ from those of PC2 in that the phase angle between SIG_{in} and COMP_{in} in PC3 varies between zero and 360 degrees, and is 180 degrees at the center frequency. PC3 also has a greater voltage swing than PC2 for the same input phase differences. While the conversion gain may be higher in PC2, PC3 produces a higher ripple content in the VCO or COMP_{in} signal.

LOCK INDICATORS

PCPout of the HC/HCT4046A

Although the phase-comparator pulse output (PCPout) is shown as part of PC2 in Fig. 4(b), the phase indication is present when either PC1, PC2, or PC3 is used. The PCPout phase-lock condition is present because the inputs for SIG and COMPin are in parallel. As noted in the waveforms of Fig. 4(b), PCPout at pin 1 of the HC/HCT4046A remains in a high state when the loop is phase locked. When either the PMOS or NMOS device is on, the PCPout is low. How the PCPout is used depends on the application. To fully utilize this output as a practical lock indicator, a smoothing filter is needed to reduce the effects of noise and marginal lock-in flicker.

Lock Detector of the HC/HCT7046A

Additional lock indicator circuitry has been added to the HC/HCT7046A, replacing the PC3 function with an improved lock detector and filter. As shown in the logic diagram for the HC/HCT7046A of Fig. 2(b), the PC2 circuit provides the same set of indicator signals as the PCP_{out} circuit of the HC/HCT4046A, Fig. 2(a). Additional stages are used to process the lock-detection output signal (LD) of the HC/HCT7046A.

Detection of a locked condition is accomplished in the HC/HCT7046A with a NOR gate and an envelope detector, as shown in Fig. 6. When the loop is phase locked, the output of the NOR gate is high and the lock detector output (pin 1) is at a constant high level. As the loop tracks the SIG_{in} on pin 14, the NOR gate generates pulses having widths that represent the phase difference between the COMP_{in} (from the VCO) and SIG_{in}. The time between pulses is approximately equal to the time constant (T) of the VCO center frequency. During the rise time of the pulse, the diode across the 1.5-kilohm resistor is forward biased, and the time constant in the path that charges the lock-detector capacitor (CLD) is given by:

 $T = (150 \text{ ohms } \times C_{LD})$

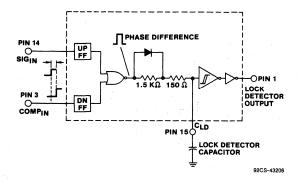


Fig. 6 - Lock-detector circuitry in the HC/HCT7046A.

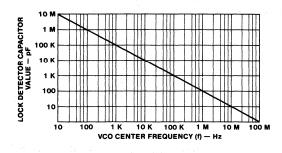


Fig. 8 - Selection chart for determining value of lockdetector capacitor.

The discharge circuit includes the 1.5-kilohm resistor. The capacitor waveform is a sawtooth, as shown in Fig. 7. The lock-detector capacitor value is determined by the center frequency of the VCO. The typical range of capacitance for a frequency of 10 megahertz is about 10 picofarads, and for a frequency of 100 kilohertz, about 1000 picofarads. The value of CLD can be selected by means of the chart in Fig. 8. As long as the loop remains locked and tracking, the level of the sawtooth will not go below the switching threshold of the Schmitt-trigger inverter. If the loop breaks lock, the width of the error pulse will be wide enough to allow the sawtooth waveform to go below the threshold, and a level change at the output of the Schmitt-trigger will indicate a loss of lock, as shown in Fig. 9. The lock-detector capacitor also filters out small glitches that can occur when the loop is either seeking or losing lock.

As noted for the PCP_{out} of the HC/HCT4046A, the lock-detector function of the HC/HCT7046A is present in any application of PC1, PC2, or PC3. However, it is important to note that, for applications using PC1, the lock detector will only indicate a locked condition on the fundamental frequency and not on the harmonics that PC1 may lock on. If a detection of lock is needed for the harmonic locking range of PC1, then the lock detector output must be OR-ed with the output of PC1.

VOLTAGE-CONTROLLED OSCILLATOR (VCO)

The High-Speed CMOS PLL ICs incorporate a versatile and easy-to-use VCO with a number of enhanced features

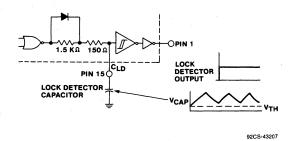


Fig. 7 - Waveform at lock-detector capacitor when in lock.

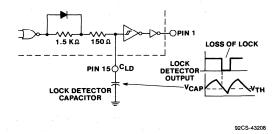


Fig. 9 - Waveforms at lock-detector capacitor when unlocked.

resulting from the High-Speed CMOS process. The most notable advantage is an order of magnitude increase in the VCO frequency range over that of the CD4046B.

The following VCO applications are intended to highlight problem solutions. Equations for the VCO frequency have been developed with emphasis on the high-frequency range. Graphical comparisons of measured and calculated frequency results are given.

VCO Description

92CS-43209

Fig. 10 shows a functional diagram of the VCO control circuit of the HC/HCT4046A. The frequency and offsetfrequency amplifiers are configured to convert voltage to current, which is then amplified in the current-mirroramplifier (CMA) blocks before being summed. The summed current is directed to the oscillator section consisting of inverters G₁ and G₂. The inverters, switching as H-drivers, control charge and discharge current to the oscillator range capacitor, C₁. The oscillator loop consists of flip-flop FF with feedback from the cross-coupled outputs to G₁ and G₂. The demodulator output amplifier may be optionally used to buffer the filtered output of the phase comparator. In normal use, the load resistor R_s is in the range of 50 kilohms to 100 kilohms. An inhibit amplifier controls the oscillator and CMA circuits. The output from one side of the flip-flop is buffered and output to the VCOout at pin 4.

The external components R_1 , R_2 , and C_1 , plus the voltage level of VCO_{in} at pin 9, provide direct control of the frequency. Resistors R_1 and R_2 fix the level of current bias to

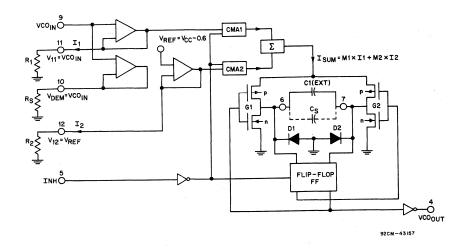


Fig. 10 - Functional block diagram of VCO portion of CD74HC4046A/7046A.

CMA1 and CMA2 for currents I_1 and I_2 , respectively. Both CMA circuits consist of a current mirror with, typically, 6 to 8 times gain. Because the frequency and offset-frequency amplifiers are source followers with 100% feedback, the voltage across R_1 at pin 11, V_{R1} , is equal to VCO_{in} , and the voltage across R_2 at pin 12, V_{R2} , is equal to V_{ref} . V_{ref} is an internal bias source set at one forward diode drop from V_{cc} . As such, the voltage across R_2 and the current I_2 are functions of V_{cc} , implying the need for a well-regulated V_{cc} for good offset-frequency stability. For most applications, $V_{ref} = V_{cc} - 0.6$ volt is a good approximation. In the equations that follow, $I_1 = VCO_{in}/R_1$ and $I_2 = V_{ref}/R_2$ are used as direct expressions for the CMA input currents.

The outputs of CMA1 and CMA2 are the amplified $M_1 I_1$ and $M_2 I_2$ currents where M_1 and M_2 are the multiplier ratios for CMA1 and CMA2, respectively. The CMA output currents are then summed together as the current, I_{sum} , to drive capacitor C_1 via the PMOS and NMOS transistors of G_1 and G_2 . When the input to G_1 is high, the input to G_2 is low. In this mode, the PMOS transistor of G_1 conducts charge to C_1 while the NMOS transistor of G_2 discharges the low side of C_1 to ground. Each time the flip-flop changes state, the charging polarity of C_1 is reversed by G_1 and G_2 . When the positively charged side of C_1 is grounded, an intrinsic diode across each of the NMOS devices discharges C_1 to one diode level below ground.

There are two C_1 charge cycles in each full period, and the instantaneous start voltage for each current-charged ramp

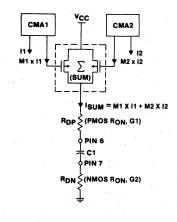
is V_{ir} = -0.7 volt. The active switch threshold at the flip-flop input is V_{hr} = 1.1 volts for a V_{cc} of 5.0 volts, and varies with V_{cc} as shown in Figs. 11(a) and 11(b). Fig. 11(b) shows the voltage waveforms at pins 6 and 7 as similar except for the half-cycle displacement. The total peak-to-peak voltage of the sawtooth ramp waveform at pins 6 or 7 is typically V_{ramp} = $[V_{hr} - V_{lr}]$ = [1.1 -(-0.7)] = 1.8 volts.

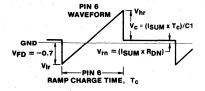
VCO Frequency Control

When a capacitor, C, is charged with a constant current, I, the expression for the voltage, V_c , integrated over time, T_c , is:

$$V_c = (1/C) \int Idt = (IT_c)/C$$

In this case, the capacitor voltage is:


$$V_c = V_{ramp} = (V_{hr} - V_{lr}) = I_{sum}(T_c/C_1)$$
 (1)


or:

$$T_c = C_1 \times V_{ramp}/I_{sum}$$

where $I_{sum} = [(M_1I_1) \times (M_2I_2)]$.

The time, T_c , is the ramp charge time, and V_{ramp} is the capacitor ramp charge voltage over the integrated time period. The ramp rate of voltage increase is V_{ramp}/T_c , and is determined by the rate of charge of the capacitor by the source current, I_{sum} .

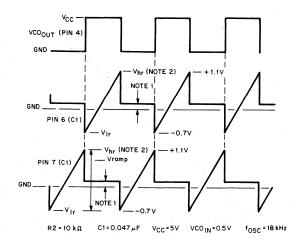
92CS-43210

Fig. 11(a) - Equivalent HC/HCT4046A charge circuit of the voltage-controlled oscillator.

The CMA gain characteristics for M_1 and M_2 are shown in the curves of Figs. 12, 13, and 14. The values for M_2 as a function of I_2 are shown in Fig. 12. The curves of Fig. 13 show the CMA2 range of linearity for I_2 input. The linear range and values for multiplier M_1 are shown in the curves of Figs. 14(a) and 14(b).

Equation 1 is sufficiently accurate to allow a good approximation of the VCO period (2T_c). However, there is a more precisely accurate equation for ramp charge time. In Fig. 11(b), Note 1, attention is called to an offset voltage of approximately 0.15 volt. Fig. 11(a) illustrates the reason for this characteristic in an equivalent circuit, where the mode of switching is for the G_1 - PMOS and G_2 - NMOS transistors in their "on" charge state. The more precise form of the voltage equation should include the NMOS channel resistance, $R_{\rm h}$.

Because the trip point, V_{hr} , is the sum of $V_c + V_{rn}$, and does not change in value, and $V_{ir} = V_c(0)$ is approximately -0.7 volt as the initial charge condition on capacitor C_1 :


$$V_{ramp} = V_{hr} - V_{Ir} = (V_c + V_{rn}) - V_c(0) = I_{sum}T_c / C_1$$
 where:
$$I_{sum} = (M_1I_1) + (M_2I_2)$$

and, because Vrn = IsumRn:

$$T_c = (V_{ramp} - I_{sum} R_n) C_1 / I_{sum}$$
 (2)

where V_{ramp} is the same as defined in Equation 1.

As noted above, the initial voltage, $V_c(0)$ is one diode drop below ground, or -0.7 volt, and is equal to V_{lr} . The V_{hr} trip

NOTES:

1. THE 0.15 VOLT OFFSET AT PIN 6,7 IS DUE TO CHARGE CURRENT TIMES DRAIN-TO-SOURCE SATURATED ON-RESISTANCE IN THE N-CHANNELS OF 61, 62 MMOS TRANSISTORS.

2. Vhr VARIES WITH VCC WHERE Vhr = [0.1VCC+0.6] VOLTS.

9205-43159

Fig. 11(b) - HC/HCT4046A voltage-controlled- oscillator waveforms.

point for the flip-flop does not change, and was noted to be typically 1.1 volt for $V_{\rm CC}$ = 5 volts. As shown in Fig. 11(a), $V_{\rm hr}$ = $V_{\rm C}$ + $V_{\rm m}$. This expression shows that less charging time is needed to reach the trip point because $V_{\rm C}$ is reduced by the $I_{\rm sum}R_{\rm h}$ voltage drop. The $I_{\rm sum}R_{\rm h}$ term introduces a characteristic of nonlinear increasing frequency as a function of

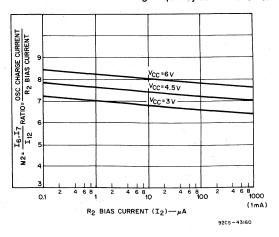


Fig. 12 - Current multiplier ratio M₂ as a function of R₂ bias current.

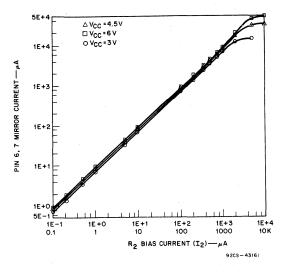


Fig. 13 - Mirror current as a function of R₂ bias current showing range of linearity.

 VCO_{in} voltage and is caused by the voltage drop in the NMOS channel resistance. When VCO_{in} is increased, the added M_1I_1 current continues to further reduce the sweep-time requirement. For large values of R_1 and R_2 , the effect of resistance R_n is small, and the V_{rn} term in the above equations may be neglected.

When Equation 1 or 2 is used as a first-order approximation, a complete expression for frequency would incorporate

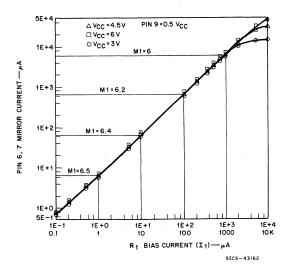


Fig. 14(a) - Mirror current as a function of R_1 bias current showing range of linearity. VCO $_{\rm in}$ (pin 9) voltage is 0.5 Vcc.

timing for two ramps, plus the propagation delays for each flip-flop state, plus the added time for charging stray capacitance. Either case yields a ramp charge expression. The propagation delay, $T_{\rm pd}$, is a function of the number of cascaded stages in the flip-flop, plus G_1 and G_2 switching propagation-delay times. The stray capacitance, C_8 , from pin 6 to 7 (or from each pin to ground) must be added to the value of C_1 . It should be noted that unbalanced capacitance to ground from pin 6 and pin 7 can contribute an unbalanced duty cycle. In fact, unbalanced capacitance at pins 6 and 7 may be used by design to correct or set the duty cycle. With the frequency-dependent parameters now defined, the VCO frequency becomes:

$$f_{osc} = 1/T_{osc} = 1/(2T_c + 2T_{pd})$$
 (3)

Using the simplified expression of Equation 1 to calculate the ramp charging time, and including the appropriate terms for capacitance C₁ + C₈, V_{ramp}, and I_{sum}:

$$T_c = [(C_1 + C_8) \times V_{ramp}] / [(M_1 I_1) + (M_2 I_2)]$$

which expands to:

$$T_{c} = [(C_{1} + C_{s})V_{ramp}]/[M_{1}(VCO_{in}/R_{1}) + M_{2}(V_{ret}/R_{2})]$$
 (4)

where:

$$I_{sum} = [M_1(VCO_{in}/R_1) + M_2(V_{ref}/R_2)]$$

The more precise solution is:

$$T_c = [(C_1 + C_s)(V_{ramp} - I_{sum}R_n)]/I_{sum}$$
 (5)

The value of $T_{\rm c}$ is calculated from Equation 4 or 5, and is substituted into Equation 3 to determine the frequency, $f_{\rm osc}$. For the most part, Equations 3 and 4 provide a reasonably accurate and direct approach to determination of the frequency of the VCO in terms of external component values and known parametric voltage values.

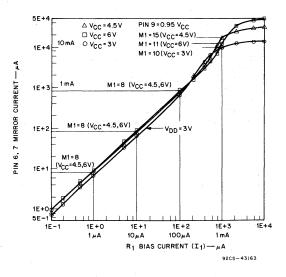


Fig. 14(b) - Mirror current as a function of R₁ bias current showing range of linearity. VCO_{in} (pin 9) voltage is 0.95 V_{CC}.

VCO Parametric Ranges and Restrictions

When Equations 3 and 4 or 5 are used, it is necessary to adhere to certain range limitations for the components and to seek the correct parametric values for other variables. The following list tabulates the variables of the equations and defines ranges and restrictions.

R₂

 M_1, M_2

lsum

 T_{pd}

Tc

 f_{osc}

Vcc Defined in the HC/HCT4046A and HC/HCT7046A data sheets as 7 volts maximum - for normal operation should remain in the range of 3 to 6 volts.

VCO_{in} The pin 9 voltage, VCO_{in}, determines the frequency of the VCO. The control range is 1.0 volt <VCO_{in}<0.9Vcc; the VCO will become unstable if VCO_{in} exceeds the maximum. On the low side, the VCO is not responsive to input level until VCO_{in} is ≥ 1.0 volt.

V_{ref} The internal reference voltage, V_{ref}, is equal to one forward diode drop below V_{CC} (V_{CC} -0.6 volt). Where R₂ is used to fix offset frequency by current I₂, the V_{ref} level is maintained at pin 12 (R₂) to set the source current, I₂.

Vramp Values for V_{ramp} are defined above with commentary on the effect of $I_{aum}R_n$ which, for many applications, is a second-order effect and can be neglected. As an empirically derived equation, $V_{hr} = (0.1V_{cc} + 0.6)$ volts and $V_{ramp} = |(V_{hr} - V_{ir})| = |(0.1V_{cc} + 1.3)$ volts.

C1 The external VCO timing capacitor between pins 6 and 7 should be greater in value than 40 picofarads. Lower values will be subject to device and layout tolerance variations caused by the stray capacitance at pins 6 and 7.

C. Stray capacitance at pins 6 and 7 is not limited to pin-to-pin capacitance. Any stray capacitance at pin 6 or pin 7 must be charged and discharged during each normal oscillator cycle.

R₁ The value of R₁ determines the frequency of the VCO for the defined VCO_{in} range. Note that the

minimum (offset) frequency is determined by R_2 , and that the current in R_1 is determined by $I_1 = VCO_{in}/R_1$.

 R_2 is frequently misused. The value of R_2 determines the offset (minimum) frequency of the oscillator. When there is no basic need for an offset frequency, R_2 should be omitted. If it is, no termination is needed at pin 12. When R_2 is not used, and if the detector reference signal is removed, the oscillator's minimum frequency drops to zero. To sustain oscillation during signal dropout, some value of R_2 is needed. The current in R_2 is determined by $I_2 = V_{\text{ref}}/R_2 = (V_{\text{CC}} - 0.6)/R_2$.

The currents I_1 in resistor R_1 and I_2 in resistor R_2 are multiplied in the current mirrors CMA1 and CMA2 and summed to provide the I_{sum} charging current to $C_1 + C_8$. The CMA multiplying factors are, respectively, M_1 and M_2 . Fig. 12 provides curve families for M_2 as a function of I_2 and V_{CC} . The nominal current-multiplier factor for M_1 is determined from the curves of Fig. 14(a).

Where l_{sum} is defined as $(M_1l_1 + M_2l_2)$, the total sum of $l_1 + l_2$ should not exceed 1.0 milliampere. The multiplier values of M_1 and M_2 are typically 6 to 8 times. At higher levels of current, l_{sum} will degrade VCO linearity. The limits of linear range in the curves of Figs. 13 and 14 should be noted.

Inherent propagation delay as noted in Equation 3 is approximately 10 to 14 nanoseconds for the flip-flop in the feedback loop of the oscillator. For $V_{\rm CC}$ levels of 7 volts, the propagation delay decreases approximately 10%. For 3 volts, the propagation delay increases approximately 30%.

The ramp charge time, T_c , for capacitor C_1 is assumed to be equal for pin 6 to 7 or pin 7 to 6 in Equations 4 and 5.

The oscillator frequency for a given VCO_{in} as read at the VCO_{out}, pin 4. It may be calculated by means of Equations 3 and 4 or 5.

DESIGN EXAMPLES WITH MEASURED AND CALCULATED RESULTS

The curves of Fig. 15(a) illustrate test-measurement data for the HC/HCT4046A for frequency, $f_{\rm osc}$, as a function of VCO_{in} voltage. Using R₁ = R₂ = 10 kilohms, C₁ = 47 picofarads, C₈ = 6 picofarads, and assuming $T_{\rm pd}$ = 11 nanoseconds in the circuit of Fig. 15(b), curves for Vcc values of 3, 4, 5, and 6 volts were measured and plotted. The dashed lines for the curves B, D, and E were calculated using Equations 3 and 4 and illustrate that there is a

reasonable agreement of measured and calculated results. The effect of an accelerated frequency increase is more noticeable in the $V_{\rm CC}$ = 5 volts curve (curve E) with no offset (no R₂), where the measured frequency sweeps up with an increasing slope. The approximation equations, however, are still valid, varying from 5 to 15% error, mostly at the high VCO_{in} voltage values. The effects of no offset bias should be noted in the curve for $V_{\rm CC}$ = 5 volts and R₂ = infinity (curve E). Without offset bias, all oscillation stops when the VCO_{in} voltage drops below 1.0 volt.

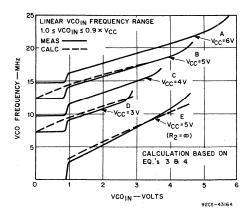


Fig. 15(a) - VCO frequency as a function of input voltage $VCO_{\rm in}$. Both measured and calculated values are shown. $R_1=R_2=10k\Omega$, $C_1=47pF$, $C_8=6pF$, $T_{\rm pd}=11ns$ @ Vcc=5V, and $T_{\rm pd}=15ns$ @ Vcc=3V.

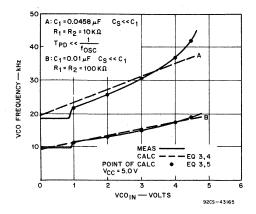


Fig. 16 - VCO frequency as a function of input voltage VCO_{in} showing effects of different values of R₁ and R₂ (10 and 100 kilohms).

Although values of 10 kilohms for R_1 and R_2 provide good linearity as a function of VCO_{in} for the high-frequency range shown in Fig. 15(a), optimum values for R_1 and R_2 are greater at lower frequencies. This fact is illustrated in the curves of Fig. 16, where the linearity is shown to be better for the larger values of R_1 and R_2 (curve B). The accelerated frequency-increase effect of $I_{sum}R_n$ is more pronounced. The propagation delay is neglected in the curves of Fig. 16 because it is much less than the oscillator period. The effects of stray capacitance are neglected for similar reasons. The simplified solutions using Equations 3 and 4 are shown by the dash lines.

A more accurate calculation was made with Equations 3 and 5 to determine the value of I_{sum}. A value of 50 ohms was

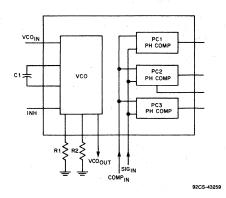


Fig. 15(b) - Test circuit for HC/HCT4046A phase-locked loop VCO.

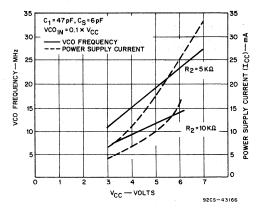


Fig. 17 - VCO frequency and power supply current as a function of operating voltage V_{CC} showing effects of different values of R₂ (5 and 10 kilohms).

used to calculate the $I_{sum}R_n$ term. The calculated results for this curve quite accurately overlay the measured, solid-line curves. In this calculation, the values of M_1 and M_2 were set 15% low to obtain the exact tracking match.

The curves of Fig. 17 show measured data and illustrate the dependence of the offset frequency on $V_{\rm CC}$. The frequency is in megahertz and the power supply current in milliamperes. These parameters are plotted against power-supply voltage. $I_{\rm CC}$ is shown for R_2 offset frequency bias resistors of 5 and 10 kilohms. The supply current increases with a decrease in the value of resistor R_2 , and also increases with the switching frequency because of the added current needed to charge and discharge the device equivalent capacitance, $C_{\rm DC}$.

The curves of Fig. 18 show the effect of increasing the values of resistors R1 and R2 by ten times with all other factors remaining the same. Curve A is plotted at 10 times the measured frequency, while curve B is plotted at the frequency of the measured data. The two curves should overlay one another. The current multiplier ratios, however, are higher at lower current bias levels, a factor that causes the frequency defined by curve A to be slightly more than ten times that of curve B. The curves illustrate that frequency can be changed by a linear scale factor with a change in R1 or R2. Similar frequency changes may also be made by adjustment of C1. An exception to be noted is that effects of T_{pd} and C_s will produce a ratio adjustment error in the high-frequency range. Fig. 19(a) demonstrates the results of a different method of frequency control by "splitting" capacitor C₁ and returning pin 6 and pin 7 separately through capacitors C_{1A} and \bar{C}_{1B} to ground. Illustrated in Fig. 19(b), this method has the facility to control the duty cycle, which is the ratio of capacitors C_{1A} and C_{1B} . The V_{ramp} conditions change from -0.7 volts as a starting point to ground or zero volts. The Vnr trip point is unchanged. The current charge path for each capacitor is through its respective G1 or G2 PMOS device, and the discharge path is through the associated NMOS device. Frequency calculations for this type of circuit are based on a separate calculation for each capacitor charge ramp and the addition of the results for the total period time. The same equations are used in the calculations, but the empirical equation for V_{ramp} becomes:

$$V_{ramp} = V_{hr} - V_{lr} = 1.1 - 0 = 1.1V$$

where Vcc = 5.0 volts.

For other V_{CC} values, V_{hr} = (0.1 V_{CC} +0.6) volts. The simplified calculation is shown by the dashed line in Fig. 19(a) to be in reasonable agreement with empirical results. Where the RC discharge may not reach ground before the charge cycle starts, V_{Ir} = V_{c} (0) assumes this value. The waveform characteristic is shown in Fig. 19(b).

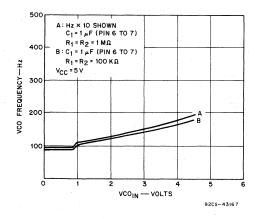


Fig. 18 - VCO frequency as a function of input voltage VCO_{in} showing effects of different values of R₁ and R₂ (10 kilohms and 1 megohm).



Fig. 19(a) - VCO frequency as a function of input voltage VCO_{In} showing duty cycle control obtained by splitting capacitor C₁ and controlling ratio of C_{1A} and C_{1B}.

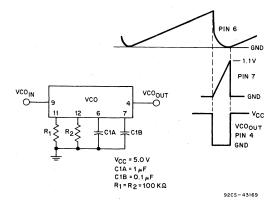


Fig. 19(b) - Evaluation circuit and waveforms for the Fig. 19(a) curve.

Possible applications of the split-capacitor method described above include horizontal and vertical timing circuits for image display systems as well as gating and blanking functions where, for a variety of reasons, pulse-width control may be needed.

DESIGN EXAMPLES WITH AND WITHOUT OFFSET

The equations derived thus far have provided a means to calculate frequency. However, frequency is usually the known parameter. If it is not known, an approximation may be initially calculated, followed by an iterative adjustment for the final desired result. Dynamic range limitations may be more easily accommodated by following this procedure.

Example No. 1 With Offset

For a supply voltage Vcc = 5 volts and given:

The curves plotted thus far indicate that a value of 0.01 microfarad may be a suitable value for C_1 , and that propagation delay and stray capacitance may be neglected. For convenience, assume that the multiplying factor $M=M_1=M_2=7.2$ and, from previously noted values, $V_{ramp}=1.8$ volts. First calculate the offset frequency by setting $VCO_{in}=0$ volts. With these simplified conditions, Equations 3 and 4 become:

$$f_{min} = 1/2T_c = 1/2(C_1V_{ramp}/M_2I_2)$$

or:

$$f_{min} = 2M_2V_{ref}/C_1V_{ramp}R_2$$

where $I_2 = V_{ref}/R_2 = (V_{CC} - 0.6)/R_2 = 4.4/R_2$.

Solving for R2 yields:

R₂ = M₂V_{ref}/2C₁V_{ramp}f_{min}
=
$$(7.2 \times 4.4)/(2 \times 0.01 \mu F \times 1.8 \times 250 \text{ kHz})$$

= 3.52 kilohms

If this low value of R_2 is used, the resultant $I_{sum}R_n$ will cause pronounced nonlinearity, as shown in Fig. 16, curve A. Better linearity can be achieved with an R_2 of 35.2 kilohms and by scaling frequency; C_1 can also be set to 1000 picofarads. This choice seems practical because the assumption is that stray capacitance, C_s , is 6 picofarads, which is not a significant percentage of C_1 . R_2 should be further adjusted by choosing a value for it of 36 kilohms, which is close to a standard value of resistance.

From the known maximum frequency, f_{max} , and given the value of R_2 , R_1 may be calculated. Assume that the maximum frequency will occur at approximately $VCO_{in} = V_{ref} = 4.4$ volts. The same values of M_1 and M_2 as used above will continue to be used for this approximation. The problem now is to find a parallel value of R_1 and R_2 (R_{eq}) for the calculation of f_{max} where:

$$R_{eq} = MVCO_{in}/2C_1V_{ramp}f_{max}$$

= $(7.2 \times 4.4)/(2 \times 1000 \text{ pF } \times 1.8 \times 550 \text{ kHz})$
= 16 kilohms

For R_2 = 35.2 kilohms, R_1 is determined to be 29.3 kilohms, or approximately 30 kilohms to the nearest standard value. With these values and Equations 3 and 4, the calculations for the frequency can be fine tuned. With $V_{\rm ref}/R_2$ at 122 microamperes, M_2 from Fig. 12 becomes 7.3. Similarly, when $VCO_{\rm in} = V_{\rm cc}/2$, $VCO_{\rm in}/R_1$ = 83 microamperes , which, from Fig. 14(a), yields M_1 = 6.2.

 T_c and f_{osc} as a function of VCO_{in} can be calculated from these values and, if needed, R_1 and R_2 can be adjusted to meet the desired center-frequency condition. That is, for $C_s=0,\ T_{pd}=0,\ R_1=30\ kilohms,\ R_2=36\ kilohms,\ C_1=1000\ picofarads,\ V_{rel}=4.4\ volts,\ V_{ramp}=1.8\ volts,\ M_1=6.2,\ M_2=7.3,\ and\ V_{CC}=5\ volts:$

$$\begin{split} f_{\text{osc}} &= 1/2T_{\text{c}} = \left[M_{1}(\text{VCO}_{\text{in}}/\text{R}_{1}) + M_{2}(4.4/\text{R}_{2})\right]/\ 2C_{1}V_{\text{ramp}} \\ &= \left[6.2(\text{VCO}_{\text{in}}/30\ \text{kilohm})\right. \\ &+ 7.3(4.4/36\ \text{kilohm})\right]/\ (2\times1000\ \text{pF}\ \text{x}\ 1.8\ \text{V}) \end{split}$$

The table below gives calculated and measured oscillator frequency values for different values of VCO_{in}.

VCO _{in} (V)	f _{osc} (kHz)				
	Calculated	Measured			
0.0	248	280			
1.0	305	318			
2.5	391	384			
4.4	500	492			

The calculated solution is in reasonable agreement with the desired results as shown by the measured data. Depending on the application, some adjustment of R_2 may more closely fit the f_{osc} value.

Example No. 2 - Without Offset

Given: fo = 400 kilohertz, Vcc = 5.0 volts

Without offset, the calculation is simplified to:

$$f_{osc} = 1/2T_c = M_1(VCO_{in}/R_1) / 2C_1V_{ramp}$$

Drawing on the experience of the previous calculation, M_1 is approximately 6.2 and VCO $_{in}$ is set to 2.5 volts for the center-frequency calculation. Solving for R_1 :

$$R_1 = 6.2(2.5/f_0) / 2 \times 1000 \text{ pF} \times 1.8 \text{ V}$$

= 10.8 kilohms

Using 11 kilohms for R₁, gives:

VCO _{in} (V)	f _{osc} (kHz)					
	Calculated	Measured				
1.0	157	139				
2.5	391	352				
4.4	699	697				

In this example the error is larger, but the dynamic range needed for the high and low end of the frequency range is there. The center-frequency value of VCO_{in} is slightly to the high side of 2.5 volts.

"THUMB RULES" FOR QUICK CALCULATIONS

The above two examples imply that simple equations and "thumb-rules" can be effectively applied to the determination of required parameters. Designers, however, should remain alert to the fact that large values of I_{sum} with frequencies in the megahertz range do require use of the expanded Equations 3, 4, and 5. For extreme ranges of current and voltage, other errors may be added. However, reasonable approximations of the offset frequency, f_{min} , and the maximum frequency, f_{max} , can be made. Where $T_{pd} << 1/f_{o}$ or the frequency range is less than 1.0 megahertz and the I_{lsum} currents are reduced so that $I_{\text{sum}}R_{n} << V_{\text{ramp}}$, the errors will generally be less than 15%. The quick-approximation equations are derived as follows:

From Equation 4, solving for
$$f_{min} = 1/2T_c$$
 at $V_{CC} = 5$ V, $VCO_{in} = \{0$ V, $C_s = 0$ pF, $V_{ramp} = 1.8$ V, and $M_1 = M_2 = 7$ yields:

$$f_{min} = K_a/(R_2C_1) \tag{6(a)}$$

where Ka is a constant that varies with Vcc.

To find f_{max} with $VCO_{in} = V_{ref} = 4.4 \text{ V}$, $V_{CC} = 5 \text{ V}$, $C_s = 0 \text{ pF}$, $V_{ramp} = 1.8 \text{ V}$, and $M_1 = M_2 = 7$:

$$f_{\text{max}} = K_{\text{a}}/(R_{\text{eq}}C_1) \tag{6(b)}$$

where R_1 in parallel with R_2 is equal to R_{eq} . Then, an extrapolation from f_{min} at $VCO_{in} = 0$ to f_{max} at $VCO_{in} = 4.4$ volts yields a quick y = mx + b equation approximation to f_{osc} :

$$f_{osc} = [(f_{max} - f_{min})/K_b]VCO_{in} + f_{min}$$
 (6(c))

where K_b at f_{max} is 4.4 for V_{CC} = 5 V or 5.4 for V_{CC} = 6 V. K_a at f_{max} and f_{min} is 8.5 for V_{CC} = 5 V and 10 for V_{CC} = 6 V.

The solution is provided as a time constant for R_2C_1 or $R_{eq}C_1$, where C_1 is assumed, followed by a calculation for R_1 and R_2 .

The choice of offset frequency is not as simple as it first appears. The true offset with respect to phase lock starts when the VCO_{in} is approximately 1.0 volt. The lock-in range where $2f_i = (f_{\text{max}} - f_{\text{min}})$ is limited by this condition. As such, the lock-in range is only 60% of the VCO_{in} control range for VCO_{in} = 0 V to VCO_{in} = 2.5 V or (V_{CC}/2). Using the lower VCO control range as a boundary condition for lock-in, 0.6(f_o - f_{min}) = f_i .

Where f_{min} is the offset frequency, the thumb-rule equation for offset in terms of center frequency and lock range is:

$$f_{min} = f_o - 1.6f_i$$
 (6(d))

TABULATED SOLUTIONS

The expanded Equations 1 through 5 have been written into a computer program using empirically derived equations from the curves and data for I1, I2, M1, M2, and Tpd. This program is included in Appendix III. PC calculations and thumb-rule solutions have been calculated and compared to measured data to evaluate the frequency error in several applications. Appendix IV gives R1, R2, and C1 values with "Calc. fosc" PC solutions from Equations 3, 4, and 5. The "Approx. fosc" values are given by the thumb-rule solutions from Equations 6(a), 6(b), and 6(c). The solutions shown below are based on high and low inputs to VCOin, and have larger estimate errors than those previously shown and plotted. The most accurate frequency calculations are determined by having the correct values for M1 and M2, which, for the full range of VCOin, are not constant. The preferred solutions are derived for a VCO_{in} voltage near $V_{cc}/2$, where the curves for I_1 as a function of pin 6 and pin 7 current plots are most accurate. The example data given here is based on single result values from constructed PC boards (see Appendix V).

FILTER DESIGN FOR THE HC/HCT4046A

The third element of the HC/HCT4046A PLL to be discussed is the filter requirements for proper operation of the loop. An understanding of various technical terms is assumed. For further assistance, the reader is referred to AppendixIII and the bibliography. It is important to remember that the filter characteristic is a key factor in determining the overall gain and phase response of the loop. Stability criteria is covered in general references on feedback theory along with other subjects including Bode plots, root-locus plots, and Nyquist criteria. The use of Laplace transforms with partial fraction expansions, the final value theorem, and other techniques should be very helpful to the dedicated designer of PLL circuits. Loop equations in Fig. 20 are expressed in terms of the complex frequency domain.

Three basic types of low-pass filter (LPF) are commonly used in PLL circuits. All LPFs perform the basic function of

removing high-frequency components resulting from the multiplier process of the phase comparator. Fig. 20 shows these common forms of the LPF along with equations for the loop as applied to PLLs of second-order systems.

Another characteristic of the PLL is phase jitter, which may occur because the VCO is frequency modulated by the ripple output of the LPF. Moreover, noise may initiate fast changes in phase error and cause conditions of variable damped oscillation in the loop. Characteristics common to the PLL are noted in the following discussion, which also provides examples and data.

The LPF integration properly determines the time constant of the filter and affects the loop during frequency acquisition. A low-leakage termination for the filter provides a constant of level to the VCO and maintains a minimum phase-shift relation between the VCO signal and the PLL input signal. The HC/HCT4046A features a very high resistance load to the LPF where the input resistance of the VCO is of the order of 10¹² ohms. In many applications, particularly at high frequency, leakage currents can cause an unacceptable phase error.

Loops are frequently referred to by type and order designation. Type is less commonly used and refers to the number of perfect integrators in the loop or the number of poles at the origin of the complex frequency plot. An example of a Type I would be a simple first-order PLL where there is no filter [f(s) = 1]; integration of the VCO provides the one pole. The order of the loop is a more commonly used term and refers to the highest power of s in the denominator of the closed loop transfer function, H(s). The application examples that follow are based on second-order systems, which represent the most common use of PLL circuits employing the HC/HCT4046A.

LOOP EXAMPLES

1. Low-Pass Filter Using PC1

This first example illustrates the effects of parameter variation; PC1 and the simple RC lag LPF of Fig. 20(a) are used. The given conditions for this example are:

The tendency for the novice designer is to specify an offset frequency close to the desired center frequency. This choice reduces the VCO gain factor and adds a resistor to the circuit. The need for an offset frequency specification should always be questioned. Occasionally, an offset frequency may be needed if the application requires continuing oscillation when the VCO_{in} input drops below 1.0 volt. The arbitrary assumption in this example is the choice of f_{min} = 0 or no offset.

To find the VCO parameters, the designer should initially calculate R_1 and C_1 by considering the VCO $_{in}$ level at Vcc/2 or 3 volts. For this working frequency range, the consideration of stray capacitance and propagation delay can be dropped. Using the thumb-rule equation developed in the VCO section, the y = mx + b equation form can be used for f_{min} = 0 and Vcc = 6 V, where K_a = 10 and K_b = 5.4. Then, R_{eq} reduces to R_1 , and Equations 6(b) and 6(c) combine as:

$$f_{osc} = VCO_{in}/(0.54R_1C_1)$$

By choosing $C_1 = 0.012$ microfarad, R_1 becomes 16.8 kilohms for $VCO_{in} = 3$ volts and $f_{osc} = f_0 = 27.55$ kilohertz. The

actual component values used were R_1 = 16.4 kilohms and C_1 = 0.012 microfarad. Frequency calculations for a VCO_{in} of 1 and 3 volts using the above equation are as follows:

VCO _{in} (V)	f _{osc} (kHz)				
	Calculated	Measured			
1.0	9.4				
1.24	11.7	10			
3.0	28.2				
3.34	31.4	27.5			

The values shown are a reasonable approximation of the required values.

The VCO gain factor, K_o , must be determined for the filter design. Either the slope of the curve for f_{osc} as a function of VCO_{in} can be used or a value can be calculated from the differentiated frequency expression. If $I_{sum}R_n << V_{ramp}$, then the $I_{sum}R_n$ term may be dropped. In this case, the calculated error is approximately 3% at VCO_{in} = V_{cc} /2. Using Equations 3 and 4, substituting T_c into the f_{osc} equation, and dropping the $I_{sum}R_n$ and T_{po} terms yields:

The differential with respect to VCO_{in} is given by:

$$K_o = d(f_{osc}) / d(VCO_{in}) = M_1 / 2R_1C_1V_{ramp}$$

This result is the same as the differential of VCO $_{in}$ / $(0.54R_1C_1)$ if M_1 = 7 and V_{ramp} = 1.9 volts are assumed.

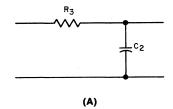
Substituting values $M_1 = 7$, $V_{ramp} = 1.9$ volts, $R_1 = 16.4$ kilohms, and C = 0.012 picofarad yields:

The K_d gain factor for the PC1 detector can then be calculated as:

$$K_d = V_{CC}/\pi = 6/3.1416 = 1.91 \text{ volts/radian}$$

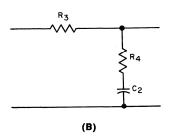
The loop gain factor, not including the filter, is given by:

$$K = K_o K_d = 112,800$$

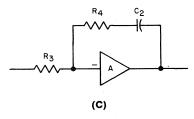

As shown in Fig. 20(a), for any second-order system, the loop natural frequency, ω_n is:

$$\omega_n = (K/\tau)^{0.5}$$

where τ is the integrating time constant of the loop filter. For the simple lag filter of Fig. 20(a), $\tau_1 = R_3C_2$.


Beyond this point, assumptions or specifications are needed with respect to the design requirements. One may optimize for noise, jitter, sweep rate, pull-in time, etc., depending on the application. For general and wide-ranging requirements, values for the loop-3dB bandwidth, ω_{3dB} , and loop natural frequency can be assumed. Another choice is to look at the relation of noise bandwidth to damping factor, ζ . If settling time is important, examine the phase error and damping factor as a function of ω_{n} t (t = time) where, for the settling time to be 90% complete, the value of ω_{n} is given by the allowed settling time. Quoting from Gardner (and others see bibliography), for a phase error due to a step in delta phase, ω_{n} t should be 4 for a damping factor of 0.5.

The simple lag filter has a limited range of capability but it can be effective in noncritical applications. The R₃C₂ time constant can be chosen by trial and error or by thumb rule as the reciprocal of 1.5 to 3 times the frequency. This


$$\begin{aligned} F_1(s) &= 1/(s\tau_1 + 1) \\ \tau_1 &= R_3C_2 \\ H1(s) &= (\omega_n^2/(s^2 + 2\zeta\omega_n + \omega_n^2) \\ \omega_n &= (K_oK_d/\tau_1)^{0.5} \\ \zeta &= (1/4\tau_1K_oK_d)^{0.5} \end{aligned}$$

92CS-43170

$$\begin{split} &F2(s) = (s\tau_2 + 1)/[s(\tau_1 + \tau_2) + 1) \\ &\tau_1 = R_3C_2 \\ &\tau_2 = R_4C_2 \\ &H2(s) = [s(2\zeta\omega_n - \omega_n^2) + \omega_n] / (s^2 + 2\zeta\omega_n + \omega_n^2) \\ &\omega_n = (K_oK_d/(\tau_1 + \tau_2)]^{0.5} \\ &\zeta = (\omega_n/2)[\tau_2 + (1/K_oK_d)] \end{split}$$

92CS-43171

For large values of A (amp gain):

$$\begin{aligned} &F3(s) = -(s\tau_2 + 1)/s\tau_1 \\ &\tau_1 = R_3C_2 \ \tau_2 = R_4C_2 \\ &H3(s) = (2\zeta\omega_n s + \omega_n^2) \ / \ (s^2 + 2\zeta\omega_n s + \omega_n^2) \\ &\omega_n = (K_0K_d/\tau_1)^{0.5} \\ &\zeta = \omega_n\tau_2/2 \end{aligned}$$

92CS-43172

Fig. 20 - Forms of low-pass filters (LPF) and associated loop equations.

approach favors lower damping factors to achieve low jitter with compromises for pull-in range and time. Two filters were tried for this example, as follows:

<u>71</u>	R ₃	C ₂	pull-in	ω _n (calc.)	ζ(calc.)
2.5 ms	51 kΩ	0.047 μF	± 1 kHz	6717 rad/s	0.032
25 <i>μ</i> s	51 kΩ	487 pF	± 4.25 kHz	67.17 krad/s	0.32

When filters are designed by choosing an ω_{3dB}/ω_n ratio, the simple lag filter has a solution in terms of ζ that is different from that of the lag-lead solution. In any case, the ω_{3dB} solutions are derived by setting $|H(j\omega)|^2 = 0.5$ and solving for ω_{3dB}/ω_n . However, experience is the best teacher, and the assumption of time-constant values, followed by the measuring and plotting of results, is an effective way to optimize values for those parameters important to an application.

2. Using PC2 With a Lag-Lead Filter

In this example, the lag-lead filter shown in Fig. 20(b) is used, and no offset-frequency requirement is specified. For the VCO section:

After following procedures similar to those described in the previous examples, the value of C_1 is determined to be 100 picofarads, and R_1 is found to be 62 kilohms. The VCO measurements are then:

and the following can be calculated:

$$K_o = V_{CC}/4\pi = 0.48 \text{ V/rad}$$

 $K_d = (1.2 - 0.38) \text{MHz} \times 2\pi/(4.5 - 1.16) \text{V} = 1.77 \text{E6 rad/V}$
 $K = K_o K_d = 0.85 \text{E6}$

The relation of the filter bandwidth, defined as ω_1 , may be used to establish the relation of τ_1 and τ_2 in the lag-lead filter. Then, defining the ratio of ω_1 to ω_n provides a practical basis for comparing time constants to the active parameters of the loop. The solution of $|f(j\omega)|^2 = 0.5$ yields:

$$\omega_1 = 1/(\tau_2^2 + 2\tau_1\tau_2 - \tau_1^2)^{0.5}$$

which may be used to calculate τ_1 and τ_2 after the ω_t/ω_n ratio is assumed. Then, using the equation of Fig. 20(b):

$$\omega_n = [K/(\tau_1 + \tau_2)]$$

filter-component values R_3 , R_4 , and C_2 can be derived as follows:

Given: $\omega_t = 1\%$ of f_{min} , $\omega_t/\omega_n = 1/8$

Calculate: $\tau_1 = 0.0346$ ms, $\tau_2 = 0.0092$ ms

R₁ = 51 kilohms, R₄ = 1.36 kilohms,

C₂ = 0.00068 microfarad

Where jitter is the ratio of phase displacement to signal period, the following PLL results were obtained:

SIG _{in} (kHz)	Jitter (ns)	Percent of Period
1200	< 28	2.4
790	< 20	1.6
380	50	1.9

3. Simple Low-Pass Filter Using PC2

This example uses the results of Example No. 1 and redefines the criteria for the loop:

Given:
$$\omega_1 = 100 \text{ Hz}$$
, $\omega_1/\omega_n = 1/10$
 K_d is now $V_{CC}/2\pi = 6/2\pi = 0.955 \text{ V/rad}$

Basing this example on measured data:

Using $\omega_{\rm n}$ = (K/ $\tau_{\rm 1}$)^{0.5} and the value of $\omega_{\rm n}$ from the given data gives:

$$\tau_1$$
 = 1.24 ms, R₃ = 51 kilohms, C₂ = 0.024 μ F

Measured results give 0.5 microsecond of jitter (1.4% of period) at 27.5 kilohertz.

4. Simple Low-Pass Filter Using PC2 With Divide-By-N

This example uses one of the examples given in the VCO measured-data section above:

V_{cc} = 6 V

R₁ = 43 kilohms, C₁ = 39 pF

For Ko, fosc meas. at VCOin = 3 V

 $K_0 = 6.12E6 \text{ rad/V}$

K_d is 0.955 V/rad (from previous example)

Using the HC4024 7-Stage Binary Ripple Counter for a divide-by-N of 128 and PC2 in a simple RC LPF, the loop frequency is 20 kilohertz and:

$$K = K_o(K_d/N) = 45660$$

If it is assumed that ω_1 is 1% of the loop frequency or ω_1 = 200 Hz, and that ω_1/ω_n = (1/8), then ω_n = (K/ τ_1)^{0.5} gives a time constant, τ_1 , of 451 milliseconds. Choosing R₃ = 51 kilohms gives C₂ = 0.0088 microfarad. The jitter measured during lock was less than 0.6 microsecond or 1.2 %.

A tabulation of results using the same VCO and divide-by-N ratio, where ω_1 is 1% of the 20-kHz loop (200 Hz) and ω_1/ω_n is varied, is shown in Table 1.

Table 1 - Results for Simple Low-Pass Filter Using PC2 with Divide-By-N

ω ₁ /ω _n	ω _n (calc.) (rad/s)	τ ₁ (calc.) (ms)	R₃(calc.) (kilohms)	C₂(calc.) (μF)	Jitter(meas.) (<i>µ</i> s)	ζ(calc.) (d.f.*)
3	3774	3.206	51	0.0628	5	0.041
5	6290	1.154	51	0.0226	2	0.069
8	10064	0.451	51	0.0088	0.6	0.11
10	12580	0.288	5	0.0056	1.2	0.14

^{*}d.f. = damping factor

The range of pull-in remained typically the same for the 20-kilohertz loop. The pull-in measured 6 to 37 kilohertz.

5. Simple RC LPF Using Frequency Offset and PC2

To provide a comparison with loop example No. 4, a VCO example without the divide-by-N was developed using R₁ = 160 kilohms, R₂ = 180 kilohms and C₁ = 0.005 μ F. The measured frequency for V_{CC} = 6 V is:

VCO_{in}	fosc (meas)
(V)	(kHz)
0	15.38 (offset)
1	17.85
1.75	20
3	22.78

 K_o = $2\pi(22780 - 20000)/(3 - 1.75)$ = 13973 rad/V K_d is 0.955 V/rad $K = K_o K_d$ = 13344

Using ω_f = 200 Hz and ω_f/ω_n = 1/10, and solving as above gives the results of table II.

The pull-in is typically 18 to 33 kilohertz for this example. It should be noted that the damping factor, ζ , is higher than in example No. 4. With offset, the loop-gain factor, K, is approximately 1/3 less.

Table II - Results for Simple RC LPF Using Frequency Offset and PC2

$\omega_{\rm f}/\omega_{\rm n}$	ω _n (calc.) (rad/s)	τ ₁ (calc.) (ms)	R₃(calc.) (kilohm)	C₂(calc.) (μF)	Jitter(meas.) (μs)	ζ(calc.)
3	3774	3.206	51	0.011	5.5	0.18
6.3	7952	1.154	51	0.0041	4	0.3
8	10064	0.451	51	0.00161	2	0.48
10	12580	0.288	51	0.001	0.6	0.6

LPF DESIGN SUMMARY

There are several points to be made on the subject of LPF design. The examples shown in this Note are given as illustrations of HC/HCT4046A PLL capability. Indeed, the best recommendation for a general-purpose PLL would be to use an active filter. The gain factor, K, would then provide another degree of latitude in the many compromises of PLL design. The second best filter would be the lag-lead filter network design, where the added resistor provides a semi-independent control over the damping factor of the loop, a key requirement in tracking systems. The lag-lead, however, is an imitation of the active filter only for a limited range of component values. If the primary requirement is to phase-lock two frequencies synchronously together, and response time is not a major factor, the simple RC filter may be quite adequate for this purpose.

Because the filter design is not rigid, options exist to vary the design approach. Optimizing by trial and error should be considered in all cases. One should always be aware that textbook approaches are often developed for applications not identified or with limitations and assumptions not given. A few points that may help to clarify the assumptions made in the examples given in this Note are as follows:

- Open-loop analysis has limited significance. The PLL is a system within itself, and nearly all technical material is presented in the form of a closed-loop analysis. The "bottom line" is that the filter must be designed with the entire loop in mind.
- The HC/HCT4046A VCO gain factor, K_o, is dependent on the center frequency, f_o, and the offset frequency, f_{min}. That is, K_o is approximately (f_o - f_{min})/(Vcc/2). If any of the VCO parameters such as R₁, R₂, or C₁ change, then K_o and the filter design requirements will change.

- 3. The use of a filter bandwidth of 1% of the signal or loop frequency may not achieve the desired results in all applications. Because no specific applications were defined in the above material, the 1% filter bandwidth, ω₁, was chosen as a practical way to achieve simple phase-lock results, given that ω₁/ω_n is chosen for a practical range of component values. In any case, the designer should be aware of the common parameters used to describe the PLL performance, such as damping factor, ζ; loop natural frequency, ω_n; noise bandwidth, BL (or 2BL); and the loop gain, K = K₀K₀.
- 4. The damping factor can be used as a starting point for design assumptions. For some applications, this approach could be a better one than choosing bandwidths. The system response, however, must take into account both the loop natural frequency and the damping factor.
- 5. As noted in the VCO description, the linear range of the HC/HCT4046A extends from 1 volt to approximately V_{CC} - 1 volt. Operation of the VCO_{in} at or near the V_{CC} level is not recommended because the linear range of the internal differential amplifiers (CMA circuit) is exceeded. When this level of operation occurs, the K₀ of the VCO increases rapidly and may cause loop instability. The application of active opamp filter circuits using such devices as the CA5470 can limit the maximum positive voltage swing to approximately the correct level while operating from the same V_{CC} supply as the HC/HCT4046A.

The designer should apply high-speed application-circuit techniques when using High-Speed CMOS PLL devices; the switching speed can produce higher harmonic components. Good rf bypassing techniques with good filtering are recommended in the design of the power-supply distribution to minimize any potential EMI problems.

BIBLIOGRAPHY AND REFERENCES

- 1. Phase-Lock Techniques, F.M.Gardner, John Wiley & Sons, NY
- 2. Frequency Synthesis, V.F.Krupa, John Wiley & Sons, NY
- 3.
- Engineering Electronics, J.D.Ryder, McGraw Hill, NY "Color-Carrier Reference Phase Synchronization Accuracy in NTSC Color Television," D.Richman,
- Proceedings IRE, 42, 106-33, 1954
 "Miniaturized RC Filter Using Phase-Locked Loop," 5. G.S.Moschytz, Bell System Tech. Journal, page 829, 1965

ACKNOWLEDGMENTS

Contributions to this Application Note were provided by J. Nadolski (device characteristics) and C. Lee (PLL filter examples).

APPENDIX I - PHASE COMPARATOR SUMMARY INFORMATION

	PC1	PC2	PC3
Туре	XOR	Pos-Edge-Trig. JK Flip-Flop	Pos-Edge-Trig. RS Flip-Flop
PC _{out} V _{PC} (out), (SIG _{in} High)	V _{DD} /2	Low	High
Locked Phase Diff., ø (SIG _{in} ref.)	π/2	0	π
Filtered PC _{out} , V _{DEMout}	(Vcc/π) φ	$(V_{cc}/4\pi) \phi$	$(V_{CC}/2\pi) \phi$
Requires 50% Duty Cycle?	Yes	No	No
Lock Detector	No	Yes(HC/HCT7046A)	No
Phase Pulses Out	No	Yes(HC/HCT4046A)	No

APPENDIX II - LOOP PARAMETERS AND EQUATIONS

Fig. 1(a) showed the fundamental PLL block diagram and the relationships of the various loop parameters. The relationships of these parameters are determined by the transfer characteristic of each functional block of the loop. Following is a brief explanation in terms of parameter functions; further details may be found in various reference texts.

 K_d is the phase-comparator conversion gain factor expressed in units of volts/radian. It is determined by the equation $V_d = K_d(\phi_1 - \phi_0)$ or $K_d = V_d/(\phi_1 - \phi_0)$. For the phase comparators of the HC/HCT4046A, $V_d = V_{DEMout}$ and, assuming ripple and noise are suppressed, K_d for PC1, PC2, and PC3 may be expressed as:

$$K_d(PC1) = V_{CC}/\pi$$
 (A1)
 $K_d(PC2) = V_{CC}/2\pi$ or $V_{CC}/4\pi$ (mode dependent) (A2)
 $K_d(PC3) = V_{CC}/2\pi$ (A3)

Equation A2 is generally used in the $V_{cc}/4\pi$ form. In this Note, however, the $V_{cc}/2\pi$ form is used because PC2 is not fully periodic. It is periodic only as long as the phase is changing in one direction. As such, it is sequential with $V_{cc}/2\pi$ gain. In the PC2 slip mode there is a similar but opposite phase characteristic to that of PC3. In the PC2 lock mode there is both up and down ranging, but typically from $V_{cc}/2\pi$ gain factor.

 K_o is the VCO gain factor expressed in radians/second-volt or Hz/volt (rad/s is used for brevity) in the text. Where the derivative of phase is frequency:

$$f_{osc} = d\phi/dt = K_oV_c$$

Using Laplace transforms for the complex frequency domain, $d\phi/dt$ becomes $s\phi(s)$, and $s\phi(s) = K_oV_c(s)$. If

an initial condition of $\phi_0(t) = 0$ is assumed at t = 0, the VCO gain factor is given by:

$$K_o = s\phi(s)/V_c(s)$$

and the VCO gain is given by:

$$\phi(s)/V_c(s) = K_o/s \tag{A4}$$

It is important to note that a simplification of the steady-state loop response can be derived from the Laplace-Transform final-value theorem, which states that the $\lim[\phi(t)]$ equals $\lim[s\phi(s)]$ where t goes to infinity as s goes to zero. That is, simplified calculations can be made without transforming back to the time domain.

- F(s) is the loop filter transfer function. The order of the loop is determined by the type of filter used. The most common filter and the type discussed in this Note is the second-order, as defined by the power of s in the denominator of the complete loop transfer function. Fig. 1(b) shows the simplest filter with a series R and shunt C. Fig. 20 shows the most commonly used filters and gives the transfer functions for each.
- H(s) is the closed-loop gain. Although the PLL system has limited meaning as an open loop, the open-loop gain elements can be used in a general closed-loop feedback expression to determine the expression for H(s). The open-loop gain, G(s), is given by:

$$G(s) = (K_o/s)K_dF(s)$$

and the closed-loop gain H(s) is given by:

$$H(s) = G(s)/[1 + G(s)]$$

$$= K_o K_d F(s) / [s + K_o K_d F(s)]$$
 (A5)

APPENDIX II - LOOP PARAMETERS AND EQUATIONS (CONT'D)

 ϕ e(s) is the phase error ($\phi_i - \phi_o$) and is closely related to the closed-loop gain. With $\phi_o(s)/\phi_i(s) = H(s)$ and with manipulation:

$$[\phi_i(s) - \phi_o(s)]/\phi_i(s) = 1 - [\phi_o(s)/\phi_i(s)]$$

or:

$$\phi e(s) = 1 - H(s) \tag{A6}$$

This expression with the final-value theorem can lead to a simpler and quicker solution than transforming back to the time domain.

- ω_n is the natural frequency of the second-order loop from terminology used in earlier feedback and servo theory. It is analogous to ringing frequency in an RLC circuit. Refer to the loop equations in Fig. 20 for the values of ω_n.
- is the damping factor (ratio) of the second-order loop from terminology used in earlier feedback and servo theory. Critical damping occurs for $\zeta = 1$. Refer to the loop equations in Fig. 20 for the damping factor equations.
- ω_{3dB} is used to define the conceptual relationship of 3dB bandwidth for the closed loop. It is determined by setting the squared absolute magnitude of the transfer function $|H(j\omega)|^2 = 0.5$ and solving for ω .

- is used in this Note to define the bandwidth of the loop filter, as a simpler approach to finding the timeconstant values.
- ω_P is the pull-in or capture range. Pull-in range identifies the frequency range over which the PLL can snap into lock without further cycle slipping, assuming that it was not initially locked and that it reaches lock after slipping cycles.
- $\Delta \omega_l$ is the lock-in range of the VCO, where lock is established without slipping cycles. (It is also referred to as seize range.)
- Δω_h is the hold-in range. It is also called the tracking range or lock range. It is the frequency range over which lock is maintained, assuming the input frequency is continuous and varying within the hold-in range.
- T_p is the pull-in time for the loop to establish lock. It extends for more than one cycle.
- T₁ is the PLL lock-in time without slipping cycles.
- T_a is the settling time for the VCO to achieve 90% energy at the new frequency.

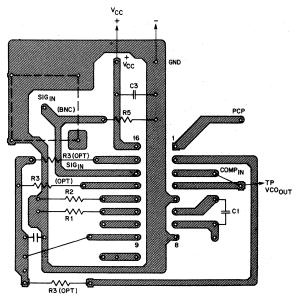
Refer to the bibliography and other text material for more complete information relative to the above definitions. Only the use of the HC/HCT4046A, HC/HCT7046A, and related PLL system parameters are discussed in this Note.

APPENDIX III - BASIC PROGRAM FOR VCO FREQUENCY CALCULATIONS

```
REM Program for HC4D46A VCO Frequency with & w/o offset
REM Name "PLL.BAS"
REM
Start:
INPUT "Enter center frequency, Fo
                                     ", Fo
INPUT "Enter Offset frequency, Fmin, enter O if none
INPUT "Enter power supply voltage, Vcc (Vdd)
                                                 , Vcc
PRINT "6 pf of stray cap. is assumed, Ctotal = Cstray + C1"
Vramp=(.1*Vcc+.6)-(-.7)
Tpd = EXP(-.434*LOG(Vcc)-17.5)
REM Tpd approx. 12.5 nanoseconds, Vcc=5V
Cs=6E-12 : Rdn=50
IF Fmin > Fo THEN PRINT "bad data, try again"
IF Fmin > Fo THEN Start
IF Fmin > .9 * Fo THEN PRINT "Offset too close to Fo, Poor choice!"
IF Fmin()O THEN Offset
REM IF Fmin=O THEN NoOffset
PRINT "Prop Delay, Tpd = ", Tpd
REM
```

APPENDIX III - BASIC PROGRAM FOR VCO FREQUENCY CALCULATIONS (CONT'D)

```
NoOffset:
REM I1 empirical equation, guestimate
I1=EXP(.45*LOG(Fo)-15)
REM M1 equation from graph fit
M1=-.04343*LOG(I1/.001)+6
Isum=M1*I1
R1=Vcc/(2*I1)
REM if Ct selected as initial data, est. with this
REM Ct = EXP(-.667*LOG(Fo)-13.196)
REM C1 values less than 40 pF should not be used
REM IF Ct(4.6E-11 THEN Ct=4.6E-11
Tc=((1/Fo)-2*Tpd)/2
Ct=Tc*Isum/(Vramp-(Isum*Rdn))
C1=Ct-Cs
PRINT "R1 = ", R1
PRINT "C1 = ", C1
PRINT "I1 = ", C1
PRINT "H = ", I1
PRINT "H = ", M1
PRINT "Isum = ", Isum
PRINT
INPUT "Pick preferred numbers for R1,C1 & plot Fvco? y/n? ", G1$
IF Q1$ = "n" THEN Quit
RepeatNoOffset:
INPUT "New C1 = ", C1
INPUT "New R1 = "
PRINT "Vcoin(V) ", " Fvco(Hz) "
FOR Vcoin=1 TO Vcc-.5 STEP .5
I1=Vcoin/R1
Isum = (-.04343 \times LOG(I1/.001) + 6) \times I1
Tc=(C1+Cs)*(Vramp-Isum*Rdn)/Isum
Fvco=1/(2*Tpd+2*Tc)
IF Vcoin=(Vcc/2)-.5 THEN F1=Fvco
IF Vcoin=(Vcc/2)+.5 THEN Fh=Fvco
Ko=((Fh-F1)/1)*2*3.14159
PRINT Vcoin, Fvco
NEXT
PRINT
PRINT "Ko = ", Ko , "radians/volt"
PRINT
INPUT "Repeat preferred number calc. for R1,C1? y/n?", Q2$
IF Q2$ = "y" THEN RepeatNoOffset ELSE Quit
REM
Offset:
REM empirical guestimate
I2=EXP(.45*LOG(Fmin)-15)
R2=(Vcc-.6)/I2
M2=-.087*LOG(I2)+4.6+.4*Vcc
Tcmin=((1/Fmin)-2*Tpd)/2
Ct=Tcmin*M2*I2/(Vramp-M2*I2*Rdn)
C1=Ct-Cs
Tco=((1/Fo)-2*Tpd)/2
Isum=Ct*Vramp/(Tco+Ct*Rdn)
M1I1=Isum-M2*I2
```


APPENDIX III - BASIC PROGRAM FOR VCO FREQUENCY CALCULATIONS (CONT'D)

```
REM empirical equation for I1 based on given M1*I1 vs I1
I1=EXP(1.007113*LOG(M1I1)-1.755368)
M1=M1I1/I1
R1=(Vcc/2)/I1
PRINT "R1 = ", R1
PRINT "R2 = ", R2
PRINT "C1 = ", R2
PRINT "C1 = ", C1
PRINT "I1 = ", I1
PRINT "I2 - "
PRINT "12 = ", 12
PRINT "M2 = ", M1
PRINT "M2 = ", M2
PRINT "To
PRINT "Isum = ", Isum
INPUT "Pick preferred numbers for Evco vs Vcoin plot? y/n? ", Q3$
IF Q3$="n" THEN Quit
PRINT "Note: IN NO CASE SHOULD R1 OR R2 BE LESS THAN 3000 OHMS!!"
RepeatOffset:
INPUT "Enter preferred value of C1
                                        ", C1
                                         , R1
INPUT "Enter preferred value of R1
INPUT "Enter preferred value of R2 "
PRINT "Vcoin", "Fvco", "Isum"
FOR Vcoin = 1 TO Vcc-.5 STEP .5
I2=(Vcc-.6)/R2
I1=Vcoin/R1
M1=-.04343*LOG(I1/.001)+6
M2=-.087*LOG(I2)+4.6+.4*Vcc
Isum=M1*I1+M2*I2
Tc=((C1+Cs)*(Vramp-Isum*Rdn))/Isum
Fvco=1/(2*Tc+2*Tpd)
IF Vcoin=(Vcc/2)-.5 THEN F1=Fvco
IF Vcoin=(Vcc/2)+.5 THEN Fh=Fvco
Ko=((Fh-F1)/1)*2*3.14159
PRINT Vcoin, Fvco, Isum
NEXT
PRINT
PRINT "Ko = ", Ko, " radians/volt "
INPUT "Try other preferred values? y/n? ", Q4$
IF Q4$ = "y" THEN RepeatOffset ELSE Quit
REM
Quit:
END
```

APPENDIX IV - R $_1$, R $_2$, AND C $_1$ VALUES WITH "CALC. $f_{\rm OSC}$ " PC SOLUTIONS FROM EQUATIONS 3, 4, AND 5 (V $_{\rm CC}$ = 6 V)

Ex. No	R ₁	R₂	C ₂	VCOin	Calc. (PC)	Error	Approx. (Thumb-	Error	Meas. Data
	(kil- ohms)	(kil- ohms)		(V)	fosc	(%)	Rule Eq.)	(%)	fosc
1 2	2000 43	_	0.084 uF 40 pF	1 5	9.9 Hz 3.76 MHz	28.5 -17.4	11 Hz 5.37 Mhz	70 18	7.7 Hz 4.55 MHz
3	8.6 6.2		40 pF 220 pF	1 5	3.77 MHz 5.63 MHz	19 12.6	5.38 MHz 6.8 MHz	70 36	3.17 MHz 5.0 MHz
.5 6	20.9 30	— 82	40 pF 0.016 uF	5 0	7.19 MHz 8.6 kHz	-7.8 -10.4	11.0 MHz 7.6 kHz	41 -20.8	7.8 MHz 9.6 kHz
7 8 9	30 8.2 8.2	82 8.6 8.6	0.016 uF 0.15 uF 0.15 uF	5 0 5	31.2 kHz 8.6 kHz 22.9 kHz	-19 -10.4 17.4	28.5 kHz 7.6 kHz 15.9 kHz	-26 -20.8 -18.5	38.5 kHz 9.6 kHz 19.5 kHz

APPENDIX V - HC4046A PLL LAYOUT WITH SIMPLE RC FILTER (R3C2)

NOTE: I. REMOVE PIN 2 METAL IF PC3 NOT USED 2. USE ONE R3 CHOICE 3. BOTTOM VIEW (ONE LAYER)

Sales Offices

U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road Melbourne, Florida 32902 TEL: (407)724-3739 **EUROPEAN HEADQUARTERS**

Harris Semiconductor Mercure Centre Rue de la Fusse 100 Brussels, Belgium 1130 TEL: (32)246-2201 **SOUTH ASIA**

Harris Semiconductor H.K. Ltd. 13/F Fourseas Building 208-212 Nathan Road Tsimshatsui, Kowloon Hong Kong TEL: (852)3-723-6339 NORTH ASIA

Harris K.K. Shinjuku NS Bldg. Box 6153 2-4-1 Nishi-Shinjuku Shinjuku-Ku, Tokyo 163 Japan TEL: 81-3-345-8911

DISTRIBUTORS IN U.S.A.

Almac Electronics
Anthem Electronics
Electronics Marketing Corporation
Falcon Electronics

Gerber Electronics
Hall-Mark Electronics
Hamilton/Avnet Corporation

Newark Electronics Schweber Electronics Wyle Laboratories DISTRIBUTORS IN CANADA

Hamilton/Avnet Corporation ITT Multicomponents

DATA BOOK

